WOA 20

dagli Oggetti agli Agenti

Sistemi Complessi e Agenti Razionali

Torino (Italia), 30 novembre 2004 — 1 dicembre 2004

Atti delle giornate di lavoro a cura di:

Matteo Raldoni, Flavio De Paoli,
Alberto Martelli e Andrea Omicini

Organizzato da:

Associazione Italiana per I'ntelligenza Artificiale
Associazione ltaliana Tecnologie Avanzate basate su concetti Orientati ad Oggetti

Con il patrocinio del Dipartimento di Informatica e dell'Universita' degli Studi di Torino

http://woal4.unito.it
woa04@di.unito.it

http://www.aixia.it
http://linux.disco.unimib.it/~taboo/TABOO/
http://www.di.unito.it
http://www.unito.it
http://woa04.unito.it
mailto:woa04@di.unito.it
http://woa04.unito.it

PRrREFAZIONE

Le tecnologie degli agenti stanno assumendo un ruolo centrale non solo nel settore
dell’intelligenza artificiale, ma anche in settori piu tradizionali dell’informatica quali I’ingegneria del
software e 1 linguaggi di programmazione, dove il concetto di agente viene considerato una naturale
estensione di quello di oggetto. L importanza di queste tecniche ¢ dimostrata anche in ambito industriale
dall’interesse per il loro utilizzo nella realizzazione di strumenti e applicazioni in molteplici aree.

Il presente volume raccoglie gli atti della quinta edizione delle giornate di lavoro “dagli Oggetti
agli Agenti” edizione 2004, dedicata al tema “Sistemi Complessi e Agenti Razionali”. Le giornate di
lavoro sono state organizzate dal gruppo di lavoro “Sistemi ad Agente e Multiagente” dell'Associazione
Italiana per 1'Intelligenza Artificiale (AI*IA) e I'Associazione Italiana Tecnologie Avanzate Basate su
Concetti Orientati ad Agenti (TABOO) in collaborazione con il Dipartimento di Informatica
dell'Universita degli Studi di Torino, gruppo di lavoro “Logic Programming and Automated Reasoning”. I
venti articoli di questa collezione comprendono sei lavori che, avendo come primo autore uno studente,
hanno partecipato al premio studenti, alla sua prima edizione ed indetto in occasione della prima
miniscuola organizzata in occasione delle giornate di lavoro. Titolo della miniscuola “Agenti e Oggetti @
Work”. L'evento si ¢ svolto nei giorni 29 e 30 novembre e 1 dicembre 2004, presso il Dipartimento di
Informatica dell'Universita degli Studi di Torino, enti patrocinanti.

Un particolare ringraziamento va al comitato organizzatore locale, in particolare a Cristina
Baroglio per la realizzazione del sito, allo staff tecnico del Dipartimento di Informatica e a Simone Donetti
per il software OpenChair.

Torino, 4 novembre 2004.

Matteo Baldoni, Flavio De Paoli,
Alberto Martelli e Andrea Omicini

Gli atti delle giornate di lavoro sono pubblicati dalla Pitagora Editrice Bologna, ISBN 88-371-1533-4.

CoMITATO SCIENTIFICO ORGANIZZATORE

Matteo Baldoni (Univ. di Torino)
Flavio De Paoli (Univ. di Milano — Bicocca)
Alberto Martelli (Univ. di Torino)
Andrea Omicini (Univ. di Bologna — Cesena)

CoMITATO ORGANIZZATORE LOCALE

Matteo Baldoni (Univ. di Torino)
Cristina Baroglio (Univ. di Torino)
Alberto Martelli (Univ. di Torino) — Presidente
Viviana Patti (Univ. di Torino)

CoMmiTtaTO DI PROGRAMMA

Stefania Bandini (Univ. di Milano — Bicocca)
Pietro Baroni (Univ. di Brescia)

Carlo Bellettini (Univ. di Milano)

Fabio Bellifemine (TILab)

Federico Bergenti (Univ. di Parma)

Enrico Blanzieri (Univ. di Trento)

Paolo Bouquet (Univ. di Trento e IRST)
Giacomo Cabri (Univ. di Modena e Reggio Emilia)
Marco Cadoli (Univ. di Roma "La Sapienza")
Giancarlo Cherchi (Univ. di Cagliari)

Marco Colombetti (Politecnico di Milano)
Francesco Donini (Univ. della Tuscia — Viterbo)
Rino Falcone (ISTC-CNR)

Letizia Leonardi (Univ. di Modena e Reggio Emilia)
Marco Mamei (Univ. di Modena e Reggio Emilia)
Sara Manzoni (Univ. di Milano — Bicocca)
Viviana Mascardi (Univ. di Genova)

Emanuela Merelli (Univ. di Camerino)

Rebecca Montanari (Univ. di Bologna)

Maria Teresa Pazienza (Univ. di Roma — Tor Vergata)
Alessandro Ricci (Univ. di Bologna — Cesena)
Giovanni Rimassa (Univ. di Parma)

Corrado Santoro (Univ. di Catania)

Carla Simone (Univ. di Milano — Bicocca)
Eloisa Vargiu (Univ. di Cagliari)

Mirko Viroli (Univ. di Bologna — Cesena)
Giuseppe Vizzari (Univ. di Milano — Bicocca)
Drertivo WOA

Giuliano Armano (Univ. di Cagliari)

Antonio Corradi (Univ. di Bologna)

Flavio De Paoli (Univ. di Milano — Bicocca)
Andrea Omicini (Univ. di Bologna — Cesena)
Agostino Poggi (Univ. di Parma)

Franco Zambonelli (Univ. di Modena ¢ R. Emilia)

I

INDICE DEI LAVORI

Evaluating Trust Among Agents,
Giacomo CaBri, Luca Ferrari, LETIZIA LEONARDI

Customer information sharing between e-commerce applications
BarBarA NEGRO, ANGELO DiriNo, FABIO BELLIFEMINE, GIOVANNA PETRONE,
Luca D1 Costa, Marco Botta, LiLIANA ARDISSONO

A Game-Theoretic Operational Semantics
ARrIANNA Toccnio, STEFANIA COSTANTINI, ALESSIA VERTICCHIO

On the use of Erlang as a Promising Language to Develop Agent Systems
CORRADO SANTORO, ANTONELLA DI STEFANO

A Multi-Agent System to Support Remote Software Development
Marco Mari, Lorenzo Lazzari, Acostivo Pocar, Paora Turcr

GrEASe: Grid Environment based on Agent Services
ANTONIO BoccALATTE, ALBERTO GROSSO, CHRISTIAN VECCHIOLA,
Sara Fazzari, Siwvia GaTtro

Design and development of a visual environment for
writing DyLOG programsttt
Craubio ScHIFANELLA, Luca Lusso, MATTEO BALDONI, CRISTINA BAROGLIO

Using Method Engineering for the Construction of
Agent-Oriented Methodologies
GiancarrLo Fortivo, ALFREDO GARRO, WILMA Russo

A Personal Agent Supporting Ubiquitous Interaction
Giovannt CozzoLoNGo, BERARDINA DE CARoLIS, SEBASTIANO Pi1zzuTiLO

Un'applicazione di e-government per la gestione di gare d'appalto
nella Pubblica Amministrazione
ALBERTO GROSSO, MAURO CoccoLl, ANTONIO BOCCALATTE

Coordinated Change of State for Situated Agents
GiUsePPE V1zzARI, STEFANIA BANDINI

Timed Coordination Artifacts with ReSpecT
Mirko ViroLI, ALESSANDRO Riccr

Commutation as an emergent phenomenon of residential and industrial

location decisions: from a microeconomic to a MMASS-based model

ALEXANDER KAUFMANN, SARA MANZONI, ANDREAS RESETARITS

Organizations as Socially Constructed Agents in the
Agent Oriented Paradigm i .
Gumo BoeLLa, LEENDERT VAN DER TORRE

A Conceptual Framework for Self-Organising MAS

ANDREA OmiciN, ALESSANDRO Riccr, Mirko ViIRoLI,
CristiaNO CASTELFRANCHI, Luca TuMMOLINI

II1

PAG.

13

22

30

37

43

51

55

62

69

77

86

93

100

Engineering Trust in Complex System through Mediating Infrastructures raG. 110
ALEssANDRO Ricci, ANDREA OMICINT

OWLBeans - From ontologies to Java classes PAG. 116
MicHEeLE TomAatuoLo, FEpERIcO BERGENTI, AGosTiINO Pocar, PaoLa Turcr

Spatial Computing: the TOTA Approach PAG. 126
Marco MaMmEl, FRANCO ZAMBONELLI

Simulation in the textile industry: production planning optimization PAG. 143
GianLuiGl FERRARIS, MATTEO MORINI

An agent-based matchmaker PAG. 150
Fravio Corraping, CHiARA ErcoLl, EMANUELA MERELLI, BARBARA RE

Evaluating Trust Among Agents

GlAcoMO CABRI, LUCA FERRARI, LETIZIA LEONARDI
Dipartimento di Ingegneria dell’Informazione — Universita di Modena e Reggio Emilia
Via Vignolese, 905 — 41100 Modena — ITALY
Phone: +39-059-2056190 — Fax: +39-059-2056126
E-mail: {cabri.giacomo, ferrari.luca, leonardi.letizia}@unimao.it

Abstract — Agent-based applications are more and more
exploited in the development of distributed systems, with
particular regard to the Internet ones. Even if the
development of agent-based applications is not so difficult
today — thanks to new paradigms and techniques -
security problems are still present. In particular, it is
important to deal with security of the data exchanged
between agents at runtime. In fact, agents are social, and
they interact with other agents in order to carry out
specific tasks. Since interacting agents could be
developed by different programmers, or provided by
different third parties, there is the risk that the interacting
counterpart could act maliciously with the received data.
In this paper we propose an approach based on the
concept of trust, which is more dynamic and adaptable
than security, in order to evaluate if an interaction can be
done or not.

Keywords: Agents, Roles, Interactions, Trust

1. Introduction

In agent-based applications, interactions among
agents are largely exploited in order to use services that
they can provide. This situation leads to a continue
cooperation between agents developed by different
programmers and provided by different vendors,
cooperation that often requires a data exchange. Often, the
interaction with other agents is crucial for the success of
the activities of an agent, so interactions must be carefully
considered in agent-based applications.

In a static black and white world, an agent knows a
priori whether interacting with another agent or not, while
in a dynamic colored world many issues must be
considered at runtime. The traditional approach based on
security is no longer enough in a very dynamic, uncertain
and unpredictable world such as the agents’ one. As a first
issue, a sure authentication may be not so easy to achieve
in a wide environment such as the Internet. Second, the
skill of the counterpart can be an important issue to decide
whether to perform the interaction or not; an authenticated
and secure agent could not provide the exact service
needed, or it can provide the service not in the best way.
In the evaluation of the skill, previous experiences can
help in the decision. These considerations lead to a
concept more flexible than security: trust. During an
interaction between agents, it is important that each
involved part can evaluate the trust that the interaction
will have.

In this paper, we propose a preliminary study on an
evaluation of trust level between two mobile agents,

M. Baldoni, F. De Paoli, A. Martelli, and A. Omicini (Eds.): WOA 2004 — Dagli Oggetti agli
Agenti, Sistemi Complessi e Agenti Razionali, Torino, Italy, November 29" — December 1
2004. Pitagora Editrice Bologna. ISBN 88-371-1533-4. ht t p: / / woa04. uni to. it

thanks to which agents will be able to start or reject an
interaction with more confidence.

Our study is related to mobile agents, since they are
an exploited technology in the development of distributed
and Internet-based applications today. Furthermore, since
interactions between agents are often exploited to carry
out a task, and since there are good proposals that model
interactions exploiting the concept of role [1, 4, 5, 6], our
approach explicitly introduces the trust in the assumed
role too.

The paper is organized as follows: section 2
introduces other concepts about trust, section 3 explains
how our approach computes the trust level between
agents, while section 4 details the Java implementation of
our approach. Finally section 5 gives conclusions.

2. About Trust

The concept of trust applied to computer science is
not new, and in fact we can find other studies in [2, 7, 11].
What these studies emphasize is that trust can be the

compound result of trust assigned to different
components, thus it is not possible to evaluate the global
trust before having evaluated each component.

Furthermore, trust depends on not immediately visible
properties, and in particular it is based on the capability of
predicting these properties and of trusting them. Finally,
the trust level of an agent cannot be a fixed property of
the single agent, but it depends also on the other agents
with which it interacts (or have interacted).

The main difference between security and trust is that
the latter is more subjective and context dependent. In
fact, while security is typically set up before the execution
of the application, allowing administrator to change rules
during the application evolution, trust is decided by the
application components themselves. In other words, while
security is typically set up externally from the application,
trust comes from the inside of the application, since it is
evaluated by the running components themselves. Since
trust comes within the application, without requiring
external entities (e.g., administrators), this leads to a
dynamic situation, where the application can take
decisions considering the current environment.

Typically, what happens is that an agent starts an
interaction with another agent only if the latter has a trust
level greater than a threshold, which usually depends on
the goal and the kind of task of the former agent.

It is important to note that building a system based on
trust does not mean to simply apply one (or more)
threshold to system parameters, since this would lead to a
security-based application. To better explain this concept,

baldoni

imagine that an agent trusts another agent if it owns at
least the 80% of a common secret password. This could
mean that the first agent trusts the second at the 80%. But
at a deeper look, this does not represent a trust threshold,
but a security threshold. In fact, in the above situation, it
is like if the common password must be shorter than the
complete one to allow agents to interact, which means
that the security level is lower than the one required with
the complete password. Even if the threshold can be
changed during the application, the situation can be
always reconsidered as a security issue.

From the above example it should be clear that
evaluating trust does not mean to simply apply variable
thresholds. Trust requires other control mechanisms, and,
in particular, the capability to evaluate and change trust
levels autonomously during the application evolution.
Nevertheless, even being able to evaluate and adapt
thresholds during the application does not suffice, and it is
for this reason that trust needs also history. In fact, only
evaluating the trust level over different time instants it is
possible to get a very subjective value.

Trust should always be computed dependently on the
target of the action the agent is doing, since it is not
possible to evaluate trust just related to another agent
without considering also the action to perform. This
means that there could be different trust levels among the
same agents, depending on the actions/interactions they
are doing together. Starting from the above
considerations, it should be clear that the trust
computation should also have a fine grain, depending on
the involved agents and interactions.

Furthermore it is important to note that trust should
not be considered negatively, but positively. In other
words, it is more important to understand which could be
the positive consequences of granting trust to a partner,
rather than the negative ones (or risks) due to a bad
evaluation [7]. In this situation interactions will be
promoted, and not rejected due to a not 100% trust level.

The following section shows the formula we propose
to evaluate trust level between agents.

3. Computing the Trust Level

Since agents are computational entities, they cannot
evaluate the trust as humans do (i.e., based on emotions,
feelings, intuitions, instincts, and so on). In order to allow
agents to evaluate the trust related to other agents or
components in a computational way, we propose the
following formula:

_(1-S)-A-cp+S-(cs +¢; - 1)+H-cy +P-cp +R-Cy
N (1—S)-Cp+S-(Cs +C) +Cy +Cp +Cpg
where Tj; represents the trust level of the agent j computed
by the agent i. As detailed in section 1, the global trust
can be evaluated only if all its components have been
evaluated. In the above formula the terms c, represent
weights of the several parameters. They say how much
the agent wants to consider a given parameter in the
evaluation of the trust. The parameters are the following:
= S indicates if the agent is signed or not. The value can
be only 0 or 1, depending on the presence of the
signature(s) of the agent;

ij

= A stands for the authentication of the agent and can
embed both credentials and code type. The former
could be, for example, passwords or secrets useful to
authenticate the agent or its owner. The latter
represents an introspection on the agent code in order
to understand, for example, the base classes used to
build it, or if it contains dangerous instructions, etc.;

= | represents the identity of the signer of the agent (if
present);

= H represents the history of the interactions of the
agent j. The history is important in order to evaluate in
a more subjective way the trust level of j perceived by
i, thus the agent i can understand if agent j has been a
bad agent in the past or not;

= P stands for the previous host of the agent. Since this
work has been done explicitly in the mobile agent
context, we have decided to explicitly insert the
previous host parameter in the formula;

= R represents the trust of the agent j feel by the role

assumed by the agent i. It can be computed with a

formula similar to the above one:

_(1-S)-Acpg+S-(Cg +Cg - 1) +H -cyg +P-Cpg

(1-S)-Cap +S-(Csg +Cig) +Cryr +Cpr

where all the terms and the weights have the same

meaning described above, even if, as also indicated by the

weight subscripts, they are related to the role and not to

the agent itself.

Why there is the need of evaluating trust even of the
assumed role? First of all it is important to recall the fact
that roles are external components to agents, which are
exploited by them during the execution of the application.
The fact that roles are external entities, and the fact that
they are usually tied to the local execution environment
[3], means that agents have no warranties about the piece
of code they are going to exploit. It is for this reason that
the trust level must include also the trust about the role (if
there is one).

It is important to note that S is the only one parameter
that can assume a boolean value, depending on the
presence of the signature(s), while the other can be
between 0 and 1. The weights c, are between 0 and 10%,
and this means that the final value of Ty will be always
less or equal to 1:

Se{01};AI,H,P,Re[0]];c, €[010]= Tjj € [01]

Please note that, as shown in the first formula, when
the agent is not signed (i.e., S=0) the identity term | is not
considered in the computation of the trust level, while
when the agent is signed (S=1), the term of the
authentication A is not considered. In fact, since the agent
is signed, there is no need to authenticate it, but the
signature(s) can be used as authentication as well.

A very important term in the first formula is S, which
represents the history of the actions of the agent j, thus the
agent i can try to understand if the opponent has been fair
or not. The term S is not trivial to calculate, due to the fact
that is not always simple to keep a track of the history of
past actions of each agent, depending on the platform

R

! Please note that the trust level T; will always be normalized,
independently from the range of values the weights ¢ belongs to. The
choice of the latter range depends on the level of granularity required by
the computation.

baldoni
2

implementation. What an agent can do, in the case that the
platform does not provide support for the history of
actions, is to keep a private track of actions/interactions
with a specific agent, in order to be able to further
evaluate the term S when needed. For example, an agent
can progressively compute S with the following simple
count;
_ succesfully _done _ transactions _ with _agent _ X

totally _done _transactions _ with _agent _ X

while the weight c¢; should become greater as the
successful transactions are recent or not.

All the capitalized terms in the first and second
formulas represent parameters that are fixed for all agents,
but what makes the formulas subjective is the use of
weights c,. In fact, while an agent should not change
values of the parameters, it can change values of weights,
in order to adapt the computation of the trust level to its
execution environment.

3.1. Considerations about the Formula

It is important to note that the formula can be used to
compute trust even if not all terms are available. For
example, in some implementations the history (H) could
not be present, thus agents have to compute the trust level
with a “partial” formula. Of course, the use of an
uncomplete formula will produce less reliable results,
since the space of possible result values is shrinked.

Another important thing to note is that, even if “trust”
is not the same of “security”, as already written, the
formula is partially based on a set of security terms (like
A and 1), since we believe that first of all trustness should
imply also security (but not vice versa).

Finally, please note that the choice of weights is in
charge of the agent (and its developer), since the agent
must evaluate by itself how much important are the
information about the different interacting entity.

4. AJava Implementation

In order to ease the use of the first formula we have
implemented a set of Java classes that Java agents can
exploit. This section gives a presentation of this set of
classes as first, and then briefly shows an application
developed using IBM Robocode, which exploits the
above classes.

4.1. Java Classes to Compute the Trust Level

All the classes are contained in a single package,
it.unimo.brain.trust. Itis important to note that,
in order to grant a high flexibility in the computation of
the trust level, almost all classes are abstract.
Nevertheless, in order to give developers a library ready
to use, we provided a subpackage, called impl, which
contains default implementations of the main abstract
classes.

Since the Tj; is a sum of terms, each one composed of
other sums or multiplications of a weight and a
capitalized term, we introduced the base class Term (see
Figure 1), which represents the result of a capitalized term
and its weight. In this way it is quite simple to compute
the whole formula, since developers have just to add each

term, while the terms will compute themselves
transparently.
TermFactory
creates Initializer
<abstract> initializes
Term

Figure 1 Main classes of the Java implementation.

Before it can be used, a term must be initialized, that
means it must be able to compute the right value. For this
reason we provided an interface, Initializer, which has
been specialized for each term in order to load the right
values. For example, in the case of the computation of H,
the initializer must contain a table of known host and the
values for the trust for each of them. To make all the
formulas more flexible, we provided also a factory class
that gives the current implementation of each term. The
agent is just in charge of calling the method getTerm of
the factory with the constant that identifies the term. The
following piece of code shows an example of the
initialization and use of the S term:

// get a new initializer for F

Initializer init = new SignaturelInitializer();
// get the Term from the factory

Term S = TermFactory.getTerm(S_TERM) ;

// initialize the term
S.initialize(init,agent.getClass() .getName()) ;

// use the term
float weight = ...;
float val_S = S.getValue(weight) ;

It is important to note that the initialization does not
provide the weight used in the formula, and this is to
obtain a more dynamic system. In fact, since weights
adapt the formula to the current context, and since they
must be personalized for each agent, they must be
provided at the moment of the computation, i.e., when the
getValue method is called.

4.2. Exploiting the Formula in Robocode

In order to prove the usability of the first formula and
of its Java implementation, we have tested it in an
application developed using the IBM Robocode game
platform [8, 9, 10]. Robocode is a Java platform used to
implement simple Java games (see Figure 2), where
developers can program robots (represented as tanks) that
battle each other.

We have chosen this particular platform for two main
reasons. First of all the scenario is very similar to the one
of agents, and in fact, robots are free to move and interact
each other, in a cooperative or competitive way.
Furthermore, robots can cheat and can be cheated, and in
this situation the computation of trust gain more
importance. The second reason is that the use of
Robocode gives developers a concrete visible evolution of
the application, that means it is possible to understand
how robots trust each other simply watching the battle.
This is useful in particular in didactic experiences.

baldoni
3

Figure 2 The Robocode battle-of-trust.

In the developed application, there is a particular robot
that evaluates the trust levels between itself and the other
robots, killing those it does not trust. This leads to a
situation where only trusted robots survive.

Of course, in this simulation a few parameters of the
first formula have just been set to the default values, since
they do not have a specific meaning. For example, since
the robots execute in the same host, the H parameter has
been set to a value depending on the team they belong, in
order to simulate the provenience from different hosts.

Conclusions

In this paper we proposed a preliminary study for trust
evaluation in agent interactions. Unlike other approaches,
ours explicitly takes care of mobility and of the
exploitation of roles in interactions.

Our approach is based on a formula, which allows
agents to compute the trust level as composed of different
components that include the history of previous
interactions, in order to allow a complete evaluation.
Thanks to the use of weights in the formula, which can be
adapted for the current context, the formula is suitable for
different situations and agents. This allowed us to develop
a set of Java classes which can be exploited to compute
the formula value (i.e., the trust level) in Java agent
applications. We applied the formula also to other
scenarios, similar to those of agents, in order to
demonstrate that is quite general and can be easily
adapted to different applications.

Future work includes a better evaluation of each
component of the formula, in order to understand if they
are complete or must be extended. Furthermore, a
standardization of the computation of the history will help
in the computation of trust.

Acknowledgments: Work supported by the Italian MIUR
and CNR within the project "IS-MANET, Infrastructures
for Mobile ad-hoc networks", and by the MIUR within
the project "Trust and law in the Information Society.
Fostering and protecting trust in the market, in the
institutions and in the technological infrastructure”.

[1]

(2]

3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

References

D. Baumer, D. Riehle, W. Siberski, M. Wulf, “The
Role Object Patterm”, Pattern Languages of

Programming conference, 1997, Monticello,
Illinois, USA
P. A. Buhler, M. N. Huhns, “Trust and
Persistence”, IEEE Internet Computing, April
2001, p. 85-87

G. Cabri, L. Ferrari, L. Leonardi, “The Role Agent
Pattern: a Developers Guideline”, in Proceedings
of the 2003 IEEE International Conference on
System, Man and Cybernetics, 5-8 October 2003,
Washington D.C., U.S.A.

G. Cabri, L. Leonardi, F. Zambonelli, “Separation
of Concerns in Agent Applications by Roles”, in
Proceedings of the 2" International Workshop on
Aspect Oriented Programming for Distributed
Computing Systems (AOPDCS 2002), at the
International Conference on Distributed
Computing Systems (ICDCS 2002), Wien, July
2002

G. Cabri, L. Leonardi, F. Zambonelli, “Modeling
Role-based Interactions for Agents”, The
Workshop on Agent-oriented methodologies, at
the 17" Annual ACM Conference on Object-
Oriented Programming, Systems, Languages, and

Applications (OOPSLA 2002), Seattle,
Washington, USA, November 2002

G. Cabri, L. Leonardi, F. Zambonelli,
“Implementing Role-based Interactions for

Internet Agents”, 2003 International Symposium
on Applications and the Internet, Orlando (USA),
January 2003.

R. Falcone, O. Shehory, “Tutorial 12 — Trust
delegation and autonomy: foundations for virtual
societies”, Autonomous Agents & Multiagent
Systems (AAMAS2002), Bologna, Italy, July 2002
IBM Robocode Ufficial Site
http://robocode.alphaworks.ibm.com/home/home.h
tml

IBM Robocode - APl Documentation
http://robocode.alphaworks.ibm.com/docs/robocod
e/index.html

Sing Li, “Rock 'em, sock 'em Robocode!”, paper
available on line at http://www-
106.ibm.com/developerworks/java/library/j-
robocode/

J. Seigneur, S. Farrell, C. Jensen, E. Gray, Y.
Chen, “End-to-end Trust Starts with Recognition”,
Proceedings of the First International Conference
on Security in Pervasive Computing, Boppard,
Germany, March 2003

baldoni
4

Customer Information Sharing between
E-commerce Applications

Liliana Ardissono, Marco Botta
Luca Di Costa, Giovanna Petrone
Dipartimento di Informatica
Universi@ di Torino
Corso Svizzera 185, Torino, Italy
Email: {liliana, botta, giovanng@di.unito.it

Fabio Bellifemine, Angelo Difino
Barbara Negro
Telecom ltalia Lab
Multimedia Division
Via Reiss Romoli, 274 - Torino, ltaly
Email: {Fabio.Bellifemine, Angelo.Difino,
Barbara.Negrp@tilab.com

Abstract— The management of one-to-one business interaction customers’ profiles. For these providers, the main purpése o
is challenged by the latency in the acquisition of information sharing customer information with other (trusted) parigs
about the individual customer’s preferences. Although sharing that of acquiring information about unknown customers t(firs

this type of information would empower service providers to i isit fl ired t h fi
personalize the interaction with new customers since the first ime visitors) or recently acquired customers, whose @®fi

connection, this idea can be hardly applied in real cases if the are not yet complete.
service provider cannot protect the data it has acquired from In this paper, we propose a framework supporting a
competitors and select the trusted parties from which it wants ~gntrolled propagation of customer information among e-
to receive information. o .

As a solution. we propose a framework suoporting the con- commerce applications. The framework includes a Trust Man-

; prop pp 9 - .

trolled sharing of customer information between e-commerce 2gément System that enables the administrators of individu
applications. Our framework includes two main components: 1) Service providers to specify their trust relationshipswather
a Trust Management System (running off-line with respect to the providers and to examine the set of service providers édigib
information sharing service), which enables the service provider for information sharing, possibly modifying it by addingdan

administrator to specify restrictions on the service providers 10 o ing individual service providers. Moreover, the feam
be considered as trusted parties; 2) a User Modeling Agent,

which manages the propagation of customer data between service WOTK includes a User Modeling Agent that coordinates the
providers, given their trust relationships. The User Modeling €xchange of customer information according to the netwérk o

Agent also takes care of combining the customer information declared trust relationships: when a service provider estpu
provided by the trusted parties in order to generate an overall jnformation about a customer, the User Modeling Agent
view of the customer preferences. merges the information provided by the trusted parties &to
user model ready to be exploited for personalization puapos

From the viewpoint of trust management, our framework

Various techniques have been applied in Web-based stogegiples the service provider administrator to select pestn
and electronic catalogs to personalize the recommendatigh information sharing both at the individual level and fag t
of products; see [1], [2], [3], [4]. For instance, collabve ¢|ass level (on the basis of their features). More generally

filtering [5] steers the recommendation of goods by analyziframework has the following advantages:
the similarities in the purchase histories of different peo

Moreover, content-based filtering (e.g., see [6]) recondseen
goods having properties that the individual customer prete
in the past. In all cases, the customer’s behavior has to be
observed for some time in order to acquire a user model
describing her preferences. Thus, a delay occurs before the
service provider application personalizes the interactian
effective way.

Indeed, the preference acquisition process can be spepded u
if the service providers exchange their customer inforamati
with one another. For instance, if two book sellers trustheac
other, they might share the user models describing thei cus
tomers in order to increase the knowledge about the common
customers and to extend the set of visitors they can handle as
known ones. In Business to Customer e-commerce, sevdrathis paper, we will focus on the Trust Management System,
service providers already exploit their own user modelinghich provides the basis for the customer information propa
systems to analyze clickstream data and locally manage thgation, and we will only sketch the main aspects of the User

I. INTRODUCTION

« Service providers are supported in the information shar-
ing by a trusted third party (the User Modeling Agent).
Service providers do not need to modify the core of their
applications when they register for information sharing.
In fact, each application may continue to exploit its own
personalization system: the application may personalize
the interaction with an individual customer by exploiting
its local user model, the model provided by the User
Modeling Agent, or it may integrate the two models.

« A service provider not equipped with its own user model-
ing system may question the central User Modeling Agent
when it needs information about a customer and exploit
the returned information for personalization purposes.

M. Baldoni, F. De Paoli, A. Martelli, and A. Omicini (Eds.): WOA 2004 — Dagli Oggetti agli
Agenti, Sistemi Complessi e Agenti Razionali, Torino, Italy, November 29" — December 1
2004. Pitagora Editrice Bologna. ISBN 88-371-1533-4. ht t p: / / woa04. uni to. it

baldoni

cust oner unc| Application 1 Application 2 iunc cust omer
DB] DB
/ cust omer
preference

user ontol o
model ay
DB 5
service
provi der
DB

User Mbdel i ng Agent

unct| Application 3 Application 4 unc

Fig. 1. Framework Architecture.

Modeling Agent. The rest of this presentation is organizg@]) is defining a standard representation language for the
as follows: Section Il outlines some basic issues concgrniapecification of privacy preferences and privacy managémen
customer information sharing between heterogeneouscapplipolicies. The ultimate goal is to enable the specification of
tions. Section Ill describes the architecture of our framew privacy preferences at the customer side (e.g., in the user
and the regulation of the propagation of information froragent of a Web browser) and the automated verification of
service provider to service provider. Section IV descrithes the acceptability of the policies adopted by the web sites th
management of trust relationships between service prmiideauser is visiting.

Section V compares our proposal to related work. Section VI o5 far as the binding task is concerned (item 2 above),
discusses possible extensions to our work and closes tlee. pagpis is very a complex issue and has usually been addressed
by adopting ad hoc solutions. However, the current attempts
to solve this issue tend to propose standard ontologies for
In the development of a service supporting customer infahe representation of user information and preferencets wi
mation sharing between applications the following issues ahe goal to make applications exploit a uniform represénat
relevant: language for the description of their users. Specificatiythie
1) In the propagation of the information, privacy preferP3P proposal, a user information ontology has been defined to
ences have to be taken into account [7], [8]. For instanagescribe basic customer data such as contact addresses, soc
a customer might want to make her personal data availemographic information and clickstream data. Moreowver, i
able only to the service providers she is interacting witlorder to enable service providers to declare the kind of user
she might allow the propagation to providers belongingreference they want to collect, the ontology can be exinde
to restricted categories, such as book sellers, or siwéh additional concepts. This means that standard pnefere
might restrict the propagation of her personal data untologies can be developed for the main sales domains,
service providers conforming to privacy policies [9]. similar to the representation of products in the RosettaNet
2) Ontology mapping issues have to be addressed in ordfgtiative [10]. Furthermore, in the research about Semcant
to enable the propagation of information in an opeWeb, complex ontologies are being proposed to represdnt ric
environment. user preference information; e.g., see [11], [12].

3) The information collected by each application has to be |n the rest of this paper, we will focus on the third issue,
propagated to other applications according to specifighich has been relatively unexplored. For simplicity, wél wi
trust rela.tionShipS. For inStance, a service prOVider Mapsscribe the user preferences in a trivia‘leature’ value
impose accessibility restrictions on the information ifepresentation language, as the focus of this presentation
collects, or it may be interested in receiving informatiofs in the controlled propagation of information, not on the
from selected sources. For instance, a book seller mighfd of exchanged data. Moreover, given the trend towards
want to share information only with other book sellerghe standardization of ontologies, we will assume that the
and to ignore data acquired by music sellers. Moreoveser Modeling Agent adopts a general ontology and that
it might not want to share information with some parthe applications registered for information sharing adapt
ticularly untrusted book sellers. subset of that ontology, without handling ontology mapping

The issues described in the first two items above are addresssues. Finally, we will assume that customers do not impose
in initiatives that are proposing standard solutions to ley restrictions on the propagation of their personal data
adopted by the applications. For instance, the Platform falthough we believe that our framework can be extended
Privacy Protection initiative of the W3C Consortium (P3Ro manage privacy preferences by conforming to the P3P

Il. BACKGROUND

baldoni
6

Cust onmer preferences: . .
Books: P 0 denotes total lack of confidence (no evidence about the

history: (Int:[0,1], Confidence:[0,1]); preference is available) and 1 denotes absolute confidence

science: (Int:[0,1], Confidence:[0,1]); ; ; ;
scienceFiction: (Int:[0,1], Confidence:[0,1]); in the eSFlmatlon' .
literature: (Int:[0,1], Confidence:[0,1]); The confidence degree enables the User Modeling Agent

to correctly integrate the information provided by the
Musi c:

rock: (Int:[0. 1], Confidence: [0,1]): ap_pllcatlons. In fact, each application is Ilkely to prawid
jazz: (Int:[0,1], Confidence:[0,1]); evidence about few user preferences, leaving the other
disco: (Int:[0,1], Confidence:[0,1]); unknown and this is represented by setting the confidence
o to O.

Similar to the approach adopted in other application domain

(e.g., TV recommenders [13], [14]), the ontology is orgadiz

in a hierarchical way, as a tree of concepts, which supports

a rather straighforward propagation of the interest andicon

dence information between concepts.

11l. ARCHITECTURE OF OURCUSTOMER INFORMATION At the core of the architecture, thdser Modeling Agent
SHARING FRAMEWORK manages the registered applications. The agent exploits a

- - ervice provider DBstoring information about the applications
Before describing the Trust Management System, it is Worfh b 9 bp

.) . T egistered for customer information sharing. As descrilmed
sketching the architecture of the customer informatiorriaba 9 g

) hich irols th " finf tion b the following section, a registration service (the TrustrMa
Service which contro's the propagation ot information teew agement System) enables service providers to join the set of
registered service providers.

. . registered applications and to specify trust relatiorshifith
We have designed a User Modeling Agent devoted gis ppiications specify trus lorts it

dinating th i £ inf tion bet _{Re other service providers. The User Modeling Agent exploi
coordinating thé propagation of information DEWeen Sy, o o relationships to constrain the propagation of custom

providers, by ta"if‘g their mutual trust reIation;hips ir‘t(ﬂﬁformation within the pool of registered applications.
account. The architecture supports the cooperation betweeWhen an applicatiors P invokes the User Modeling Agent

heteroge(:jnT_ous appllcano?fs, t[}? t may (may nott) fef[(r? IO'CaItIOto acquire the preferences of a custorigrthe agent selects
user modeling component tor the management of the custo trusted applications and requeéts user models. Then,

proﬁles_.. Our U.ser Modellng Agent Is also re;ponsml_e f%e agent synthesizes the customer preferences, it geserat
reconciling the information provided by the service prerel the user model including the information needed$% and

by merging 'the alter'native user models ".‘ or'dgr to gen.e'kme Sends the information t6P. The exchange of data between

pref_erence mformatlon_needed by egch individual apptioat service providers and User Modeling Agent is carried out by
Figure 1 shows the high-level architecture of ourframewortgneans of SOAP messages storing the user models

Thg figure shqws a scgnario where four serv_ice .providers havqn order to merge the user preferences collected by differ-

registered for information sharmg. Each apphcaupn hhchl ent providers, the identifiers selected by the customer when

databasedustomer DB storing its own customer information registering for the various services have to be related ® on

and may exploit a local user modeling componeung to another. As the identification of the customer across differ

manage the user models._The local user modellng Compongﬁblications is a very complex issue, global identifiersehav
is shown as a small box within the application rectanglehe t heen proposed, e.g., in the Microsoft Liberty Alliance padj

example, three applications have their own componentr(pleﬁ5]. In our work, we adopt the global identifier approach:

boxes), while one applicatiomgplication 2 only exploits the the User Modeling Agent maintains a centealer model DB

preference information provided by the User Modeling Ager%ttoring, for each customer, the identification data sheredte

(dashhed box). ‘ lodef h ._when she registered at a service provider’s site. In theralase
The customer preference ontologgfines the representationys , g0ha| identifier (e.g., for customers who did not accept

of preferences adopted in the User Modeling Agent and in tgeglobal passport and who registered for a service before

reglstergd apphcatlon_s. As th? User .Modelmg Aggnt must ti)[‘:"registered for information sharing), multiple idergsi are
able to integrate the information retrieved from differset- treated as different customers

vice providers, the ontology is organized in subparts dieisgy
the customer preferences in different domains, e.g., tles s& IV. TRUSTMANAGEMENT

books, music, and services such as insurance agenciese FiguThe trust relationships are specified by the service provide
2 shows a portion of the ontology related to the books ar@iministrators when they register for customer infornmatio
music sales domains. For each concept: sharing and are stored in tteervice provider DBmanaged
« The preference is represented as an interest degree thathe Trust Management System and exploited by the User
takes real values in [0, 1]. The 0 value denotes total ladkodeling Agent at information propagation time.
of interest, while 1 denotes maximum interest. Similar to policy-based approaches [16], we adopted a
« The confidence degree describes the reliability of thmncise and declarative representation of trust relatipss
estimated interest: it is a real number in [0, 1], wherbased on the specification of service provider features &nd o

Fig. 2. Portion of the Customer Preference Ontology.

platform specifications without major problems.

baldoni
7

B&3 Trust refationship v.1.0
Carica Himina Stampa Calcola Quit

—
FiserviceProviders = i |
ID_5F [MamESF [nNUM_SUB [YEARS INTERNET MARKET ZONE
1 Libreria Roggi &000 |s Europa |
2 Libreria Verdi 7000 4 Eurnpa
3 I turista 100 |1 [Evrpa
4 video Ciak 1230 I Europs
g Wideo Set 2000 g Europa
B Digchetto 1000 It} Europa
7 Ladiscoteca |a000 le Europa
8 Music Books 10000 1 [Elinserimento nella tavola ServiceProviders
9 Letturaghusica 1000 3 SPECIFICA DELLE IMFORMAZIONI DI UN SERVICE PROVIDERS
10 Lo spettacalo 100 8
1 Levents 20 B
Noma: Auanzo
M Ccatenaries Subscribers:
e ‘ AN Anni in Internet:
1 wendita Libr =
- Lavorane nella seguente zona geografica: ’;nh

2 wendita Filrm

3 vandita Musica Categoria 1 1 Wendita Libri

4 |Organizzazione Eventi Categoria 2: Scegli

Inserisci Abbandona

Fig. 4. Trust Management System: Introduction of Informatibow a Service Provider.

conditions on the propagation of data. However, we adoptkst of parties to which the information sharing framework
an explicit trust management technique, based on the amalywopagates the data.

of trusted party lists, instead of automatically providaagess o . .

certificates. The reason is that, in an open e-commerceogavir™: Description of Service Providers

ment, the set of service providers having the right to rectie Each service provider is described by the following data,
information collected by a service provider cannot be definestored in a table of theervice provider DBsee Figure 3 for
by means of necessary and sufficient conditions. More speafsample descriptor):

ically, restriction conditions can be defined to select g®af 1) |dentification data: name, address, social security number,
entities eligible for information sharing. However, a dng-

one analysis is needed to revise the groups according to #)ecategorization each service provider is classified in one
requirements of the individual service provider, who maywaor more categories. A taxonomy specifies the service provide
to exclude candidates for business purposes. Notice teat #fises handled by the User Modeling Agent; elgppkSeller
evaluation of trust at the instance level is important ndy onyysicSellerand insuranceAgent

because the customer information is very precious, but algp Features number of subscribers, Quality of Service, ...
because its dissemination is regulated by severe privdes ru) Trust relationships. These relationships are stored in
that make both the service provider (as collector of pefsongparate fields, each one including one or more (alterpative
data) and the middle agent(s) supporting information slgarire|ationships, separated by commas:

responsible for any misuse of such data. Thus, each servicg TAKE Conditions for the selection of the applications
provider administrator must be enabled to inspect and modif

b idi | feature-based trust relationaht from which the service provider wants to receive cus-
(by overriding general feature-based trust relationghtps tomer information and degree of trust in the information.

— The conditions are well-formed boolean expressions

L and may include categories and restrictions on the
Identification data:

D SP1L: values of the service provider features.

Nane: BookLand; — The degree of trust is a real value in (0,1]. The

URL: http://ww. bookLand. com value 1 denotes absolute trust, while values near to
Cat egor i zati on: bookSel | er: 0 denote_z lack of trust, i.e., the prov_|der ignores the
Feat ur es: information coming from those providers.

Nunber Of Subscri bers: 3000; « NOT-TAKE Conditions for the selection of the appli-
Trust rel ationshi ps: cations from which the service provider does not want

TAKE: {(bog;gelbl er SR rmvioggel I)er) ANE to receive information. These conditions have the same

nr ubscri bers>1 D, L. . . f

NOT- TAKE: {musi cSel ler, ...} format as_th_e previous ones but the trust degree is omitted

G VE: {bookSeller OR novieSeller, ...} because it is by default equal to 0.

NOT-G VE: {insuranceAgent, ... } « GIVE: Conditions imposed by the service provider on

the dissemination of customer information to other ser-
Fig. 3. Sample Service Provider Descriptor. vice providers. These conditions are well-formed boolean

baldoni
8

[=] Frerst refationstip v.2.0 EEE]
Carica Elimina Stampa Calcola OQuit

[finsorimanto nellatavoia CutpuConemionPastiva . oo d @
SPECFICA DELLE CONDIZION DX FIDUCIA SULLINVIO DEIDATI

Seavive Provide: s suryente: | Suegli v

CONDIZIONI
Apnartenonno alla catedoria:

NONappartengono alla catsgoria:

HBNAD N numero di

Lavorana in internet da ufy numero di annj 2 e isci i ‘

e L T e i e |Scﬂﬂli =| | e B ‘

NON Iavorana fella Seguente Zona geolranca: |Sl.teuli - | | ‘

Condizion| Tinora dernite:

‘ ENIING UMtima condizions

Inserisci nella tavola Abbandona

Fig. 5. Trust Management System: Definition of Trust Relatijrs

expressions and may include categories and restrictionsstomer information provided by the service under specifi-
on the values of the service provider features. cation? In particular, the system enables the administrator to
« NOT-GIVE Conditions for the selection of applicationsinclude/exclude specific categories of applications, irega
to which the service provider does not want to deliver it iinimum/maximum number of customers, or number of years
own customer information. The conditions have the saneé activity in internet, and include/exclude specific maikg
format as theGIVE ones. areas. Similar pages are generated to support the definition
Notice that by definingAKE andNOT-TAKErelationships, conditions on the retrieval of customer information frorheat
the service provider assesses the usefulness and theyapfalitservice providers. The system assists the administrattvein
the preference estimates that might be provided by the ott&ecification of trust relationships by performing coresisy
applications. For instance, tHBAKE field of the descriptor checks on the defined trust conditions. For instance, thesam
of Figure 3 specifies that th@&ookLand service provider condition cannot be specified both in t#VE and theNOT-
only trusts the information provided by book sellers an@IVE fields.
movie sellers having at least 1000 subscribers. Moreoker, t Given the trust relationships specified by the administrato
NOT-TAKE field specifies that no feedback about customéBIVE, NOT-GIVE, TAKEand NOT-TAKEfields of the de-
preferences has to be taken from music sellers. scriptor), the Trust Management System generates three tru
relationship listsGIVE-IND, NOT-GIVE-INDand TAKE-IND,

B. Management of the Service Provider Descriptors by analyzing the descriptors of the other service providers
The descriptor of a service provider is filled in by itge.g., see Figure 6). Specifically:

administrator at registration time. In order to facilitatds « The GIVE-IND list is generated by selecting the service
activity, we have developed a Trust Management System that providers that satisfy at least oi@VE condition, that

offers a graphical user interface for the introduction oé th do not satisfy anyNOT-GIVE condition and that do not
features of the service under specification and the comditio trust any untrusted service provider (i.e., the transitive

of the trust. reIationships. This §ystem stores informagibaut closure of theGIVE-IND relationship does not include
all the registered service providers and manages the networ any untrusted provider).

of trust relationships by summarizing them, in order to SWpp | The NOT-GIVE-INDis generated by subtracting the ap-
an efficient propagation of information between appliaagio

Figure 4 shows a portion of the user interface of thelwe assume that the service provider administrator fills in tiven$ by
Trust Management System, concerning the introduction gypviding correct data. The provision of false identitissai legal problem
information about an individual service provider. At thghi T2t 6ot be handled at the technical level.
side, the screenshot shows a portion of the registratiom for
("Nome” - name; "Subscribers”, "Anni in internet” - years ofl b: SP1; o
activity in internet, etc.). At the left side, a window showd'USt relationships:

:]) ; X TAKE-IND: {(SP2, 1), (SP10, 0.5), (SP45, 0), ...}
the list of the registered service providers. Figure 5 shows G ve-IND: {SP2, SP10, ...}
another page, supporting the definition of trust relatigrsh NOT- G VE-IND: {SP3, SP8, ...}

The service provider administrator is guided in the defniti
of trust conditions that specify which applications can tse Fig. 6. Trust Relationships between Individual ServicevRiers.

baldoni
9

10

TABLE |

C. Summarizing Trust Relationships
SUMMARY OF TRUST RELATIONSHIPS FORINFORMATION SHARING.

Although the GIVE-IND, NOT-GIVE-INDand TAKE-IND
lists provide complete information about the trust relagioips
between pairs of service providers, they fail to support the

_TRUST TABLE
| Destination | Source | Filter |

SP1 SP2 | 1.0 . . .

SP1 sP3 1 0.0 efficient propagation of the user models at run-time. In,fact
SP1 SP4 0.6 each time the User Modeling Agent has to propagate the
SP2 customer information from a service providgP; to another

one SP;, the agent should check:
o WhetherSP; satisfies theGIVE restrictions specified by
SP;, and
plications in theGIVE-IND list from the complete set of ° to which extentSP; is trusting the information provided
registered applications by SP; (trust level inSP;’s TAKE-IND restrictions).

« The TAKE-IND list includes all the registered servicen Order to support the efficient propagation of information
providers and specifies, for each one, the level of tru@gtween service providers, we have decided to pre-compile
in the customer information they provide. This is a reg€ trust relationships: in theervice provider DBa TRUST
number in [0, 1] and has the same meaning adopted in {igble summarizes the trust relationships existing betwaken
TAKE field of the descriptor. Untrusted service providerd€ registered service providers; see Table I. The tabkeaits
have a O trust level. from the details of theGIVE and TAKE relationships, which
The level of trust associated to service providers [§Presentunilateral viewpoints on the propagation ofrimf
computed as follows: each service provider that satisfi@n. and describes the weight of the information providgd b
at least oneTAKE condition, does not satisfy aryfOT- the various applications in the generation of the user model
TAKE condition and does not trust any service providéPr each service provider. More specifically, in the table:
satisfying aNOT-TAKEcondition has level equal to the « The Destinationcolumn represents the service provider

minimum value associated to the provider by means of
the TAKE conditions. All the other service providers e
receive a level of trust equal to 0. For instance, consider
the TAKE and NOT-TAKEconditions reported in the de-

receiving the information.

The Source column denotes the service provider that
should provide the information.

The Filter column includes real values in [0, 1] and

specifies to which extent the information provided by
the source application must be taken into account when
integrating the customer’s preferences to be sent to the
destination application. As usual, if the filter takes a ealu
close to 1, this means that the information provided by the

scriptor of SP1in Figure 3. A service provider classified
both as abookSellerand movieSellerwould receive a
0 level of trust because it satisfies a condition reported
in the NOT-TAKEfield. Notice that these conditions are
evaluated in a pessimistic way (minimum value) because
they are associated to the quality and usefulness of the source has to be propagated to the destination. Moreover,
customer information that is going to be received by a if the filter is 0, no information has to be propagafed.
service provider. If some characteristics of an applicatiorThe TRUST table is generated and revised off-line by our
have the potential to introduce noisy data, or irrelevafrust Management System. The revision process is launched
data, the quality of its contribution is reduced. periodically, in order to update the table according to the
changes in the pool of registered service providers; eayy, n
The generation of these lists is aimed at presenting detdfgistrations, removals, changes in the descriptors.
about the_trusted_and un_trusted appli(_:gtions registered 9 Run-time Customer Information Sharing
customer information sharing. By exploiting the Trust Man-
agement System, the administrator of a service provider o . .
may inspect and modify (also by overriding the trust relatio an_application SF; invokes the User Modeling Agent to

ships that have been defined) the lists of service providé/fér'eve |nfo_rmat|on about a customers preferences, _the
receiving information fromSP or providing information to gent exploits theTRUSTtable to select the service providers

SP. Therefore, the administrator may periodically check thté) be cor?tacted..OnIy the appll.cat|0ns whose filter is pasiti
re considered in the generation of the user model and the

set of registered service providers and update the lists a5 S . .
include and/or exclude new applications. This is imporfant value of the filter is exploited to merge the preference eitis

two reasons: first, the administrator needs to treat indalid provided by the applications. Specifically, the User Matlgli

service providers in a special way (e.g., to trust a providé ent should retriev€"s preferences from the other registered

belonging to a generally untrusted category and vice Versg?pllcanons according to the following principles:

Second, as time passes, the set of registered applicatiaps m2The filter takes the 0 value if the destination applicatiorinighe NOT-

book I iah I . I d source in theTAKE-IND list is 0. Otherwise, the filter takes the trust level
@ _OO se .er mignt Start. to sell music, as well) an neg;\{)ecified in theTAKE-IND list and thus corresponds to how strongly the
service providers may register.

destination application trusts the quality of informatigoyided by the source.

The idea behind customer information sharing is that, when

baldoni
10

11

1) The bidirectional trust relationships betwegt®; and The formula (i) enables the User Modeling Agent to merge
the other applications stored in tA&RUSTtable guide the information provided by the various applications adoay
the identification of the subset of applications to b& the service providers’ requirements, but also on theshasi
considered by the User Modeling Agent and specifgf a subjective evaluation of the reliability of the provite
SP;’s trust in the provided informationH{ter field of information. As confidence values are associated to indalid
the table). preferences, they may change from invocation to invocation

2) Within the set of selected applications, only those hgwirdepending on the observations of the customer behavior car-
C as a registered customer have to be considered. ried out by the applications.

3) The fact thaC' has registered in an applicatioiP; does
not mean thatS P; has already acquired any preference V. DISCUSSION ANDRELATED WORK

information aboutC'. Some policy-based approaches [16] have been proposed
In order to take the first two factors into account, the Us@s manage the trust relationships between applications and
Modeling Agent consults th&RUSTtable to select a set of to regulate the access to shared resources and data. For
candidate applications and it queries thger model DBto instance, the framework described by Kagal and colleagues
identify the applications that hav€ as a registered customer[17] supports the automatic and distributed management of
The agent exploits thEilter information stored in thdRUST access rights to resources and information. The framework
table to tune the influence of their customer information I& imp|emented in a |anguage Supporting the Specification of
the generation of the user model. The trust level has to b@ontic concepts, such as rights and prohibitions to perfor
taken into account when combining the contribution of thgctions. Suitablesecurity agentsipply the defined policies to
applications to the generation of the model. Ideally, thsted grant or cancel access and delegation rights to groups ofsge
applications should stronfly influence the generation of thg a controlled way, by delivering certificates.
user m0d8|, while the less trusted ones should margina”y”]deed’ the purpose of our work differs from Kaga| et al’s

influence the process. . _work [17], [18], in relation to the type of rights we aim at
As far as the third factor is concerned, the contribution i@gulating.

jemger;etr)atlor ofttf;e duser n}g?nel (t:arifd byn;eiglc: Zﬁp;lncatlon. Kagal et al. control different types of actions that the
the urf)vidZdairsw?or;a?ionacggnfidgncc; ds fe?e asii Cnec(i) by the applications may perform on the resources, such as "read-
prov . (X 9 9 y ing”, “writing”, “executing” a file. Instead, we are only
application, given the amount of evidence about the custome S w L
; L concerned with “reading” rights.
at disposal). As specified in tlaustomer preference ontolagy
each customer preference has an associated confidence,degre

At the same time, however, our framework enables the
o . o lications t fine restrictions on the t f infor-

describing the reliability of the information, i.e., whettthere applications to define restrictions on the type of info

is evidence about the provided information or not.

mation they want to receive and controls the information

flow accordingly.
We have selected a weighted addition formula to combine

the information about the customer preferences provided by VI. CONCLUSIONS ANDFUTURE WORK

the applications invoked by the User Mod_eling Ag_ent. FOr \We have presented a framework for customer information
each requested preferen£t the agent combines the interesky, » jng that supports the controlled propagation of infiam
estimates pi?"'ded by the trusted applicatioif as fOHOW.S: among service providers. Our framework includes a regis-
Int-P = [3 5 MIN(trustij, conf;) x Int-Psp;}/6 () tration service (the Trust Management System) exploited by
whered = 377 MIN (trust;, conf;) service providers in order to join the pool of applicatiohars
In the formula: ing information with one another. Moreover, the framework
« Int_P is the interest value foP generated by the Userincludes a User Modeling Agent that controls the informatio
Modeling Agent, given the contribution of the invoked!ow between applications and reconciles the informatian pr
service providers; vided by the various service providers in order to genetade t
« n is the number of invoked applications; preference information needed by the requesting applicati
« trust;; represents how strongl§P; trusts SP; (i.e., it ~ We have developed a proof-of-concept implementation of
is the Filter associated t& P; in SP;’s TRUSTtable); the customer information sharing framework that suppdms t

« conf; denotes the confidence associated to the inter&§fvice provider administrator in the introduction of info
by SP;; mation about service providers and trust relationshipe Th

. § is applied to normalizdnt_P in [0, 1]. framework is based on Java and uses JDBC technology to
For each invoked applicatiosP;, the contribution to the connect to the database where the trust information is éstore

computation of the interest value faP is thus weighted in the corresponding tables. _ .
according toSP;’s trust level inSP; and toSP;'s confidence ~ Our framework handles bidirectional trust relationships t
in the estimated preference. The minimum of the two valuggdress the fact that service providers may want to:

is exploited to define the impact of the estimate according toe. control the dissemination of information by imposing
a Fuzzy AND restrictions on the service providers that will receiveaglat

baldoni
11

baldoni

« impose restrictions on the service providers from which

they want to receive information, in order to filter out

irrelevant information sources available through the in-

formation sharing service.

As already specified, we have left the management of the
customers’ privacy preference aside, assuming that the cus
tomers do not impose restrictions on the disseminationeif th
personal data. In our future work, we will extend our proposajs)
to the treatment of customer preferences, which can be done

without major architectural changes. Specifically, takthg

P3P specifications into account, theer model DBhandled
by the User Modeling Agent could be extended to store

the individual customer’s privacy preferences. Moreoviee
overall service should require that, at registration tirties

service providers publish their own P3P privacy policieavH
ing this information available, the User Modeling Agent ltbu

12

REFERENCES

P. Resnick and H. Varian, EdsSpecial Issue on Recommender Systems
Communications of the ACM, 1997, vol. 40, no. 3.

J. Fink and A. Kobsa, “A review and analysis of commerciakrus
modeling servers for personalization on the World Wide Weélser
Modeling and User-Adapted Interaction, Special Issue ompl®ed
User Modeling vol. 10, no. 2-3, pp. 209-249, 2000.

3] M. Maybury and P. Brusilovsky, EdsThe adaptive Web Communi-

cations of the ACM, 2002, vol. 45, no. 5.

R. Burke, “Hybrid recommender systems: survey and experisjddser
Modeling and User-Adapted Interactiomol. 12, no. 4, pp. 289-322,
2002.

M. O’Connor, D. Cosley, J. Konstan, and J. Riedl, “Polyke a
recommender system for groups of users,Piroc. European Confer-
ence on Computer Supported Cooperative Work (ECSCW 2B0bh,
Germany, 2001.

D. Billsus and M. Pazzani, “A personal news agent thtsalearns and
explains,” inProc. 3rd Int. Conf. on Autonomous Agents (Agents,’99)
Seattle, WA, 1999, pp. 268-275.

7] A. Kobsa, “Personalized hypermedia and internationalaay,” Com-

munication of the ACMvol. 45, no. 5, pp. 64—-67, 2002.

propagate the customer information between applicatigns ljs] A. Kobsa and J. Schreck, “Privacy through pseudonymityuser-

taking into account not only the trust relationships, buoal

possible constraints imposed by the individual customer.

In our future work we will analyze the ontology issues
concerning the binding between the service providers’' |60

cal representations of the customer information and the

adopted in the customer information sharing service. Oat go
is the development of an ontology binding tool supporting?]
the administrator of a service provider to define the corre-

] W3C, “Platform for Privacy Preferences (P3P)

adaptive systems,ACM Transactions on Internet Technologyol. 3,
no. 2, pp. 149-183, 2002.

Project,”
http://www.w3.0rg/P3P/.

“RosettaNet ebusiness standards for the Global Supphain,”
http://www.rosettanet.org/RosettaNet/Rooms/Display4_ayoutlnitial.
UbisWorld, “Ubiquitous User, Modeling for Situated témaction,”
http://www.u2m.org/.

D. Heckmann, “A specialised representation for ubigust computing,”
in Proc. Workshop on User Modelling for Ubiquitous Computing
Johnstown, PA, 2003, pp. 26-28.

spondences between the customer preferences defined in[tBleL. Ardissono, C. Gena, P. Torasso, F. Bellifemine, A. &bito,

application and those exploited by the main user model for

information sharing.

In our future work we will also study the possibility of[14]

distributing the information sharing service for efficigrand
reliability purposes. For instance, an interesting solutio

study is a distributed User Modeling Agent in the line of

peer-to-peer sharing networks, where the applicatiorecthr

contact other trusted applications to gather customer Iprofﬂm]

information.

A. Difino, and B. Negro, “Personalized recommendation of TV-pro
grams,” inLNAI 2829. AI*IA 2003: Advances in Atrtificial Intelligence
Berlin: Springer Verlag, 2003, pp. 474-486.

L. Ardissono, C. Gena, P. Torasso, F. Bellifemine, A. mbfi and
B. Negro, “User modeling and recommendation techniques faoper
alized Electronic Program Guides,” Personalized Digital Television.
Targeting Programs to Individual UsersKluwer Academic Publishers,
2004.

Liberty Alliance Developer Forum, “Liberty alliance gject specifica-
tions,” http://www.projectliberty.org/specs/, 2004.

M. Sloman, “Policy driven management for distributed eyss,”Journal

of Network and Systems Managemenot. 2, no. 4, pp. 333-360, 1994.
L. Kagal, S. Cost, T. Finin, and Y. Peng, “A policy langesfor pervasive
systems,” inProc. 4th IEEE Int. Workshop on Policies for Distributed
Systems and Networkisake of Como, Italy, 2003.

L. Kagal, T. Finin, and A. Joshi, “A policy based apprbao security
for the Semantic Web,” irProc. 2nd Int Semantic Web Conference
(ISWC2003) Sanibel Island, FL, 2003.

baldoni
12

A Game-Theoretic Operational Semantics for the
DALI Communication Architecture

Stefania Costantini Stefania Costantini Alessia Verticchio
Universi@a degli Studi di L'Aquila
Dipartimento di Informatica
Via Vetoio, Loc. Coppito, 1-67010 L'Aquila - Italy
{stefcost,tocchio t@di.univag.it

Abstract—In this paper we present the communication ar- experience, in a logic language agent should and might be

chitecture of the DALI Logic Programming Agent-Oriented aple to perform meta-reasoning on communication, so as to

language and we discuss its semantics. We have designed #teract flexibly with the “external world.”
meta-level where the user can specify, via the distinguished i - .
tell/told primitives, constraints on communication or even a ThiS paper presents the communication architecture of the

new protocol. Moreover, the user can define meta-rules for DALI agent-oriented logic programming language [2] [3],

filtering and/or understanding messages via applying ontologies and the operational semantics of this architecture. DALI is

and commonsense/case-based reasoning. Declaratl_vely and procez enhanced logic language with fully logical semantics [4],
durally, these forms of meta-reasoning are automatically applied

by a form of implicit, logical reflection. Operationally, we define that (on the line of the arguments proposed in [7]) integrates

a transition system based on a dialog game syntax. Thus, our rationality and reactivity, where an agent is able of both
operational semantics provides a formal link between the dialog backwards and forward reasoning, and has the capability to
locutions and the DALI semantic mechanisms. We embed the enforce “maintenance goals” that preserve her internal state,
DALI/FIPA locutions and protocol within a framework thatfilters 54 «achievement goal” that pursue more specific objectives.
and interprets messages, without resorting to the definition of . . .
"mental states” of the agent. The locutions we consider include An extended reso_lutlon and r_esolut|on procedure ar(_a P“?V'd_ed'
the relevant FIPA-compliant primitives, plus others which we SO that the DALI interpreter is able to answer queries like in
believe to be needed in a logic programming setting. the plain Horn-clause language, but is also able to cope with

different kinds of events.

In this paper we also present the operational semantics of the
communication architecture that we present. Actually, we have

Interaction is an important aspect of Multi-agent systeméefined a full operational semantics for the DALI language,
agents exchange messages, assertions, queries. This, depéfigh has been a basis for implementing the DALI system
ing on the context and on the application, can be either @nd is being used for developing model-checking tools for
order to improve their knowledge, or to reach their goals, ¥€rifying program properties. For providing the operational
to organize useful cooperation and coordination strategies.S@mantics of the DALI communication architecture, following
open systems the agents, though possibly based upon diffet8htand the references therein, we define a formal dialogue

technologies, must speak a common language so as to be &i@e framework that focuses on the rules of dialogue, regard-
to interact. less the meaning the agent may place on the locutions uttered.

However, beyond standard forms of communication, thEhis means that we formglate the semant_ics of comm_unication
agents should be capable of filtering and understanding mi@gutions as steps of a dialogue game, without referring to the
sage contents. A well-understood topic is that of interpretirﬁﬂe”tal states of. the participants. This because we 'b'elleve that
the content by means of ontologies, that allow differeffg @n Open environment agents may also be malicious, and
terminologies to be coped with. In a logic language, tH@lsely represent thelr_ me_ntal stat_es. Howev_er, the filter layer
use of ontologies can be usefully integrated with forms & the DALI communication architecture (discussed below)
commonsense and case-based reasoning, that improve alpws an agent to make public expression of |ts. mental statesZ
“understanding” capabilities of an agent. A more subtle poiﬁ‘Pd other agents tp reason both on thl; expression and on their
is that an agent should also be able to enforce constraift¥" degree of belief, trust, etc. about it.
on communication. This requires to accept or refuse or ra’[eThe DALI communication architecture Specifies in a flexible
a message, based on various conditions like for instance @y the rules of interaction among agents, where the various
degree of trust in the sender. This also implies to be able @gpects are modeled in a declarative fashion, are adaptable to
follow a communication protocol in “conversations”. Since théhe user and application needs, and can be easily composed.
degree of trust, the protocol, the ontology, and other factof8ALI agents communicate via FIPA ACL [6], augmented with

can vary with the context, or can be learned from previo®me primitives which are suitable for a logic language. As
a first layer of the architecture, we have introduced a check

We acknowledge support by theformation Society Technologies|evel that filters the messages. This layer by default verifies

programme of the European Commission, Future and Emergi At
Technologiesinder the IST-2001-37004 WASP project. ¥at the message respects the communication protocol, as well

I. INTRODUCTION

M. Baldoni, F. De Paoli, A. Martelli, and A. Omicini (Eds.): WOA 2004 — Dagli Oggetti agli
Agenti, Sistemi Complessi e Agenti Razionali, Torino, Italy, November 29" — December 1%
2004. Pitagora Editrice Bologna. ISBN 88-371-1533-4. ht t p: / / woa04. uni to. it

baldoni

14

as some domain-independent coherence properties. The user way constitutes the set of the new beliefs that the agent
can optionally add other checks, by expanding the definitidras collected from her interaction with the environment.

of the diStingUiShed predlcatﬁsllltold Several properties can Operationa”y, if an incoming external event is recognized,

be checked, however in our opinion an important role of thes., corresponds to the head of a reactive rule, it is added into
filter layer is that of making it explicit which assumptiona |ist called EV and consumed according to the arrival order,
an agent makes about the mental states of the other ageny$ess priorities are specified.

their reliability, their skills, how much they can be trusted, The internal events define a kind of “individuality” of

etc. If a message does not pass the check, it is just deletedp, | agent, making her proactive independently of the

As a second layer, meta-level reasoning is exploited so asgiQ ironment, of the user and of the other agents, and allowing
try to understand message contents by using ontologies,

) ! : to manipulate and revise her knowledge. An internal event
forms of commonsense reasoning. The third layer is the DA{d gy ntactically indicated by the postfixand its description is
Interpreter. composed of two rules. The first rule contains the conditions
The declarative and procedural semantics (not treated hefi@lowledge, past events, procedures, etc.) that must be true so
are defined as an instance of the general framew®fkL that the reaction, specified in the second rule, may happen.
(Reflective Computational Logic) [1] based on the concept of |yiemal events are automatically attempted with a default

reflection principle as a knowledge representation paradigm,ency customizable by means of directives in the initial-
in a computational logic setting. Application of both thg,aiion file. The user's directives can tune several parameters:
filter layer and the meta-reasoning layer are understood 4Syhich frequency the agent must attempt the internal events:
_appllcatlon of suitable reflection prmmples, that we defingg,, many times an agent must react to the internal event
in the following. RCL then provides a standard way Of(orever, once, twice,...) and when (forever, when triggering

obtaining the declarative and procedural semantics, which Gathgitions occur ...); how long the event must be attempted
be gracefully integrated with the semantics of the basic DAl | some time, until some terminating conditions, forever).

language [4].)) When an agent perceives an event from the “external

The paper is organized as follows. We start by shortlyqqy» it does not necessarily react to it immediately: she has
describing the main features of DALI in Section Il and theye possibility of reasoning about the event, before (or instead
communication architecture in Section Ill. Then, we face t triggering a reaction. Reasoning also allows a proactive

Operational semantics in Section IV. In order to make it clégpayior, In this situation, the event is called present event
the usefulness and usability of the proposed architecture, We is indicated by the suffiX.

present an example in Section V. Finally, we conclude with

X Actions are the agent’'s way of affecting her environment,
some concluding remarks.

possibly in reaction to an external or internal event. In DALI,
actions (indicated with postfi®) may have or not precondi-
1. THE DALI LANGUAGE tions: in the former case, the actions are defined by actions
rules, in the latter case they are just action atoms. An action
DALI [2] [4] is an Active Logic Programming languagerule is just a plain rule, but in order to emphasize that it is
designed for executable specification of logical agents. r&lated to an action, we have introduced the new token
DALI agent is a logic program that contains a particular kinthus adopting the syntaxction :< preconditions. Similarly
of rules, reactive rules, aimed at interacting with an externtl external and internal events, actions are recorded as past
environment. The environment is perceived in the form afctions.

external events, that can be exogenous events, observationp,ast events represent the agent’s “memory”, that makes her
or messages by other agents. In response, a DALI agent gapable to perform future activities while having experience

perform actions, send messages, invoke goals. The reactygrevious events, and of her own previous conclusions. Past
and proactive behavior of the DALI agent is triggered b¥vents are kept for a certain default amount of time, that can

several kinds of events: external events, internal, present aed modified by the user through a suitable directive in the
past events. It is important to notice that all the events agsltjalization file.

actions are timestamped, so as to record when they occurred.
The new syntactic entities, i.e., predicates related to events
and proactivity, are indicated with special postfixes (which i
are coped with by a pre-processor) so as to be immediately
recognized while looking at a program. A. The Architecture

The external events are syntactically indicated by the postfix

E. When an event comes into the agent from its “external The DALI communication architecture (Fig.1) consists of
world”, the agent can perceive it and decide to react. Tlieree levels. The first level implements the DALI/FIPA com-
reaction is defined by a reactive rule which has in its headunication protocol and a filter on communication, i.e. a set
that external event. The special token used instead of —, of rules that decide whether or not receive or send a message.
indicates that reactive rules performs forward reasoning. Thle second level includes a meta-reasoning layer, that tries
agent remembers to have reacted by converting the extenmalinderstand message contents, possibly based on ontologies
event into apast even{time-stamped). The set of past eventand/or on forms of commonsense reasoning. The third level

. DALI C OMMUNICATION ARCHITECTURE

baldoni
14

15

consists of the DALI interpreter. Example: the proposal to perform an action is acceptable if the
agent is specialized for the action and the Sender is reliable
(this suggests that this model allows one to integrate into the
filtering rules the concept the degree of trust).

Incoming message

told(Sender_agent, propose(Action, Preconditions)) : —
not(unreliable P(Sender_agent)),
specialized_for(Action).
Symmetrically totold rules, the messages that an agent
sends are subjected to a checktahtirules. There is, however,
D NTERP AR an important difference: the user can choose which messages
must be checked and which not. The choice is made by setting

some parameters in the initialization file. The syntax dél&
_—’ I'Ule iS:

TELL CHECK
1)

Outcoming message

tell(Receiver, Sender, primitive(Content)) : —
constrainty, ..., constraint,,.

For every message that is being sent, the interpreter auto-
matically checks whether an applicatitdl rule exists. If so,
Fig. 1. The communication architecture of a DALI agent the message is actually sent only upon success of the goal
tell(Receiver, Sender, primitive(Content)).

Example: thetell rule authorizes the agent to send the mes-

The DALI/FIPA protocol consists of the main FIPA primi-Sage with the primitivénform if the receiver is active in the
tives, plus few new primitives which are peculiar of DALI. €nvironment and is presumably interested to the information.

In DALLI, an out-coming message has the format:

message(Receiver, primitive(Content, Sender)) tell(A%?”t—fozﬁgent—zzzm: i?f;ﬂ)r;n(Proposition)) P
active_in_the_wor gent_To),

that the DALI interpreter converts it into an internal form, specialized(Agent_To, Specialization),
by automatically adding the missing FIPA parameters, and related_to(Specialization, Proposition).
creating the structure: The FIPA/DALI communication protocol is implemented by
.) means a piece of DALI code including suitabté! /told rules.
message(7“6062’1)672&(1(17‘6587 receitver_-name,
sender_address, sender_name, This code is contained in a separate fdemmunication.txt
language, ontology, that each DALI agent imports as a library, so that the com-
primitive(Content, sender_name)) munication protocol can be seen an “input parameter "of the
Using this internal structure, an agent can include in thgyent. As mentioned, whenever an incoming message passes
message the adopted ontology and the language. Wheghétold check, its contenprimitive(Content, Sender) is
message is received, it is examined by a check layer compogedted as an external evemtimitive(Content, Sender)E.
of a structure which is adaptable to the context and modifiahtet corresponds to a DALI/FIPA locution, then it is managed
by the user. This filter checks the content of the messags, predefined reactive rules (included Gemmunication.tjt
and verifies if the conditions for the reception are verifiedhat behave according to the protocol. gfimitive is the
If the conditions are false, this security level eliminates théistinguished primitivesend_message, then Content is in-
supposedly wrong message. The DALI filter is specified k@grpreted as an external evefiontent E which is sent to the
means of meta-level rules defining the distinguished predicatggent, in the sense that no predefined reactive rule is defined,

tell andtold. and thus the agent has to react herself to this event.
Whenever a message is received, with content panti- Each DALI agent is also provided with a distinguished
tive(Content,Sendethe DALI interpreter automatically looks procedure calledneta which is automatically invoked by the
for a correspondingold rule, which is of the form: interpreter in the attempt of understanding message contents.
This procedure includes by default a number of rules for cop-

told(Sender, primitive(Content)) : —) " o . .
constrainty, .. ., constraint,. ing with domain-independent standard situations. The user can

where constraint; can be everything expressible eithefdd other rules, thus possibly specifying domain-dependent
in Prolog or in DALI. If such a rule is found, the inter-commonsense reasoning strategies for interpreting messages,
preter attempts to provild(Sender, primitive(Content)). OF implementing a learning strategy to be applied when all
If this goal succeeds, then the message is accepted, & fails.
primitive(Content)) is added to the set of the external eventExample: below are the default rules that apply the equiva-
incoming into the receiver agent. Otherwise, the messageléaces listed in an ontology, and possibly also exploit symme-
discarded. try of binary predicates:

baldoni
15

meta(

Initial term, Final term, Agent_Sender) : —
clause(agent(Agent_Receiver), _),

functor(Initial term, Functor, Arity), Arity = 0,
((ontology(Agent_Sender, Functor, Equivalent_term);
ontology(Agent_Sender, Equivalent_term, Functor));
(ontology(Agent_Receiver, Functor, Equivalent_term);
ontology(Agent_Receiver, Equivalent_term, Functor))),
Final_term = Equivalent_term.

meta(

Initial term, Final_term, Agent_Sender) : —
functor (Initial term, Functor, Arity), Arity = 2,
symmetric(Functor), Initial term = ..List,
delete(List, Functor, Result_list),
reverse(Result_list, Reversed_list),
append([Functor], Reversed_list, Final_list),
Final_term = ..Final_list.

16

consider some specific fields of a message like the name of
agents, the performative name, language, ontology, delivery
mode and content. We think that the approach followed in
DALI is only apparently similar. The Agent Communication
Context (ACC) in JADE is applied only to outcoming mes-
sages, while in DALI we submit to the filter both the received
messages and the sent messages. The structure of a DALI filter
rule is different and more flexible: in ACC the rule specifies
that if the preconditions are true, some fields of the message
must be defined by the assignments in the body; in DALI,
the body of a filter rule specifies only the constraints for the
acceptance/sending of a message. Moreover, the constraints in
DALI do not refer to specific fields. They can be procedures,
past events, beliefs and whatever is expressible either in DALI
or in Prolog. Therefore, even though both the approaches

Since the FIPA/DALI protocol is implemented by meangse the concept of communication filter, we think that there
of a piece of DALI code, and the link between the agenfo ntaple differences also due to ability of Prolog to draw

and the interpreter sending/receiving messages is mOdqmrences and to reason in DALI with respect to java.
by the reflection principles specified above, the semantics of

DALI communication is now complete. However, in the next
section we propose an operational semantics that specifies in IV. OPERATIONAL SEMANTICS

a language/independent fashion how the FIPA/DALI protocol 114 operational semantics that we propose in this Section

works. follows the approach of [8] (see also the references therein).
We define a formal dialogue game framework that focuses on
the rules of dialogue, regardless the meaning the agent may
place on the locutions uttered. This means, we reformulate

The problem of a secure interaction between the agentstie semantics of FIPA locutions as steps of a dialogue game,
also treated in [9], [5]. However, [9] defines a system (Mosegijithout referring to the mental states of the participants. This
with a global law for a group of agents, instead of a set @fpproach has its origin in the philosophy of argumentation,
local laws for every single agent as in DALI. Moreover, inwhile approaches based on assumptions about the mental
Moses there is a special agent, calleshtroller, for every states of participants build on speech-act theory. This because
agent, while in DALI it is necessary to define a filter for eaclve believe that in an open environment agents may also be
agent, defining constraints on the communication primitivegalicious, and falsely represent their mental states. However,
Our definition of tell/told rules is structurally different from theas we have seen the filter layer of the DALI communication
Moses approach: each law in Moses is defined as a prolegchitecture allows an agent to make public expression of
like rule having in the body both the conditions that matciis mental states, and other agents to reason both on this
with a control state of the object and some fixed actions thgtpression and on their own degree of belief, trust, etc. about
determine the behavior of the law. In DALI, the told/tell rulest,

are the constraints on the communication and do not containrpe ryles of the operational semantics show how the state of
actions. The behavior (and in particular the actions) performgg agent changes according to the execution of the transition
by an agent are determined by the logic program of the agefifies. We define each rule as a combination of states and laws.

Another difference is that the DALI filter rules can contain pastach |aw links the rule to interpreter behavior and is based on
events, thus creating a link between the present communicatjga interpreter architecture.

acts and the experience of the agent. A particularity of the

Minsky law-governed tem is that is possible to daewe have three kinds of laws: those that model basic
INSKy Taw-gover Sys IS 'S POSSI ' ub Eommunication acts; those describing the filter levels; those
on-line the laws [10]. In DALI, presently it is possible to

. that modify the internal state of the agent by adding items to
ﬂge various sets of events. In order to make it clear how we

contains the tell/told rules but in the future we will |mproveexpress the formal link between the agent actual activity and

our language by allowing an agent to modify even filter rUIe'ﬁ']e semantic mechanisms, we adopt some abbreviations:

Santoro in [5] defines a framework for expressing agent) i .
interaction laws by means of a set of rules applied to each® 9 10 identify the name of the agent involved by the
ACL message exchanged. Each rule has a prefixed structure transition;))
composed by precondition, assignment and constraint wher@ S4g. OF NS4, to identify the state before and after the
the precondition is a predicate on one or more fields of the apPplication of laws.
message which triggers the execution of the assignment or tha L= (0 identify the applied law.
checking of the constraint. The constraint is a predicate whivte adopt the paik Ag,, S4,, > to indicate a link between
specifies how the message meeting the precondition has tahe name of an agent and her state. The state of a DALI agent
formed, and it is used to model the filtering function. The rulds defined as a triple:Say, =< Pag, [Sag, Modeay >

B. Related Approaches

baldoni
16

where Py, is the logic program/ .S, is the internal state and

Modeis a particular attribute describing what the interpreter
is doing. Hence, we can introduce the following equivalence:

< AgI,SAgI >=< Age, < PAg,ISAmModeAg >>

The internal state of an agent is the tuple

< E,N,I,A G, T, P > composed by the sets of, respectively,
external events, present events, internal events, actions,goals,

test goals and past events.

Moreover, we denote bV P4, the logic program modified
by the application of one or more laws and By/S,4, the

internal state modified. We distinguish the internal state IS
from the global state S because we want to consider separately

the influence of the communication acts on the classes of
events and actions within the agent. The semantic approach

we describe in this paper is based on the framework of

(labeled)transition rules We apply them in order to describe

the interactive behavior of the system. Each transition rule is.

described by two pairs and some laws. Starting from the first
pair and by applying the current laws, we obtain the second
pair where some parameters have changed (e.g., name, internal

state or modality).

First, we introduce the general laws that modify the pairs.

We start with the transitions about the incoming messages,

by showing the behavior of the communication filter level.
Next we show the semantic of meta-level and finally the
communication primitives. For lack of space, we just consider

some of them.

o LO: Thereceivemessage(.Jaw:
Locution: receive_message(
Agz, Agy, Ontology, Language, Primitive)
Preconditions: this law is applied when the agentg, finds
in the Tuple Space a message with her name.

Meaning: the agent Ag, receives a message from

Agy(environment, other agents,...). For the sake of simplicity

we consider the environment as an agent.

Response:the interpreter takes the information about the

language and the ontology and extracts the name of sender

agent and the primitive contained in the initial message.
e L1: Thell told _checktrue(.) law:
Locution:told_check_true(Agy, Primitive)

Preconditions: the constraints of told rule about the name of

the agent sendedg, and the primitive must be true for the
primitive told_checktrue.

Meaning: the communication primitive is submitted to the
check-level represented by the told rules.

Response:depends on the constraints of told level. If the

constraints are true the primitive can be processed by the next®

step.
e L2 : The L2 understood(.) law:
Locution: understood(Primitive)

Preconditions:in order to process the primitive the agent must
understand the content of the message. If the primitive is

sendmessagethe interpreter will check if the external event

belongs to a set of external events of the agent. If the primitive ®

is propose the interpreter will verify if the requested action is
contained in the logic program.

Meaning: this law verifies if the agent understands the message.

Responsehe message enters processing phase in order to

trigger a reaction, communicate a fact or propose an action.
o L3 : The L3 apply_ontology(.) law:

Locution: apply_ontology(Primitive)

Preconditions: in order to apply the ontology the primi-

tive must belong to set of locutions that invoke the meta-

level(sendmessage,propose,execyi@c,queryref,is a fact).

17

Meaning: this law applies, when it's necessary, the ontologies
to the incoming primitive in order to understand its content.
Responsehe message is understood by using the ontology of
the agent and properties of the terms.

L4: The L4 send.messagewith _tell(.) law:
Locution:send_msg-with_tell(Ags, Agy, Primitive)
Preconditions: the precondition for L4 is that the primitive
belongs to set of locutions submitted to tell check.

Meaning: the primitive can be submitted to the constraints in
the body of tell rules.

Responsethe message will be sent to the tell level.

L5: The L5 tell check(.)law :

Locution: tell_check(Agys, Agy, Primitive)

Preconditions:the constraints of tell rule about the name of the
agent receiverg,, the agent sendetg, and the primitive are
true for L5.

Meaning: the primitive is submitted to a check using the
constraints in the tell rules.

Response:the message will either be sent to addressee
agent(L5).

Lk: Theadd_X(.) law:

Locution: add_X(.)

where

X € {internal_event, external_event, action,

message, past_event}

Preconditions:the agent is processing X.

Meaning: this law updates the state of the DALI agent adding
an item to corresponding set to X.

Responsethe agent will reach a new state. The statg, of
the agent will change in the following way.

k=6 and X=internakvent:

Sag =< Pag,< E,N,I,A,G,T,P >, Mode >

NSay =< Pag,< E,N,I,,A,G,T,P >, Mode > where
I = I U Internal_event.

k=7and X=externakvent:

Sag =< Pag,< E,N,I,A,G,T,P >, Mode >

NSay =< Pag,< E1,N,I,A,G,T,P >, Mode > where
FE1 = E Uexternal_event.

k=8 and X=action:

Sag =< Pag,< E,N,I,A,G,T,P >, Mode >

NSag =< Pay,< E,N,1,A1,G,T,P >,Mode > where
A1 = AU Action or A; = A\ Action if the communication
primitive is cancel.

k=9 and X=message:

Sag =< Pag,< E,N,I,A,G,T,P >, Mode >

NSay =< Pag,< E,N,I,A1,G,T,P >, Mode > where
A;=AUMessage. In fact, a message is an action.

k=10 and X=paskvent:

Sag =< Pag,< E,N,I,A,G,T,P >, Mode >

NSay =< Pay,< E,N,I,A,G,T,P, >,Mode > where
P, = P U Past_event.

L11: TheL1l checkcond.true(.) law:

Locution: check_cond_true(Cond_list)

Preconditions: The conditions of thepropose primitive are
true.

Meaning: this law checks the conditions inside theopose
primitive.

Responsethe proposed action will either be executed.

L12: The update_program(.) law:

Locution: update_program(Update)

Preconditions:No preconditions.

Meaning: this law updates the DALI logic program by adding
new knowledge.

Responsethe logic program will be updated.

Lk: The process, law:

Locution: processx(.)

where

X € {send-message, execute_proc, propose,

accept_proposal, reject_proposal }

baldoni
17

18

Preconditions: The agent calls the primitive X.
Meaning and ResponseiWe must distinguish according to the R3: < Agy, < P, IS, told, S>>k

primitives: < Agi,< P, 1S, understood, >>

k=13 and X=end_message: this law calls the external event

contained in the primitive. As response the agent reacts toAn unknown message forces the agent to use a meta-
external event. reasoning level, if the L3 law is true.

k=14 and X=xecute_proc:this law allows a procedure to
be called within the logic program. As response the agen
executes the body of the procedure.

k=15 and X=propose: If an agent receivegrapose, she can

choose to do the action specified in the primitive if she accepts e meta-reasoning level can help the agent to understand

the conditions contained in the request. The response can Re A
. . thé content of a message. But only some primitives can use
eitheraccept_proposal or reject_proposal.

k=16 and Xwccept_proposal: An agent receives an this possibility and apply the ontology. mSt_ead goingwait _
accept_proposal if the response to a sent propose is yesnode we can suppose that the agent will call a learning

As response the agent asserts as a past event the acceptgmseule but up to now we do not have implemented this

not(Lz),L3
—

'Ra: < Agi, < P,1S,told, >>
< Agi, < P, 1S, apply_ontology, >>

received. , , functionality.
k=17 and X=rejecproposal: An agent receives a
reject_proposal if the response to a sent proposal is not(Ly),not(L3)
no. In response, the agent asserts as a past event the refusalftd : < Agi, < P, IS, told, >> -
« L18: TheL18 action_rule_true(.) law: < Ag1, < P, IS, wait >>

Locution: action_rule_true(Action) I .
Preconditions: The conditions of the action rule corresponding After the application of the ontology, if the agent

to the action are true. understands the message, she goes iruttterstood mode

Meaning: In a DALI program, an action rule defines the L
preconditions for an action.This law checks the conditionsR6 : < Agi, < P, IS, apply_ontology, >>=3
inside the action rule in the DALI logic program. < Ag1,< P,IS,understood, >>

Responsethe action will be executed.)
If the L2 law is false, the message cannot be understood

We now present the operational semantics of the DAIL"\nd the agent goes iwait mode

communication. The following rules indicate how the laws
. . . . S R7: < Ag1,< P, IS, apply_ontology, >>
applied to a pair determine, in a deterministic way, a new)
. . < Agi,< P, IS, wait >>
state and the corresponding behavior of the agent.

DALl communication is asynchronous: each agent A known message enters in the processing phgse and the
communicates with other's one in such a way that she is riBenal state of the agent changes because an item can be
forced to halt its processes while the other entities produdded to internal queues of events and actions. The logic
a response. An agent iwait mode can receive a messag®rogram can change because we can add some facts using
taking it from the Tuple Space by using the law RO. Thie confirm primitive.
global state of the agent changes passing fromathié mode Le.L7.Ls.Lo
to receivedmessagemode: the message is entered in thel®: < Agy, < P, IS, understoods >> "=
more external layer of the communication architecture.

not(Lg)
—

< Ag1,< NP,NIS,processy >>

When an agent sends a message, the L4 law verifies that it

. L . .
RO: < Agi, < P, 1S, wait >>—% must be submitted to tell level. In this rule we suppose that
< Ag1, < P, IS, T@ceived,messagez >> the response |s true

The L1 law determines the transition from the ;
receivedmessagemode to told mode because it can be R9: < Agi,< P,IS,send, >>=

accepted only if the corresponding told rule is true. < Agr, < P IS, tell, >>
. L If the response is false, the message is immediately sent and
R1: < Agy, < P, IS, received messages >>— the queue of the messages(actions) changes.

< Agi,< P, 1S, toldy >>

If the constraints in the told rule are false, the message cann@tio : < Ag:, < P, IS, send, >>"""=4"

be processed. In this case, the agent returns in the wait mode < Ag1,< P,NIS, sent, >>

and the message do not affect the behavior of the softwarq . - .
. : f the constraints of tell level are satisfied, the message is

entity because the message is deleted. The sender agerétehs[

informed about the elimination. '

. not(Ly) RI1: < Agy,< P, IS, tell, >>"25°
R2: < Ag1,< P,IS,recetved-messagey >> — < Agi. < P.NIS, sent, >>

< Agi, < P, IS, wait >>))
. A message sent by the ageAy; is received by the agent
When a message overcomes the tpld layer, it must 91%2 that goes irreceived message mode
understood by the agent in order to trigger, for example, a
reaction. If the agent understands the communication act, theys . ~ Ay, < P, 15, tell, >>22

message will continue the way. < Aga, < P, 1S, received_message; >>

baldoni
18

18

If the message do not overcome the tell level because tiediable sources of information or services. We focus on a prac-

constraints are false, the agent returnsvait mode tical issues: how the level of Trust influences communication
Lo and choices of the agents.
no 5 . .
R13: < Ag1,< P, IS telly, >> — We consider as a case-study a cooperation context where

< Ag1, < P, NIS, wait >> an ill agent asks her friends to find out a competent specialist.

This last rule shows how, when a message is sent, théhen the agent has some particular symptoms, she calls a

corresponding action becomes past event. family doctor that recommends her to consult a lung doctor.
; The patient, through a yellow pages agent, becomes aware

R14: < Ag1,< P,IS,sent, >>-% of the names and of the distance from her city of the two
< Agi, < P, 1S, wait >> specialists, and asks her friends about them. The patient has a

The DALI primitive send _messageby using this locution a different degree of trust on her friends and each friend has a

DALI agent is able to send an external event to the receiveiiiferent degree of competence on the specialists. Moreover,
the patient is aware of the ability of the friends about medical

< Agi,< P, IS, processsend_message 55 i=e 780121 matters: a clerk .wiII be less reliab_le fchan a nurse. !n_ this

< Agi,< NP,NIS, wait >> context we experiment the communication check level joining

According to the specific reactive rule, several sets of evenfg potentiality of tell/told rules and the trust concept. We
can change. In fact, in the body of rule we can find actiorgippose that the ill agent receives a message only if she has a

and/or goals. Since the external event will become a past evegiel of trust on the sender agent greater than a fixed threshold:

the sets of external and past events must be updated. Aftgorl d(Ag, send.message(_)) : —

processing the reactive rule the inter%retgr goesait mode. trustP(_, Ag, N), N > threshold.
< Ag1, < P, IS, ProcesSsend_message > > 1250
< Ag1, < P,NIS, sendprimitive >> We can adopt a similar rule also for the out-coming mes-
In the body of rule there could be some messages that §##9€Ss- Now we discuss the trust problem by showing the more
agent must send. interesting DALI rules defining the agents involved in this

example. The cooperation activity begins when the agant
rt;iﬁecomes il and communicates her symptoms to doctor. If
these symptoms are serious, the doctor advises the patient to
Lis,L11,Lo find out a competent lung doctay/. If the agent knows a

- specialistSp and has a positive trust valuig on her, she
goes to lung doctor, else asks a yellow page agent.

The FIPA primitive propose: this primitive represents the
action of submitting a proposal to perform a certain actio
given certain preconditions.

< Ag1, < P, 1S, processpropose >>
< Ag1, < P, NIS, Sendaccept,proposal >

This transition forces an agent receiving th@opose

primitive to answer with accept_proposal if the consult-lung-doctor E(M) :>

clause(agent(Ag),),

conditions included in the propose act are acceptable. choose_if_trust(M, Ag).
< Ag1,< P, IS, sendaccept_proposal >>L8—’£‘9 choose_trust(_, Ag) : —
< Ag1,< P,NIS, sendinform > clause(i_know _lung_doctor(Sp),) ,

trustP(Ag, Sp, V1), V1 > 0,

When an agent accepts the proposal, then she performs go_to_lung_doctor P(Sp).

the action. In this case the internal state of agent
changes by adding the action. Finally, the agenthoose_trust(M,Ag): —

communicates to the proposer that the action has been messageA(yellow_page,
Lo send-message(search(M, Ag), Ag)).
done. < Agr, < P, IS, sendaccept_proposal >>—

< Agy, < P, NIS, sendjaiture > The yellow page agent returns to patient, by means of the

If the action cannot be executed, then thenform primitive, a list of the lung doctors. Now the patient
agent sends a failure primitive to the proposemust decide which lung doctoris more competent and reliable.
< Agy, < P,IS, processpropose >> 12"k How can she choose? She asks her friends for help.

< Ag, < P,NIS, sendyeject_proposat >> take_in formation_about(Sp) : —

If the conditions in thepropose are unacceptable, the clause(lung-doctor(Sp), -).

. take_in formation_aboutI(Sp) :>
response can be onlyraject_proposal. clause(agent(Ag),),

messageA(friendl,
send_message(what_about_competency(Sp, Ag), Ag)),
messageA(friend2,

V. AN EXAMPLE OF APPLICATION OF THEDALI send_message(what_about_competency(Sp, Ag), Ag)).

COMMUNICATION FILTER i ,) i
Each friend, having the information

We will now demonstrate how the filter level works bycompetent(lung_doctor,,Value) about the ability of
means of an example, that demonstrates how this filter tiee specialists, sends an inform containing the evaluation of
powerful enough to express sophisticated concepts suchtl@s competency.
updating the level of trust. Trust is a kind of social knowledge

" i what_about_competency E(Sp, Ag) :>
and encodes evaluations about which agents can be taken as-hoose_competency(Sp, Ag)

baldoni
19

20

choose_competency(Sp, Ag) : —
clause(competent(Sp, V),),
messageA(Ag, The decrement of the trust value of a friend can affect

in form(lung-doctor_competency(Sp, V), friend.)). the check level of communication, thus preventing the send-
Chi‘;iifg;zie(’iizcy(sf” Ag): — ing/receiving of a message to/from that friend. This happens
inform(dont,l;now,competency(Sp),friendm)). if the_:_tru_st on the agent is less than th_e trust's threshold
specified in the body of a told/tell rule. In this case, the patient

The patient is now aware of the specialist and friendgmmunicates to the friend that the incoming message has
competency and has a value of trust on the friends consolidagehy eliminated by using an inform primitive:

through the time. Moreover she knows the distance of the
specialists from her house. Using a simple rule that joingend-message-to(friend,
those parameters, she assigns a value to each advice: inform(send.message

L. . . what_about_competenc
specialist_evaluation(lung_doctory, friend,, Value). l(ung,doctor patiepnt) paytgent)

motivation(re fused_message), patient), italian, [])
The ill agent will choice the lung doctor in the advice
having the greaterValue and will go to the specialist: lung_doctor, patient), patient) is the

f Oll‘_)w*admceA(F ”e”d)’goftoflungdeCtorA(Sp_)‘ _ eliminated message, with the motivation
Will he be cured? After some time the patient will res,tivation(re fused_message).

consider her health. If she does not have any symptqR our system, the level of trust can change dynamically. In
(temperature, thorax pain, cough, out of breath), she increaggg way it is possible that an agent is excluded from the
the trust on the friend that has recommended the lung doct@mmunication because of a too low value of trust, and she
and sets the trust on that specialist a smallest value: is readmitted later since the value increases, due either to her
cured(Sp, Friend) : — subsequent actions or to other agents pleading her case.

goillfo,lundg,doclgo%]) (szlv We face the problem of trust with a simple approach,
follow-adviceP(Friend), where cooperating DALI agent adopt some parameters such

t(t tureP), .
thétzgﬁfj,z’;fp){ as trust and competency, and update then dynamically. In the

not(coughP), future, we intend to explore this area by adopting more formal
not(out_of breathP). approaches to model these concepts.

curedI(Sp, Friend) :>
clause(agent(Ag), -),
trustP(Ag, Friend,V),V1is V + 1,
drop_pastA(trust(Ag, Friend,V)),
add_past A(trust(Ag, Friend, V1)),
assert(i_know_lung_doctor(Sp)),
set_pastA(trust(Ag, Friend, V), 100),
add_past A(trust(Ag, Sp, 1)),
drop_pastA(go-to_lung_doctor(.)).

where send_message(what_about_competency(

VI. CONCLUDING REMARKS

In this paper we have described an operational semantics of
communication for the DALI language which is not based
on assumptions on mental states of agents, which in real
interaction can be in general uncertain or unknown. Instead,
we consider each locution as a move of a game, to which

The actionsdrop_past, add_past and set_past are typical the other agents may respond with other moves, according
commands of DALI language useful to manage the past everits:a protocol. Each locution of course provided information,
drop_pastladd_past deletes/adds a past event whileg_past and thus influences the state of the receiving agent. This
sets the time of the memorization of a past event. If she kind of formalization is made possible as the DALI language
still ill, she decreases the trust value on the friend that hpsovides a communication architecture (of course coped with
recommended the lung doctor: in the semantics) that provides a filter layer where an agent

no_cured(Sp) : —

go_to_lung_doctor P(Sp), temperatureP.
no_cured(Sp) : —

go_to_lung_doctor P(Sp),

thorax_painP.
no_cured(Sp) : —

go_to_lung_doctor P(Sp), coughP.
no_cured(Sp) : —

go_to_lung_doctor P(Sp),

out_of _breathP.

no_curedl (.) :>
clause(agent(Ag), -),
follow_advice P(Am),
trustP(Ag, Am, V),V >= 1,V is V — 1,
drop_pastA(trust(Ag, Am,V)),
set_pastA(trust(Ag, Am,V'1),1000),
add_past A(trust(Ag, Am, V1)),
drop_pastA(go_to_lung_doctor(_)).

can explicitly describe her own mental attitudes and the
assumptions she mades about the other agents. We have shown
the usability of the architecture by means of an example. A
future direction of this research is that of experimenting formal
models of cooperation and trust.

REFERENCES

[1] J. Barklund, S. Costantini, P. Dell’Acqua e G. A. LanzardReflection
Principles in Computational LogjcJournal of Logic and Computation,
Vol. 10, N. 6, December 2000, Oxford University Press, UK.

[2] S. Costantini. Towards active logic programming. In A. Brogi and
P. Hill, editors, Proc. of 2nd International Workshop on component-
based Software Development in Computational Logic (COCL'99)
PLI'99, (held in Paris, France, September 1999), Available on-line,
URL
http://www.di.unipi.it/
brogi/ResearchActivity/ COCL99/proceedings/index.html.

baldoni
20

(3]

(4]

(5]
(6]
(7]

(8]

El

[10]

[11]

[12]

S. Costantini. Many references about DALl and
PowerPoint presentations can be found at the
URLs: http://costantini.di.univaq.it/pubbiefi.htm and

http://costantini.di.univaq.it/Al2.htm.

S. Costantini and A. Tocchi@ Logic Programming Language for Multi-
agent Systemsn S. Flesca, S. Greco, N. Leone, G. lanni (edsogics

in Artificial Intelligence, Proc. of the 8th Europ. Conf., JELIA 2002
(held in Cosenza, Italy, September 2002), LNAI 2424, Springer-Verlag,
Berlin, 2002.

A. Di Stefano and C. Santoro Integrating Agent Communication
Contexts in JADE Telecom ltalia Journal EXP, Sept. 2003.

FIPA. Communicative Act Library SpecificationTechnical Report
XC00037H, Foundation for Intelligent Physical Agents, 10 August 2001.
R. A. Kowalski, How to be Artificially Intelligent - the Logical Way
Draft, revised February 2004, Available on line, URL
http://Iwww-Ip.doc.ic.ac.uk/UserPages/staff/rak/rak.html.

P. Mc Burney, R. M. Van Eijk, S. Parsons, L. AmgoudDialogue Game
Protocol for Agent Purchase Negotiatignd. Autonomous Agents and
Multi-Agent Systems Vol. 7 No. 3, November 2003.

N. H. Minsky and V. Ungureanulaw-governed interaction: a coor-
dination and control mechanism for heterogeneous distributed systems
ACM Trans. Softw. Eng. Methodol.,2000,ACM Press.

N. H. Minsky The Imposition of Protocols Over Open Distributed
Systems|EEE Trans. Softw. Eng.,1991,|IEEE Press.

J. M. Serrano, S. OssowskhAn Organisational Approach to the Design
of Interaction Protocols In: Lecture Notes in Computer Science, Com-
munications in Multiagent Systems: Agent Communication Languages
and Conversation PolicigdNCS 2650, Springer-Verlag, Berlin, 2003.
E.C. Van der Hoeve, M. Dastani, F. Dignum, J.-J. MeyeBAPL
Platform, In: Proc. of the The 15th Belgian-Dutch Conference on
Artificial Intelligence(BNAIC2003)held in Nijmegen, The Netherlands,
2003.

21

baldoni
21

On the use of Erlang as a Promising
Language to Develop Agent Systems

Antonella Di Stefano, Corrado Santoro
University of Catania - Engineering Faculty
Department of Computer and Telecommunication Engineering
Viale A. Doria, 6 - 95125 - Catania, Italy
EMail: {adistefa,csanto} @diit.unict.it

Abstract— About 70% of agent programming platforms are
written using Java”?. However, the fact that many other
platforms are based on ad-hoc programming languages, invented
by the platform’s authors themselves, suggests that something
is missing, in Java’™ to fulfill the requirements of agent
applications. So the question is: What is the language that
best fits the model of an autonomous software agent? We
deal with such an issue in this paper, by deriving an abstract
model for agents and proposing some parameters that allow to
understand if a programming language and environment can be
considered “best suited” for the development of agent systems.
As a result, the paper evaluates Erlang, a functional language
that presents some interesting characteristics for engineering
and implementing agent-based applications. An Erlang-based
platform, called eXAT and developed by the authors, is then
presented. Finally, a comparison with a Java”* -based approach
explains why, in the authors’ opinion, this language cannot be
considered a good choice for the implementation of agent systems.

I. INTRODUCTION

About 70% of agent programming platforms are written us-
ing Java”™ and many other are based on ad-hoc programming
languages, invented by the platform’s authors themselves. In
many other cases, Java’ ™ platforms integrate additional tools,
aiming at adding to agents some capabilities (e.g. “intelli-
gence”) that are missing in the original platform. These tools
are, in general, based on programming languages, approaches
and models different than those of Java®™ . For example, rule-
production systems often used in conjunction with Java”™
platforms, such as JESS [1] or similar [2], [5], are based on a
declarative/logic language. Another example is JADEX [29],
the BDI extension for JADE [12], which forces the agent
programmer to deal also with XML and OQL. In other cases,
as in JACK [8], additional “agenlt-specific” keywords are added
in the Java language, in order to make it able to better support
agent-related concepts.

All of the statements above suggest that something is
missing, in Java”™ | to fulfill the requirements of agent ap-
plications. The issue is that, even if Java”™ is widely known
and easy to learn and use, it is not a “silver bullet” that
magically solves any software application developing problem;
like any problem domain must be faced and solved using an
implementation approach—and language and tools—that best
fits the specific domain, the natural questions for software
agent implementation are: Which language should I have to

M. Baldoni, F. De Paoli, A. Martelli, and A. Omicini (Eds.): WOA 2004 — Dagli Oggetti agli
Agenti, Sistemi Complessi e Agenti Razionali, Torino, Italy, November 29" — December 1%
2004. Pitagora Editrice Bologna. ISBN 88-371-1533-4. ht t p: / / woa04. uni to. it

use to realize my agent system? What is the language that best
fits the model of an autonomous software agent? We believe
that, notwithstanding the huge number of agent platforms
today available, the questions above are not completely solved.

We agree that finding valid answers to these questions is
not a simple task: an in-depth analysis is required, aiming
at evaluating any approach currently proposed (both JavaT -
based and not), in order to (above all) experimentally verify
the adherence of the platform or language to the agent model'.
However, given that many platforms are Java’™ -based, we
think that a good starting point is trying to evaluate this
language with respect to other (and possibly new) alternative
approaches.

According to such concepts, we provide, in this paper, the
reasons that led us to consider Erlang [11], [10], [6] as a
promising language for the development of agent systems,
such that it has been employed for the implementation of our
agent platform, called eXAT [4], [30], [13], [15], [14].

The Erlang language has gained interest, in the field of
agent system. It is cited in the “Agent Software” list of the
Agentlink web site [3] and some of its characteristics (in
particular message reception and matching semantics) have
inspired some concepts and constructs of the APRIL agent
programming language [26]. Moreover, a recent work [31]
proposes an Erlang-based BDI tool.

Given this, in pursuing our objective, we first provide an
abstract agent model, based on formalizing an agent behavior
by means of a finite state machine, which is the most common
recurring model for software agents. Since this model is treated
as the building block to design and implement agents, it
is extended by including object-orientation; this allows for
considering the typical concepts of software engineering, such
as modularization, reuse of code, etc., which are fundamental
also in the development of agent systems.

Then, in order to allow an evaluation of programming
languages, we derived some parameters/requirements able to
measure the ability of each given languages in supporting
agent system design and implementation. Such requirements
are derived by considering not only general design rules
for software systems but, above all, the adherence of the

Just for reference, the “Agent Software” web page of the Agentlink web
site [3] reports 129 platforms/languages, but there are many other that are not
cited there.

baldoni

language—in terms of constructs syntax and semantics, and
library functions—to the agent model derived before.

On this basis, we present the Erlang language and provide
the reasons that, in our opinion, make this language very
promising for agent implementation. Finally, we give a brief
overview of the eXAT platform, showing how the combination
Erlang + services offered by eXAT fits our purposes, in
accordance with the requirements provided before.

The paper is structured as follows. Section II provides the
agent model based on finite-state machines. Section III lists
and describes the requirements to be taken into account in
evaluating a language for agent implementation. Section IV
presents the Erlang language and its ability in meeting the
requirements derived before. Section V briefly describes the
eXAT platform and the services provided, giving also some
code samples. Section VI explains why, on the basis of the
derived requirements, Java’™ is not well-suited for agent
development. Finally, Section VII reports our conclusions.

II. THE AGENT MODEL

Let us start from a “classical” agent definition that can be
formalized with the following statement:

An autonomous agent is a system situated within
and a part of an environment that senses that envi-
ronment and acts on it, over time, in pursuit of its
own agenda and so as to effect what it senses in the
Sfuture [22].

Let us recall that an agent senses the environment and acts
onto it on the basis of the inputs and its internal state.
Combining this concept with the above definition leads to
model an agent (behavior) by means of a function like

(Act, NewState) = f(Sense, CurrState) ()

Since, in the agents’ world, Act, NewState, CurrState and
Sense are discrete variables, functions like (1) call for the
use of the finite-state machine (FSM) abstraction for the
development of agent behavior. Even if the literature reports
many models for automata in general [23], [27], [28], we
believe that the use of maps or functions with multiple clauses
is best suited for the specification of the agent behavior ac-
cording to the model of (1). For example, if we would specify
the behavior function b(-,-) of an agent that continuously
waits for the arrival of a message, unless a timeout occurs
causing stopping of its activity (see Figure 1), we can use a
representation like the following:

timeout

® m finalize

start
@ new_message

do_processing

@®

@

Fig. 1. A Simple Behaviour

23

Behavior Function b
b(new_message, start) =
b{timeout, start) =

(do_processing, start)
(finalize, stop)

By choosing a proper syntax for specifying states, actions
and environment senses (events), the use of functions like the
one above represents a simple and flexible way to specify a
FSM-based agent behavior.

A. Composing Behaviors

On the basis of the application to be realized, agent behav-
iors could be complex, thus requiring a FSM composed of a
large number of states and transitions. Such a situation could
be hard to handle during development stage. This means that
the use of well-assessed software engineering techniques can
help the programmer in tackling the problem of developing
complex agent systems.

In fact, it can be noted that there are situations in which
parts of an overall agent behavior could be reused in another
different agent application. This happens, for example, when
an agent implements one or more standard FIPA interaction
protocols [21] (such as the contract-net [17], the request
protocol [20], the English auction [19], etc.)?.

In these cases, a natural way to improve agent engineering
is to have ready-to-use components, each one implementing
a simple and basic sub-behavior, which can be composed
in sequence—to support serial activities—or in parallel—to
support multiple concurrent activities (e.g. multiple interac-
tions handling). Indeed, this approach is equivalent to using
subroutines and co-routines in traditional imperative languages
and it is also used in some agent platforms currently available,
such as JADE [12].

Introducing the aspects above in the behavior model given
by formula (1) implies the possibility of having the execution
of a (sub-)behavior (or a set of sub-behaviours) as one of the
possible agent actions. This new action does not provoke a
direct effect on the environment, but only specifies how the
agent has to behave in the immediate future.

As an example, if we want to specify the behavior by (-, -)
of an agent that:

o starts an English-auction [19] if it receives an “inform”

message; or

o starts a Dutch-action [18] if a timeout occurs; and

« then, in both cases, stops,
we can write something like:

Behavior Function b;
bi(“inform*, start) =

(behave(english_auction),

stop)
(behave(dutch_auction),

stop)

by (timeout, start) =

Behavior Function english_auction
/* definition of the behavior function
for the English auction */

2But reuse could be considered also for behavior patterns not strictly related
to standard protocols.

baldoni

baldoni
23

Behavior Function dutch_auction
/* definition of the behavior function
Jor the Dutch auction */

B. Specializing and Extending Behaviors

The possibility of composing FSMs, according to the con-
cepts illustrated in Section II-A, allows the “as-is” reuse of the
same behavior in several multi-agent applications. However,
in some cases, a behavior that has been previously designed
could not be so general to allow its reuse for a specific purpose,
but some changes need to be applied. In structured program-
ming, where function/subroutine generalization is performed
by means of parameters, specialization is done by assigning
specific value to these parameters. With the object-oriented
approach this process is made more flexible, since special-
ization is supported by means of (virtual) inheritance, which
permits to add functionalities in the sub-class without requiring
to change the original ancestor class’ code. The same concepts,
and in particular the virtual inheritance, can be applied in our
context in order to support behavior extension, thus giving
the possibility to reuse even a behavior not designed to be so
general. This concept of behavior extension implies to specify
a new behavior 3/, derived form y, that inherits from y all
clauses, but changes some of them by:

« replacing an entire y’s function clause with a new one;

« replacing one or more arguments of a y’s function clause
with new values;

» changing the action and/or the next state returned by a
y’s function clause;

« adding a new function clause.

Such an abstraction can be represented by labeling each
function clause and then using labels, in the derived behavior,
to indicate which function clause we are going to modify. This
implies to write the behavior b(-, -) introduced in the beginning
of Section II as follows:

Behavior Function b

(do_processing, start)
(finalize, stop)

1 b(new_message, start) =
2 b(timeout, start) =

Thus, for example, if we want to write a new behavior b’
that extends b and:

o performs a computation after the timeout has occurred;
and then
o waits for another message before stopping,

we can wrile something like that:

Behavior Function b’ extends b

b.2 b(—,—) =
3 b(new_message,next) =

(—, next)
(after_finalize, stop)

As the example shows, the specification of & overrides
clause 2 of b by changing the next state; then it adds a

24

new clause (3) to wait for the message that triggers behavior
finalization.

C. Discussion

The agent model described so far provides the possibility
of expressing, composing and extending FSM-based behaviors.
The notation we used for specifying behaviors is able to
capture the basics of our model; it also shows the key features
that ease the development of agents’ behaviors, thus enabling
modularization and reuse of components with a high degree.

Given these concepts, the next step is to find a programming
language—or a platform or tool—that is able to concretely
implement the provided abstractions without provoking loss
of generality or power. Such a language has not only to
comply with agent-related concepts but must also feature some
general characteristics, derived from current requirements in
engineering and implementing software systems. To this aim,
the following Section will deal with such requirements, listing
them and providing a short description highlighting why they
are important.

III. AGENT DEVELOPMENT REQUIREMENTS
A. General Requirements

a) Safety: The current trend in modern programming
languages is to provide a safe environment for program
execution. This means that the occurrence of situations, like
dangling pointers, out of bound in array access, allocation
errors, etc., which are the main causes of system crashes, are
checked by

properly
to the program in execution e.g. by throwing an exception.
Using safe languages undoubtedly improves the debugging of
any software system. For this reason, safety is a characteristic
preferable also in the development of agent systems.

b) Completeness: A good programming language (and
environment) does not only have to provide an adequate syntax
and semantics, but also a set of library functions to help the
designer in facing the most recurring programming problems.
Such libraries should include, for example, data handling
(collections, lists, stacks, sets, etc.), user-interface (support for
GUI), input/output (file handling and console 1/0), etc.

c) Portability: Today, the most common computer plat-
forms are either Windows- or Unix-based. Generally, the
common trend is to use the Windows platform for graphical
applications that require a sophisticated GUI, while Unix-
based systems are employed to run network servers/services.
Agent applications fall in both of the categories above: for
example, we can have agents that interact with the user via a
GUI and agents that offer their services on the net (e.g. agent-
based web services). Since it is preferable to have a common
environment for any platform, the language used to implement
an agent system must be cross-platform. This also allows for
agent applications to be fully portable.

the runtime environment and signﬂ]ed

B. Agent-Specific Requirements

d) Agent Model Compliance: As stated in Section II-C,
any programming language chosen for the implementation of

baldoni

baldoni
24

agent systems has to be able to support agents that comply
with the model derived in Section II. If to have the same
model is not possible, the one provided should be as similar
as possible to that in Section II.

e) Support for Rationality: Agents feature autonomy
and pro-activeness, characteristics that are often supported
by providing agents with a sort of intelligence (goal-oriented
agents, BDI architectures, rule production systems, etc.). Such
a support must be provided by the chosen language or by a
library that, however, must be used with language constructs
and syntax. This is required in order to have a common and
integrated programming environment for the development of
all the parts of an agents®.

) Support for Distribution: Multi-agent systems feature
distribution; even if we can have MASs in which agents run on
the same computer, in general the agents of a MAS reside in
different interconnected hosts. To support this characteristic,
the chosen language has to provide suitable abstractions and
libraries to perform communication among programs running
in different hosts. The possibility of hiding protocol and
communication details to the programmer, who would use
high-level tools (like e.g. RPC, RMI or CORBA), is obviously
welcome.

I'V. THE ERLANG LANGUAGE

In order to find the language that best approximates the
agent model introduced in Section II and meets the re-
quirements listed in Section III, we started an investigation
aiming at analyzing various existing programming languages.
We voluntarily excluded all “agent-specific” languages and
concentrated only on general purpose ones, because we noted
that the former are rich of agent-specific constructs but lacks
of many general-purpose statements and libraries, thus needing
the integration of other environments to build a complete
software system.

In this investigation, we found the Erlang language [11], [6]
not only well-suited to develop agents based on the proposed
model, but also able to provide constructs and abstractions for
the implementation of a complete platform for rational agents,
in accordance with the principles given in this paper®. The
reasons for such a choice are listed below, while an evaluation
of the language, using the requirements derived in Section III,
will be reported in Section IV-A.

Erlang is a symbolic functional language; it supports
Junctions with multiple clauses and/or guards. 1t is easy to
see that this basic characteristic of Erlang perfectly fits the
implementation of an agent behavior modeled as (1).

Erlang has a Prolog-like syntax, data handling and rep-
resentation. Erlang is derived from Prolog® and thus inherits
from this language many principles. Given that writing an

3In this sense, and in the authors’ opinion, solutions like JADE + JESS/-
Drools, or JADE + JADEX, cannot be considered acceptable, since they force
the programmer to deal with different programming languages that often (too
much) differ in model, syntax and semantics.

“Erlang is a functional and concurrent language initially developed, in 1984,
by Ericsson.

SThe first implementation of Erlang was written in Prolog.

25

agent often implies to add a sort of “intelligence”, to be
implemented by means of e.g. an expert system or a rule
production engine, a benefit is indeed obtained from using
a Prolog-like language.

Erlang is based on matching. An Erlang assignment
expression is, in practice, a matching expression: left-hand side
unassigned (unbound) variables are bound to right-hand side
terms, and left-hand side terms are matched with right-hand
side terms. For example, the assignment expression

[inform, X, Y] = [inform, sender, receiver]

matches the inform term, and binds X to sender and
Y to receiver. This matching capability facilitates the
specification of data patterns to be matched when a particular
event occurs (e.g. the arrival of an ACL message formed in a
specified way).

Erlang is a concurrent language; it is based on isolated
processes that share nothing and interact by means of
message passing. Multi-agent systems feature exactly the
same characteristic, given that the word “processes” is changed
in “agents”.

Erlang is a distributed language; message passing seman-
tics is independent of the physical location (i.e. network site)
of the interacting processes. This characteristic perfectly fits
the support for distributed multi-agent systems.

Erlang is a fault-tolerant language; processes are moni-
tored and, when a process crashes, a programmed corrective
action (e.g. restarting the process) is immediately performed.
In order to implement a fault-tolerant agent system, a suitable
architecture for supervision should be mandatory. Erlang pro-
vides it natively.

A. Evaluating Erlang

Having illustrated those basic characteristics of Erlang that
make it suitable for the realization of agent systems, the next
step, according to the principles dealt with in this paper, is
to evaluate this language using the requirements introduced in
Section III.

a) Safety: Erlang is safe. It is a symbolic language that
handles primitive numeric types and “atoms”. Composite types
include lists (arrays) and tuples®. Erlang does not allow the use
of pointers, while lists/tuples handling is protected against out-
of-bounds accesses. Such (and other) runtime error conditions
are signaled by means of exceptions, which can be also caught
in order to perform user-defined error handling’.

b) Completeness: The Erlang runtime environment is
provided with a very large number of libraries, comparable
to those of other more famous languages (like C/C++, Java,
Python, etc.)s.

6Composite types include also strings and records, but strings are handled as
“lists of integers”, where each element is the ASCII code of the corresponding
character, and records are treated as tuples.

7Other runtime conditions include also bad matching, calling a non-existent
function, calling a non-defined function clause, etc.

8The list of Erlang libraries, together with an in-depth description of each
of them, is reported in the documentation provided in the Erlang web site [6].

baldoni

baldoni
25

c) Portability: The Erlang environment is based on a
virtual machine that is provided for many platforms (Windows,
Linux, BSD, Solaris, etc.). Erlang programs are compiled
in platform-independent bytecoded executables, which can
thus directly run using the virtual machine of any platform’.
Even if the performances of the Erlang virtual machine are
quite good [10], [9], an ahead-of-time Erlang-to-native code
compiler is also provided [24], [25].

d) Agent Model Compliance: As reported in the begin-
ning of this Section, the fact that Erlang programming is
based on functions with multiple clauses implies a one-to-one
mapping of the agent model provided by (1) to native language
constructs. However, in order to support the autonomous
execution of a behavior modeled as in (1), a suitable engine
should be needed, hence an agent platform. An agent platform
is also needed to support behavior composition and extension,
in accordance with the principles in Section II; indeed these
abstractions do not have corresponding Erlang constructs and
thus need to be supported by an ad-hoc runtime environment.
However, even if the language lacks such constructs, its
characteristics are able not only to allow an easy development
a suitable runtime environment, but also to provide a flexible
way to specify, in source programs, behavior composition and
extension. This will be made more clear in Section V.

e) Support for Rationality: Even if Erlang is derived
from Prolog and has many characteristics in common with
this language, Erlang is not logic but functional. This means
that it does not have a native support for the definition of
e.g., Horn clauses, and thus for the introduction of inference in
Erlang programs. However, the possibility of (i) handling types
and symbols as in Prolog, (if) expressing production rules as
Erlang functions, (iii) supporting high-order computations and
lambda functions, favor the implementation of rule-processing
engines able to add Erlang program a sort of “intelligence”.

[} Support for Distribution: Erlang allows the imple-
mentation of application protocols using sockets, as well
as the support for distributed applications interacting using
SOAP/XMLRPC, CORBA-IIOP'® or simply HTTP. But the
main feature of Erlang for distribution is the support of true
location transparency in process interaction. In fact, the syntax
and semantics of the language constructs for sending and
receiving messages to and from processes do not change if the
processes are local or remote. This is indeed a very interesting
feature for the implementation of agent systems and platforms.

B. Remarks

The discussion reported above highlights that the require-
ments a), b), c) and f) are fully met by the Erlang langnage.
Requirements d) and e) are instead partially met, but we stated
that their support can be easily added by writing suitable

Erlang libraries. We designed the eXAT platform for this
purpose.

9Unless platform-specific features have been explicitly encoded by the
programmer.

10Ty this aim, the Erlang runtime system provides an IDL complier that
generates Erlang, Java” ™ and C++ stubs.

26

V. THE EXAT PLATFORM

eXAT [4], [30], [13], [15], [14]—the name means erlang
eXperimental Agent Tool—is a platform for the development
and execution of Erlang agents; the main services provided
include:

« an execution engine for agent behaviors modeled as finite-
state machines;

¢ a rule-processing engine for supporting the development
of rule production systems;

« a communication module for the exchange of ACL mes-
sages'! according to FIPA model and semantics [16].

Programming agents’ behaviors, in €XAT, implies to model
them by using a set of functions, with multiple clauses, that
express what are the events that, bound to certain stares, trigger
the execution of certain actions and the change of state. In
order to make behavior engineering more flexible, events are
defined by specifying the type and the data pattern bound to
that event. This allows, for example, to specify that an event
is the arrival of an ACL message—the rype—given that the
message is an “inform” speech act—the data pattern. The
event types handled by eXAT are:

« acl, the reception of an ACL message;

o timeout, the expiry of a given timeout;

e eres, an event occurring in a rule-processing engine (see

Section V-B);

« silent, the silent (spontaneous) event.

As it will be explained later on, this decoupling between event
types and bound patterns allows behavior extensions according
to the inheritance concepts expressed in Section II-B.

Behavior specification in €XAT is easily performed by
means of three Erlang functions with different clauses—
action, event and pattern. Function action is used
to assign, to each state name, a list of couples event names and
action function, meaning that, at the occurrence of that event,
the associated action function has to be executed. Function
event indicates, for each event name, the event type and
the pattern name relevant to the data associated to that event.
Function pattern maps each pattern name with the relevant
matching value, which depends on the type of the bound event;
the possibility of using lambda functions adds flexibility in
pattern specification.

As an example, the behavior depicted in Figure 1, supposing
that the ACL message to wait for is an “inform” speech act
encoded in LISP, can be implemented, in eXAT, by means of
the following listing:

-module (b). |
action (Self, start) ->
[{new_message_event,

{timeout_event,

do_processing},
finalize}].
event >

(Self, new_message_event)

'The exchange of ACL messages in @XAT relies on the Erlang native
mechanism for exchanging data among Erlang processes. Thus, in the current
version of eXAT, no FIPA standard message transport protocol is provided.
This will be made available in the future releases of the platform.

baldoni

baldoni
26

{acl, inform_pattern};
event (Self, timeout_event) ->
{timeout, timeout_pattern}.
pattern (Self, inform_pattern) ->
[#aclmessage {speechact = inform,
language = 'LISP'}];
pattern (Self, timeout_pattern) -> 10000.
do_processing (Self, EventName, Data, ActionName) ->
% Perform processing.
% 'Data’ is bound to the received message.
object:stop (Self).
finalize (Self, EventName, Data, ActionName) ->

% Finalize behavior.
object:stop (Self).

27

agent:behave (Self, english_auction),

% behavior english_auction’ is executed

object:stop (Self).

% stops current behavior when the ’english_auction’ is over

do_dutch_auction (Self, EventName,
Data, ActionName)} —>
agent :behave (Self, dutch_auction)},

object:stop (Self).

The formal model of behavior in eXAT is thus expressed
as follows'?:

action : State — {(EventName, Action)}
event : EventName — (EventType, PatternName)
pattern : PatternName — PatternSpeci fication
EventName € {silent, eres, acl, timeout}

Even if the model above is expressed in a formulation
different than that of formula (1), it is easy to check that its
semantics is the same: we have only separated the various parts
of a FSM in order to make specialization possible by means
of inheritance, as it will be detailed in the next SubSection.

A. Composing and Extending eXAT behaviors

Behavior composition is performed, in eXAT, by calling a
suitable behave function, in the body of an action imple-
mentation, which specifies the name of the next behavior to
be executed. The function is synchronous, that is, it waits for
the complete execution of the given behavior before returning
to the caller. The sample behavior by, illustrated in Section II-
A, that triggers an English or Dutch auction on the basis of
a message or a timeout, is thus easily implemented using the
following source code:

Specialization is achieved, in €XAT behaviors, by means of
redefining one or more parts of an existing behavior. In this
case, the peculiar feature of eXAT relies on the granularity
of elements on which redefinition is possible. @XAT behavior
can be extended by redefining (i) single function clauses and
(ii) single elements of data returned by action, event and
pattern functions. In other words, from the point of view
of the refined function, redefinition can be rotal or partial.

Total redefinition means to completely change the return
value of the interested function or function clause, and this
implies to modify (a) the couple {event, action} bound to
a certain state—if the function is action—(b) the couple
{event type, pattern} defining a certain event—when function
event is considered—or (c¢) the specification of a given
pattern—through redefinition of function pattern. For ex-
ample, if we would design a behavior like b] above, but using
a message (e.g. a “confirm”) instead of a timeout to trigger
the Dutch auction, we can write the following listing:

-module (bl_prime).

extends () -> bl.

event (Self, second_event) ->
{acl, confirm_pattern}.

pattern (Self,
[#aclmessage {speechact =

confirm_pattern) ->
inform}].

-module (bl).
action (Self,
[{first_event,

{second_event,

start) ->
do_english_auction},
do_english_auction}].

event (Self, first_event) ->
{acl, inform_pattern};

event (Self, second_event) ->
{timeout, timeout_pattern}.

pattern (Self,

[#aclmessage

inform_pattern) ->
inform}l:

essage {speecnact = inrorm ;i

pattern (Self, timeout_pattern) -> 10000.
% Wait ten seconds.

{smeechact =
=S

do_english_auction (Self,

Data,

EventName,
ActionName) —->

12The state reached by the FSM after the occurrence of an event is encoded
in the Action and, for this reason, it does not explicitly appear in these
formulae.

The reader may note the use of the extends function to in-
dicate the ancestor behavior from which b/ _prime inherits the
basic FSM structure, and the functions event and pattern,
which express the new condition that triggers Dutch auction
execution.

Fartial redefinition means instead to change only some
elements of the data returned by a function, leaving the other
elements as defined in the behavior superclass, e.g. one of the
couples {event, action} bound to a certain state, the event of
such a couple, the evenr rype or the pattern name bound to a
certain event, one element of a data pattern, etc.

B. Adding Intelligence

One of the parameters to evaluate the ability of a language
for agent development is the possibility to support a sort of
intelligence. Erlang does not feature this characteristic and,
to overcome these issue, @XAT includes an Erlang-based rule
production system, thus providing a development environment
that uses the same language to program all the parts of an
autonomous agent. The rule production system integrated in
eXAT, called ERES, can be used to realize expert systems

implementing the reasoning process for agents. ERES

baldoni

baldoni
27

allows the creation of multiple concurrent rule production
engines, each one with its own rules and a knowledge
base—the mind—that stores a set of facts—the mental
state—represented by Erlang types (tuples or lists). Rules are
written as function clauses with the form:

rule (pattern of the asserted fact) — >
assert (fact to assert)y — — and/or
retract (fact to retract) — — and/or

— — do other things

Rule processing is based on checking that one or more facts,
with certain patterns, are present in the knowledge base and
then doing something like asserting another fact, retracting an
existing fact, etc. For example, supposing that we want to write
the following inference rule:

If X is the child of Y and Y is female, then Y is X's
mother; otherwise, if Y is male, then Y is X's father.
Representing the relations “child of”, “mother of”, “father
of” and the “gender” respectively with the facts (Erlang
tuples) {’child-of’, X, Y}, {'mother-of’, ¥,
v}, {’father-of’, X, Y} and {Gender, X}, the

inference rule above will be simply written as follows:

is_parent (true, Engine, Relation, Y, X) ->
eres:assert (Engine, {Relation, Y, X});
is_parent (_, Engine, Relation, Y, X) -> nil.
rule (Engine, {’child-of’, X, Y}) ->
is_parent (eres:asserted (Engine, {female, Y}),
Engine, ’‘mother-of’, Y, X).
is_parent (eres:asserted (Engine, {male, Y}),
Engine, ’father-of’, Y, X).

Fact patterns can be also given as lambda functions thus
allowing the specification of complex matching expressions.

ERES engines are designed to be connected with behavior
execution and message exchanging. The former connection can
be performed by specifying, in a behavior, that an event is
relevant to the assertion of a fact, with a given pattern, in a
given ERES engine. In this case, the event type is “eres”
and the bound data pattern expresses the way in which the
fact to wait for is formed. For example, if we would trigger,
in the behavior b1 of Section V-A, the Dutch auction when
the fact {balance, X}, with X > 3000, is asserted in the
ERES engine called “my_mind”, we should write a behavior
bl_second as follows:

-module (bl_second).

extends () -> bl.

event (Self, second_event) ->
{eres, balance_pattern}.

pattern (Self, balance_pattern) —>

{my_mind, read, {balance, fun(X) -> X > 3000 end}}.

Note the lambda function in the ‘balance_pattern’ to
specify the fact pattern {balance, X}, with X > 3000.

28

The second connection of ERES engines is with the com-
munication module of eXAT in order to support ACL seman-
tics. We remind that FIPA-ACL specification defines message
semantics by means of the so-called feasibility precondition
(FP) and rational effect (RE). However, even if well-specified,
these conditions are not implemented in the majority of well-
known agent platforms. eXAT fills this gap by allowing a
direct connection between ACL message sending/receiving
and the agent’s mental state, which can be represented by the
knowledge base of an ERES engine: FPs can be checked by
looking at what is stored in the agent’s mental state, while RES
can be achieved by suitably updating the agent’s mental state.
Such a feature is indeed very important in agent design, since
it builds a semantic bridge between autonomy/pro-activeness
and social behavior, thus constituting a fundamental way for
realizing “true rational” agents.

VI. EVALUATING JavaT™

A remark that emerges from the discussion reported till now
is that the combination Erlang + eXAT is able to meet all the
requirements listed in Section III. Now, in order to provide
a more complete report of the reasons that led us to chose
the Erlang approach, it is worthwhile to analyze the solutions
based on Java’™ checking if they are able (and to what
extent) to meet the agent development requirements identified.

First of all, any reader can easily prove that the General
Requirements, a), b) and c), are met by Java™; indeed they
are among the basic characteristics of this langnage. Also
requirement f)—support for distribution—is obviously met
since JavaT™ has been designed for distributed environments,
even if the semantics of interaction among remote objects is
not exactly the same as that of the local case. But the situation
changes when we consider the other Agent-Specific Require-
ments. Agent compliance to model of Section II (requirement
d)) is hard to obtain mainly for two reasons:

o Java’™ does not supports “methods with multiple
clauses”. Obviously the use of “if” statements inside a
method’s code does not provide the same semantics of
multiple clauses.

o Java™ is not a symbolic language and everything must
be encapsulated inside an object. This characteristic, even
if it provides a more “formally correct” programming
environment, burdens the implementation process, since it
requires many lines of code to be written to wrap concepts
and symbols inside objects. Indeed a behavior model like
that of Section II could be also built using JavaTM put
it requires a very complex object model to reach similar,
but not the same, features. As an example, the behavior
model of JADE [12], which is based on FSMs, is very
flexible, but is not able to provide the same specialization
feature we require (see [13], [15] for a brief comparison
among eXAT and JADE).

Also requirement e)—support for rationality—is hard to
obtain with Java”* . This is demonstrated by the fact that all
the projects aiming at including inference in Java™® programs

baldoni

baldoni
28

or in JavaT™ agent platforms employ non-Java approaches,
abstraction and languages [1], [5], [7], [29].

VII. CONCLUSIONS

The concepts and statements reported in this paper do
not aim at denigrating Java’™ nor the Java’? -based agent
platforms available today. Many of them are worth of note
and are successfully employed in many agent-based projects.
However, this does not imply that there could not exist
approaches or language able to support agent development
better than Java”™. Our research goes in this direction. To
this aim, we provided an alternative platform, called eXAT,
that allows implementation of multi-agent system using the
Erlang language. By means of requirement evaluation, we have
shown, in this paper, that the combination Erlang + eXAT
seems to be a valid and very interesting alternative for the
implementation of agent systems. Surely, a better evaluation
would imply the realization of some case-studies, aiming
at understanding if the constructs, model and abstractions
provided by eXAT are enough flexible and complete for the
implementation of multi-agent applications. This is one of the
topics that will be dealt with in our current and future research
work.

REFERENCES

[1] “http://herzberg.ca.sandia.gov/jess/. JESS Web Site,” 2003.
[2] “http://www.ghg.net/clips/CLIPS.html. CLIPS Web Site,” 2003.
[3] “http://www.agentlink.org/resources/agent-software.php,” 2004.
[4] “http://www.diit.unict.it/users/csanto/exat/. eXAT Web Site,” 2004.
[5] “http://www.drools.org. Drools Home Page,” 2004.
[6] “http://www.erlang.org. Erlang Language Home Page,” 2004.

1

“JSR-000094 Java”™ Rule Engine API, http://www.jcp.org/aboutfava/
communityprocess/review/jsrt094/,” 2004.
[8] “http://www.agent-software.com,” 2004.
[9] I. Armstrong, B. Dacker, R. Virding, and M. Williams, “Implementing a
Functional Language for Highly Parallel Real Time Applications,” 1992.
[10] J. L. Armstrong, “The development of Erlang,” in Proceedings of the
ACM SIGPLAN International Conference on Functional Programming,
A. Press, Ed., 1997, pp. 196-203.
[11] J. L. Armstrong, M. C. Williams, C. Wikstrom, and S. C. Virding,
Concurrent Programming in Erlang, 2nd Edition. Prentice-Hall, 1995.

28

[12] F. Bellifemine, A. Poggi, and G. Rimassa, “Developing multi-agent
systems with a FIPA-compliant agent framework,” Software: Practice
and Experience, vol. 31, no. 2, pp. 103-128, 2001.

[13] A. Di Stefano and C. Santoro, “eXAT: an Experimental Tool for
Programming Multi-Agent Systems in Erlang,” in AI*IA/TABOO Joint
Workshop on Objects and Agents (WOA 2003), Villasimius, CA, Italy,
10-11 Sept. 2003.

[14] ——, “eXAT: A Platform to Develop Erlang Agents,” in Agent Exhibi-
tion Workshop at Net.ObjectDays 2004, Erfurt, Germany, 27-30 Sept.
2004.

[15] ——, “Designing Collaborative Agents with eXAT,” in ACEC 2004

Workshop at WETICE 2004, Modena, Italy, 14-16 June 2004.

[16] Foundation for Intelligent Physical Agents, “FIPA Communicative Act
Library Specification—No. SC00037]1,” 2002.

[17] ——, “FIPA Contract Net Interaction Protocol Specification—-No.
SCO0029H,” 2002.

[18] ——, “FIPA Dutch Auction Interaction Protocol Specification—-No.
XCO00032F,” 2002.
[19] ——, “FIPA English Auction Interaction Protocol Specification—-No.

SCO0031F,” 2002.

[20] ——, “FIPA Request
SCO0026H,” 2002.

[21] ——, “http://www.fipa.org,” 2002.

[22] S. Franklin and A. Graesser, “Is it an Agent, or just a Program?: A
Taxonomy for Autonomous Agents,” in Third International Workshop
on Agent Theories, Architectures, and Languages (ATAL). Springer-
Verlag, 1996.

[23] C. Hoare, Communicating Sequential Processes.
national, 1985.

[24] E. Johansson, M. Pettersson, and K. Sagonas, “A High Performance
Erlang System,” in 2"¢ International Conference on Principles and
Practice of Declarative Programming (PPDP 2000), Sept. 20-22 2000.

[25] ——, “The HiPE/x86 Erlang Compiler: System Description and Per-
formance Evaluation,” in Sixth International Symposium on Functional
and Logic Programming (FLOPS 2002), Sept. 15-17 2002.

[26] F. McCabe and K. Clark, “April: Agent Process Interaction Language,”
in Intelligent Agents, N. Jennings and M. Wooldridge, Ed. ~ Springer,
LNCS 890, 1995.

[27] R. Milner, Communication and Concurrency.
tional, 1989.

[28] ——, Communicating and Mobile Systems: the Pi-Calculus. Cambridge
Univ Press, 1999,

[29] A. Pokahr, L. Braubach, and W. Lamersdorf, “Jadex: Implementing a
BDI-Infrastructure for JADE Agents,” Telecom Italia Journal: EXP - In
Search of Innovation (Special Issue on JADE), vol. 3, no. 3, Sept. 2003.

[30] C. Santoro, eXAT: an Experimental Tool to Develop Multi-Agent Sys-
tems in Erlang - A Reference Manual. Available at http://www.diit.
unict.it/users/csanto/exat/, 2004.

[31] C. Varela, C. Abalde, L. Castro, and J. Gulias, “On Modelling Agent
Systems with Erlang,” in 37d ACM SIGPLAN Erlang Workshop, Snow-
bird, Utah, USA, 22 Sept. 2004.

Interaction Protocol Specification—-No.

Prentice Hall Inter-

Prentice Hall Interna-

baldoni

baldoni
29

baldoni

A Multi-Agent System to Support Remote
Software Development

Marco Mari, Lorenzo Lazzari, Alessandro Negri, Agostino Poggi and Paola Turci

Abstract—In this paper, we present a Web and multi-agent
based system to support remote students and programmers
during common projects or activities based on the use of the Java
programming language. This system, called RAP (Remote
Assistant for Programmers), associates a personal agent with each
user. A personal agent helps its user to solve problems proposing
information and answers, extracted from some information
repositories, and forwarding answers received from other ‘on-
line” users, that were contacted because their personal agents
recommend them as experts in that topic. To be able to
recommend their users, personal agents build and maintain a
profile of them. This profile is centered on user’s competences and
experience and is built by extracting information through both
the code she/he wrote and the positive answers the user gave to
other wusers. A first prototype of the system is under
implementation in Java by using the JADE multi-agent
development framework. This prototype will be tested in practical
courses on JADE shared among students of some American Latin
and European Universities inside the European Commission
funded project “Advanced Technology Demonstration Network
for Education and Cultural Applications in Europe and Latin
America”.

Index Terms—Cooperative systems,
intelligent tutoring systems.

multi-agent systems,

I. INTRODUCTION

INDING relevant information is a longstanding problem

in computing. Conventional approaches such as
databases, information retrieval systems, and Web search
engines partially address this problem. Often, however, the
most valuable information is not widely available and may not
even be indexed or cataloged. Much of this information may
only be accessed by asking the right people. The challenge of

Manuscript received September 27, 2004. This work is partially supported
by the European Commission through the contract “@lis Technology Net
(ALA/2002/049-055)” and by “Ministero dell'Istruzione, dell'Universita e
della Ricerca" through the COFIN project ANEMONE.

M. Mari is with DII, University of Parma, Parco Area delle Scienze 181A,
43100, Parma, Italy (phone: +39 0521 905712; e-mail: mari @ce.unipr.it).

L. Lazzari is with DII, University of Parma, Parco Area delle Scienze
181A, 43100, Parma, Italy (phone: +39 0521 905712; e-mail:
lazzari @ce.unipr.it).

A. Negri is with DII, University of Parma, Parco Area delle Scienze 181A,
43100, Parma, Italy (phone: +39 0521 905712; e-mail: negri @ce.unipr.it).

A. Poggi is with DII, University of Parma, Parco Area delle Scienze 181A,
43100, Parma, Italy (phone: +39 0521 905728; e-mail: poggi @ce.unipr.it).

P. Turci is with DII, University of Parma, Parco Area delle Scienze 181A,
43100, Parma, Italy (phone: +39 0521 905708; e-mail: turci @ce.unipr.it).

M. Baldoni, F. De Paoli, A. Martelli, and A. Omicini (Eds.): WOA 2004 — Dagli Oggetti agli
Agenti, Sistemi Complessi e Agenti Razionali, Torino, Italy, November 29" — December 1%
2004. Pitagora Editrice Bologna. ISBN 88-371-1533-4. ht t p: / / woa04. uni to. it

finding relevant information then reduces to finding the
“expert” whom we may ask a specific question and who will
answer that question for us. However, people may easily get
tired of receiving banal questions or different times the same
question, therefore, who needs help for solving a certain
problem, should look for documents related to the problem
and then eventually look for a possible expert on the topic.

This kinds of problems are very relevant in the software
development because of the wide variety of software solutions,
design patterns and libraries makes hard to take the best
decision in every software development phase, and a developer
can’t always have the required expertise in all fields.

In this paper, we present a multi-agent based system, called
RAP (Remote Assistant for Programmers), that integrated
information and expert searching facilities for communities of
student and researchers working on related projects or work
and using the Java programming language. In the following
section, we describe the RAP system, the current state of its
implementation and some preliminary evaluation results, then
we introduce related work and, finally, we give some
concluding remarks and present some our future research
directions to improve the RAP system.

II. THE RAP SYSTEM

RAP (Remote Assistant for Programmers) is a system to
support communities of students and programmers during
shared and personal projects based on the use of the Java
programming language. RAP associates a personal agent with
each user which helps her/him to solve problems: proposing
information and answers extracted from some information
repositories, and forwarding answers received by “experts” on
the topic selected on the basis of their profile. A personal
agent also maintains a user profile centered on her/his
competences and experience built through the positive answers
given to other users and by extracting information through the
code she/he has written.

A. System Agents

The system is based on seven different kinds of agents:
Personal Agents, Code Documentation Managers, Answer
Managers, User Profile Managers, Email Manager, Starter
Agent and Directory Facilitators.

baldoni

2

On-line users

Off-line users

Web Server

Mail Server

4

i ersonal Agents

Starter Agent

PRz

~

User Profiles
Managers

T O
~
~

—_—

—

Mail Manager
\

~

— —»
—

"
Q Directory Facilitator
—
"X

v

Ne%

Code Documentation
Managers

@ Answer Managers

Fig. 1. RAP platform architecture.

Personal Agents are the agents that allow the interaction
between the user and the different parts of the system and, in
particular, between the users themselves. Moreover, this agent
is responsible of building the user profile and maintaining it
when its user is “on-line”. User-agent interaction can be
performed in two different ways: when the user is active in the
system, through a Web based interface; when it is “off-line”
through emails. Usually, there is a personal agent for each on-
line user, but sometimes personal agents are created to interact
with “off-line” users via emails.

User Profile Managers are responsible of maintaining the
profile of “off-line” users and of activating personal agents
when it is necessary that they interact with their “off-line”
users via emails.

Code Documentation Managers are responsible of
maintaining code documentation and of finding the appropriate
“pieces of information” to answer the queries done by the
users of the system.

Answer Managers are responsible of maintaining the
answers done by users during the life of the system and of
finding the appropriate answers to the new queries of the users.
Besides providing an answer to a user, this agent is responsible
of updating the score of the answer and forwarding the vote to
either the personal agent or the user profile manager for
updating the profile of the user that performed such an answer.

Email Managers are responsible for receiving emails from
“off-line” users and forwarding them to the corresponding
personal agents.

Starter Agents are responsible for activating a personal
agent when either a user logs on or another agent request it.

Directory Facilitators are responsible to inform an agent
about the address of the other agents active in the system (e.g.,
a personal agent can ask about the address of all the other
personal agents, of the code documentation managers, etc.).

Figure 1 gives a graphical representation of a RAP platform
and the interactions of personal agents and of the directory
facilitator with the other agents of the platform. Note that a
RAP platform can be distributed on different computation
nodes and that a RAP system can be composed of different
RAP platforms connected via Internet. Moreover, in figure 1
groups of three users or agents means that there can be one or
more users and agents. Finally, in A RAP system there is a
directory facilitator for each platform.

B. System Behavior

A quite complete description of the behavior of the system
can be given showing the scenario where a user asks
information to its personal agent to solve a problem in its code
and the personal agent finds one (or more) “pieces of
information” that may help her/him. The description of this

31

baldoni
31

Personal Agent A Directory Facilitator Personal Agent B

i i i
[} I I
= I I
, :query(question) ! '
L 1
requestAddresses() :
|
1
K= mmm o m o :
]
User A i
[}

:query(question)

:sendRates(rates) [is expert]:getRate()
:sendRate(rate)
:sendRatesList()
:selectUsers()
:confirm()
:query(question)
User A
[accept]:answer()
:sendAnswer()
User B

| I
| |

.
|
|

Fig. 2. UML interaction diagram describing how works to allow a user to ask a question and then receive the relative question from an “expert”.

scenario can be divided in the following steps:
1) Select answer types
2) Submit a query
3) Find answers
4) Rate answer

Select answer types: the user can receive information
extracted from code documentation, answers extracted from
the answer repositories and new answers sent by the other
users of the system. Therefore, before submitting the query,
the user can select the types of answers (one or more) she/he
likes to receive.

Submit a query: the user, through its user interface,
provides the query to its personal agent. In particular, the user
can query either about a class or an aggregation of classes for
implementing a particular task or about a problem related to
her/his current implementation. The query is composed of two
parts. The first part (we call it “annotation”) identifies the
context of the query and can contains keywords provided by a
system glossary and/or the identification of classes and/or
methods in a univocal way (i.e., the user needs to specify the
complete package name for a class and adds the class name for
a method). The second part contains the textual contents of the

query.

Find answers: the personal agents perform different actions
and interact with different agents to collect the various types of
answers.

For getting code documentation, the personal agent asks the
directory facilitator about all the code documentation
managers. After receiving this information, the personal agent
forwards the query to all these agents. These agents search
“pieces” of code documentation related to the query and send
them to the personal agent associating a score with each
“piece”.

For getting answers from the answer system repositories, the
personal agent asks the directory facilitator about all the
answer managers. After receiving this information, the
personal agent forwards the query to all these agents. These
agents search answers related to the query and send them to
the personal agent associating a score with each answer.

The reception of new answers from the system users is a
more complex activity and its description can be divided in
four further steps (Figure 2 shows the UML interaction
diagram describing these phases):

3.1) Find experts
3.2) Receive experts rating
3.3) Select experts

32

baldoni
32

3.4) Receive answers

Find experts: the personal agent asks the directory
facilitator about the other active personal agents (i.e., the
personal agents of the user that are “on-line”) and all the user
profile managers of the system (i.e., the agents managing the
profile of the users that are not “on-line”). After receiving this
information, the personal agent forwards the query to these
personal agents together to the user profile managers.

Receive expert rating: all these agents (personal agents and
user profile managers) compute the rating of their users to
answer to this query on the basis of the query itself and of the
user profile. The agents that compute a positive score (i.e., its
user may give an appropriate answer to the query) reply to the
querying personal agent with the rating of its user (in the case
of a personal agent) or its users (in the case of user profile
manager).

Select experts: the personal agent divides on-line and off-
line users, orders them on the basis of their rating and, finally,
presents these two lists to its user. The user can select more
than one user and then the personal agent sends the query to
the corresponding personal agents (for the “on-line” users)
and to the corresponding user profile managers (for the “off-
line” users).

Receive answers: the replying personal agents immediately
present the query to their user and forward the answer as soon
as the user provides it. User profile manager activates the
personal agents of the involved users through the starter agent.
These personal agents forward the query to their user via email
and then terminate themselves. Users can answer either via
email or when they log again on the system. In the case of
email, the email manager starts the appropriate personal agent
that extracts the answer from the email and forwards it. When
the querying personal agent receives an answer, it immediately
forwards it to its user.

Rate answers: after the reception of all the queries, or when
the deadline for sending them expired, or, finally, when the
user has already found an answer satisfying its request, the
personal agent presents the list of read answers to its user
asking her/him to rate them. After the rating, the agent
forwards each rating to the corresponding personal agent, code
documentation manager, answer manager or user profile
manager that provides to update the user profile and/or the
answer rating (when a user rates an answer retrieved from the
answer repository, this rating is also used to updated the user
profile of the user that previously proposed the answer). Note
that in the case of rating of users answers, the rating cannot be
known by the user that sent the answer and users that did not
send answers automatically received a negative rating.

C. User and Document Profile Management

In our system, the management of user and document
profiles is performed in two different phases: an initialization
phase and an updating phase. Figure 3 gives a graphical
description of this process.

In order to simplify, speed up and reduce the possibility of
inaccuracy due to people’s opinions of themselves and to

incomplete information, we decided to build the initial profile
of the users and documents in an automated way that, for the
users, is very similar to the one used by Expert Finder system
[21]. Profiles are represented by vectors of weighted terms
whose value are related to the frequency of the term in the
document or to the frequency of the use of the term by the
user. The set of terms used in the profiles is not extracted from
a training set of documents, but corresponds to those terms
included in the system glossary, provided to the users for
annotating their queries, and to the names of the classes and
methods of the Java software libraries used by the community
of the users of the system.

While document profiles are computed by using term
frequency inverse document frequency (TF-IDF) [19] and
profiles weighted terms correspond to the TF-IDF weight, each
user profile is built by user’s personal agent through the
analysis of the Java code she/he has written. In this case, the
weight of the terms in the profile corresponds to the frequency
is not the TF-IDF weight, but the real frequency of the term in
the code of the user (i.e., term frequency is not weighted on the
basis of the frequency of the term in the code written by all the
users). We used this approach for different reasons. First, we
speed up and reduce the complexity of building user profiles.
As a matter of fact, TF-IDF algorithm can be easily used in a
centralized system where all the profiles and the data to build
them are managed. Our context is more complex: the system is
distributed, only the personal agent can access to the software
of its user, for privacy and security reasons, and the profiles
are maintained by the corresponding personal agents or by
possibly different user profile managers when the personal
agent is not alive. The second and most important reason is
that the profile built by personal agents is only the initial user’s
profile. And it will be updated when the user writes new
software and especially when the user helps other users
answering their queries.

The updating of user and document profiles is done in three
cases: i) a user asks about a problem and then rates some of
the received answers, ii) a new software library is introduced
in the ones used by the community or some new terms are
introduced in the system glossary, and iii) a user writes new
software.

In the first case, there are three possible behaviors according
to the source of the answer (user, document repository or
answer repository).

If the answer comes from a user, on the basis of the received
rating her/his profile is updated, of course, only the part
concerning the terms involved in the query annotation.
Moreover, if the rating is positive, the answer is added to the
answer repository and its profile is built from the query
annotation and the rating of the answer.

If the answer comes from the document repository and the
rating is positive, the answer is added to the answer repository,
its profile is the original document profile updated by the
rating of the answer.

Finally, if the answer comes from the answer repository and

33

baldoni
33

the rating is positive, the part of the answer profile related to
the terms involved in the query annotation is updated on the
basis of the received rating. Moreover, in the case that this
positive rated answer comes from a user and not from the
document repository, also the part of the user profile related to
the terms involved in the query annotation is updated on the
basis of the received rating. Finally, the query corresponding
to such positive rated answer is added in the repository (i.e.,
the answer was good for one or more previous queries, but
also for the current one; queries are ordered by answer rating).

We decided to avoid the use of negative rates for updating
the profile of the answers in the answer repository. In fact, if
an answer is in the repository, it means that at least a user
considered useful to solve her/his problem; therefore, if later
on this answer received a negative rate it does only means that
the answer is not appropriate for the last query, but it is still
appropriate for the previous queries for which it received
positive rates.

When a new software library is introduced in the list of
libraries used by the users of the system or some new terms are
introduced in the system glossary, all the document and user
profiles must be updated. While document profiles are rebuilt
on the basis of the new complete set of terms, user profiles are
updated adding the weighted terms corresponding to the new
term, of course with a weight equal to their frequency in the
software written by the user.

Finally the user’s profile is updated, adding only the new
weighted terms, even when the user writes new software.

D. System Implementation and Experimentation

A first prototype of the RAP System is under development
by using JADE [3]. JADE (Java Agent Development
framework) is a software framework to aid the realization of
agent applications in compliance with the FIPA specifications
for interoperable intelligent multi-agent systems [6]. JADE is
an Open Source project, and the complete system can be
downloaded from JADE Home Page [9].

Given the distributed nature of JADE based agent systems, a
RAP system can be distributed on a set of agent platforms
connected usually via Internet and situated in different parts of
the world. Each agent platform can be distributed on different
computation nodes and is connected to a Web server, for
allowing direct interactions with the users, and to a mail
server, for allowing email interactions with the users. In each
agent platform there is a unique starter agent and email agent,
but there might be more than one user profile manager, code
documentation manager, answer manager. This usually
happens when the agent platform is distributed on different
nodes in order to cope with performance issues due to the
number of the users to be managed. Furthermore, distribution
of a RAP platform on different computation nodes and agents
replication can be introduced for reliability reasons (in this
case, agents manage copies of data) too. Finally, there can be
one or more directory facilitators. In the case of more than one
directory facilitator, these agents build a hierarchical map of
the agents of the system; therefore, when an agent is created,

the only information it needs to know is simply the address of
the main (root) directory facilitator.

A large part of the first prototype of the system has been
completed. In particular, the subsystem supporting interactions
among personal agents and the interaction between each pair
of personal agent and “on-line” user has been completed. This
subsystem has been used with success by a small set of
students, connected by different labs or from their house, for
the development JADE software within some course works. In
these activities, students could formulate queries annotating it
with terms extracted from a glossary derived from the Sun
“Glossary of Java Related Terms” [20] and class and method
names extracted from Java and JADE source code.

Moreover, we have evaluated the system with a simulation.
We have asked 10 queries on Java programming to 10 students
with experience in Java programming, but with advanced
experience on different application fields and software
libraries. Of course, the 10 queries were defined in order to put
in the light the difference in the knowledge of the students
involved. Then, we have evaluated the part of the RAP system
involving only user interactions (no document and answer
repository). A personal agent is responsible to perform the 10
queries and other 10 personal agents to provide the answers
written by the different students. The evaluation has concerned
mainly the comparison of the ordered list (built ordering
experts on the basis of their profiles) provided by the querying
agent to its user with an ordered list of the answers we did
before performing the simulation. The simulation was
reiterated a number of times equal to the possible orders of the
query and the users profiles were reset each simulation. The
initial user’s profile was built on the basis of the content of the
answers associated with this virtual user. Clearly, it cannot be
considered a simulation of the real behavior of the system, but
the obtained results have encouraged us in the completion of
the system. In fact, the differences between the personal agent
ordered list and our a priori ordered list decreases during the
evaluation process and for the last query we have had an
average error of the 5%.

As from the end of this year, the final RAP system will be
tested in practical courses on JADE shared among students of
some American Latin and European Universities inside the
European Commission funded project “Advanced Technology
Demonstration Network for Education and Cultural
Applications in Europe and Latin America (@lis Technology
Net)” [1]. Moreover, the system will be used by students and
researchers, involved in the ANEMONE project [2], for
cooperating in the realization of agent-based software.

III. RELATED WORK

In the last years a lot of work has been done in the fields of
document and expert recommendation and in the development
of tools and systems for supporting e-learning and, in
particular, computer programming activities.

With the advent of the Web, document recommendation
systems are become one of most important area of both

34

baldoni
34

research and application of information technologies. All the
most important proposed systems are applied to the
recommendation of Web pages and are not specialized for
computer programming documents, but usually allow the
customization for different subjects. GroupLens is the first
system that used collaborative filtering for document
recommendation [18]. This system determinates similarities
among users and then is able to recommend a document to a
user on the basis of the rating of similar users on the
recommend document. Syskill &Webert is a system with the
goal of helping users distinguishing interesting Web pages on
a particular topic from uninteresting ones [16]. In particular,
this system recommends document to a user on the basis of
her/his user profile that it builds and updates by using user’s
evaluations of the interestingness of the read documents.
Adaptive Web Site Agent is an agent-based system for
document recommendation [17]. This system works on the
documents of a Web site and recommends documents to
visitors integrating different criteria: user preferences for the
subject area, similarity between documents, frequency of
citation, frequency of access, and patterns of access by visitors
to the web site.

Several prior systems support expertise recommendations.
Vivacqua and Lieberman [21] developed a system, called
Expert Finder, that recommends individuals who are likely to
have expertise in Java programming. This system analyzes
Java code and creates user profiles based on a model of
significant features in the Java programming language and
class libraries written by the user. User profiles are then used
to assist novice users in finding experts by matching her/his
queries with user profiles. A group of researchers at MITRE
has also developed an expertise recommendation system called
Expert Finder [11],[12]. This system finds experts by
performing a query over a MITRE wide corporate database
that includes information about 4500 MITRE employees. The
entries in the database are manually maintained by each
individual employee. After performing the query, the system
filters the results and presents a list of employees who are
likely to have some expertise in the queried topic. Expertise
Recommender is another system that recommend people who
are likely to have expertise in a specific area [13],[14]. A user
garners recommendation from ER by picking a relevant
identification heuristic, selecting a matching technique, and
entering a description or terms related to a problem. Then, the
system responds with a list of individuals who are likely to
have expertise with the problem and who are a good social
match for the person making the request. In this system, user
profiles are built by processing user‘s day-to-day work
products. MARS is a referral system based on the idea of
social network [13]. This system is fully distributed and
includes agents who preserve the privacy and autonomy of
their users. These agents build a social network learning
models of each other in terms of expertise (ability to produce
correct domain answers), and sociability (ability to produce
accurate referrals), and take advantage of the information

derived from such a social network for helping their users to
find other users on the basis of their interests.

A lot of work has been also done in the development of
tools and systems for supporting e-learning and, in particular,
computer programming activities. Hazeyama and Osada
realized a system for collaborative software engineering
education [7]. This system provides both generic collaboration
services, useful in all the different phases of students course
project, and services dedicated to a specific phase of such a
project. In fact, the system offers a bulletin board subsystem
and a notification service used by students and teachers along
all the project, and, for example, provides a subsystem
supporting students code inspection process: this subsystem
provides a tool that allows to a teacher the annotation of
students code with comments, and manages the interaction
between the teacher and the students in the different phases of
the inspection process (i.e., code submission, teacher
feedback, updated code submission, etc.). WBT (Web Based
Teaching) is an agent based collaborative learning support
system providing community Web services [8]. The system is
centered on a Web site containing teaching materials for
computer programming practice and an electronic bulletin
board system for question answering to assist students during
their programming practice activities. In this system agents
have the duty of distributing questions to the teacher or to “on-
line” students that previously answered to similar questions.
Mungunsukh and Cheng proposed an agent based learning
support system for novice programmers in a distance-learning
environment [15]. This system is dedicated to the learning of
the VLB programming language and its activity can be divided
in two phases: student observation and student support. In the
first phase, the system attempts to understand students’
behavior by observing their typing events, behaviors on
different purpose of web browser of lessons, tasks and
examples, error types made by students and debugging events
on a programming editor. After the acquisition of information
about the activities of the students, the system supports
students with relevant information as, for instance, related
examples and lessons for the problems they are working on,
and problems which have similar solutions. I-MINDS is a
multi-agent system that enables students to actively participate
in a virtual classroom rather than passively listening to lectures
in a traditional virtual classroom [10]. This system is based on
three kinds of agents: teacher agents, student agents and
remote proxy agents. Teacher agents interact with teachers and
are responsible for: i) disseminating information to student
agents and remote proxy agents, ii) maintaining student
profiles and, on the basis of these profiles generating
individual quizzes and exercises, iii) filtering students
questions, and iv) managing classroom sessions progress.
Student agents support the interaction with the teacher,
maintain the profiles of the other students to identify potential
“helpers” and, when it is necessary, solicits answers from such
“helpers”. Remote proxy agents support the interaction with
the teacher and other students when a student is connected

35

baldoni
35

with a low-speed internet connection (e.g., they filters
messages to reduce the traffic). Guardia Agent is an agent-
based system aimed at supporting students working on team
projects [22]. This system is based on agents, one for each
student, that autonomously monitor the progress of a group
project, suggest new ways in which the students can act to
improve the progress of the project (e.g., a new allocation of
tasks), and enhance the communication between members of
the group.

IV. CONCLUSIONS

In this paper, we present a system called RAP (Remote
Assistant for Programmers) with the aim of supporting
communities of students and programmers during shared and
personal projects based on the use of the Java programming
language. RAP associates a personal agent with each user and
this agent maintains her/his profile and helps her/him to solve
problems proposing information and answers extracted from
some information repositories, proposing “experts” on these
problems and then forwarding their responses.

RAP has similarities with WBT [8], I-MINDS [10] and, in
particular, with the Expert Finder system [21]. In fact, both
these three systems provide agents that recommend possible
“helpers”. However, none of them provides the integration of
different sources of information (experts, answers archive and
code documentation), and none of them integrates in the user
profile information about user‘s day-to-day work products with
information obtained from the answers the user provided to the
other users of the system.

A first prototype of the RAP System is under development
by using JADE [3],[9], a software framework to aid the
realization of agent applications in compliance with the FIPA
specifications for interoperable intelligent multi-agent systems
[6]. A large part of the first system prototype has been
completed and some tests have been already done. In
particular the tests regarding the recommendation of experts
have shown encouraging results.

The RAP system will be used in some practical courses on
JADE by students of the partners of the “@lis Technology
Net” project and by students and researchers, involved in the
ANEMONE project [2], for cooperating in the realization of
agent-based software. Moreover, the RAP system will be used
as a service of the Collaborator system [5]. Collaborator is a
system that provides a shared workspace supporting the
activities of virtual teams through a set of services as, for
example, chat and multimedia interaction, meeting scheduling
and synchronous sharing of applications [4].

After the completion, experimentation of the first prototype,
we plan to try to improve the quality of both document and
expert recommendation by applying and then comparing the
most considered recommendation techniques and, eventually,
trying their integration.

(1]
[2]
[31

(4]

[51

(6]
[7]

(8]

[91
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]

[21]

[22]

REFERENCES
@LIS Technet Home Page (2003). Available from http:/www.alis-
technet.org.
ANEMONE Home Page (2003). Available from

http://aot.ce.unipr.it:8080/anemone.

Bellifemine, F., Poggi, A., Rimassa, G.: Developing multi-agent systems
with a FIPA-compliant agent framework.. Software Practice and
Experience, 31, (2001) 103-128.

Bergenti, B., Poggi, A., Somacher, M.: A Collaborative Platform for
Fixed and Mobile Networks. Communications of the ACM, 45(11),
(2002) 39-44.

Bergenti, B., Poggi, A., Somacher, M., Costicoglou, S.:
COLLABORATOR: A collaborative system for heterogeneous networks
and devices. In. Proc. International Conference on Enterprise System
(ICEIS03), Angers, France (2003) 447-480.

FIPA Specifications (1996). Available from http://www.fipa.org.
Hazeyama, A., Nakako, A., Nakajima, S., Osada, K.: Group Learning
Support System for Software Engineering Education - Web-based
Collaboration Support between the Teacher Side and the Student
Groups. In Proc. Web Intelligence 2001, Maebashi City, Japan, (2001)
568-573.

Ishikawa, T., Matsuda, H., Takase, H.: Agent Supported Collaborative
Learning Using Community Web Software. In Proc. International
Conference on Computers in Education, Auckland, New Zealand,
(2002) 42-43.

JADE Home Page (1998). Available from http://jade.tilab.com.

Liu, X., Zhang, X. Soh, L., Al-Jaroodi, J., Jiang, H.: I-MINDS: An
Application of Multiagent System Intelligence to On-line Education. In
Proc. IEEE International Conference on Systems, Man & Cybernetics,
Washington, D.C., (2003) 4864-4871.

Mattox, D., Maybury, M. and Morey, D.: Enterprise Expert and
Knowledge Discovery. The MITRE Corporation, McLean, VA, (2000).
Available from
http://www.mitre.org/support/papers/tech_papers99_00/maybury_enterp
rise/maybury_enterprise.pdf

Maybury, M., D'Amore, R. and House, D.: Awareness of Organizational
Expertise. The MITRE Corporation, MacLean, VA (2000). Available
from
http://www.mitre.org/support/papers/tech_papers99_00/maybury_aware
ness/maybury_awareness.pdf

McDonald, D.W.: Evaluating expertise recommendations. In Proc. of
the 2001 International ACM SIGGROUP Conference on Supporting
Group Work, Boulder, CO, (2001) 214-223.

McDonald, D.W.: Recommending collaboration with social networks: a
comparative evaluation. In Proc of the Conference on Human Factors in
Computing Systems, Ft. Lauderdale, FL, (2003) 593-600.

Mungunsukh, H., Cheng, Z.: An Agent Based Programming Language
Learning Support System. In Proc. International Conference on
Enterprise System (ICEIS02), Auckland, New Zealand, (2002) 148-152.
Pazzani, M., Billsus, D.: Learning and revising user profiles: The
identification of interesting web sites. Machine Learning, vol. 27,
(1997) 313-331.

Pazzani, M., Billsus, D.: Adaptive Web Site Agents. Autonomous
Agents and Multi-Agent Systems, 5, (2002) 205-218.

Resnick, P., Neophytos, I, Mitesh, S., Bergstrom, P., Riedl, J.:
GroupLens: An open architecture for collaborative filtering of netnews.
In Proc. Conference on Computer Supported Cooperative Work, Chapel
Hill, (1994) 175-186.

Salton, G.: Automatic Text Processing. (1989), Addison-Wesley.
Sun Java Glossary (2004). Available
http://java.sun.com/docs/glossary.html.

Vivacqua, A. and Lieberman, H.: Agents to Assist in Finding Help. in
Proc. ACM Conference on Human Factors in Computing Systems (CHI
2000), San Francisco, CA, (2000) 65-72.

Whatley J.: Software Agents for Supporting Student Team Project
Work. In Proc. International Conference on Enterprise System
(ICEIS04), Porto, Portugal, (2004) 190-196.

from

36

baldoni
36

GrEASe: Grid Environment based on Agent
Services

Antonio Boccalatte, Alberto Grosso, Christian Vecchiola, Sara Fazzari, Silvia Gatto

Abstract— This paper presents an agent-based infrastructure
for grid computing called GrEASe (Grid Environment based on
Agent Services). Grids are typically complex, heterogeneous, and
highly dynamic environments, and agent technology can satisfy
the basic requirements of this kind of contexts. GrEASe is
organized as a two layer structure: the lower one providing the
resource independent functionalities and the upper one providing
all the grid-specific services. All the features of the grid
infrastructure have been modeled with the multi-behavioral
agent model of the AgentService programming framework. This
platform is also the runtime environment for the multi-agent
system associated with each grid node.

Index Terms— Grid Computing, Multi-Agent Systems

I. INTRODUCTION

ESOURCE sharing is nowadays an important issue, not

only because it offers many advantages in distributed
computing, but also because data sharing is becoming more
and more useful in many fields. Resources can be classified in
three different groups: data, services, and computational
power. By following this classification we can distinguish
three types of grids [1]. Data Grids manage huge collections
of geographically distributed data, which can be generated in
many different ways: data streams are daily sent from
satellites for weather forecasts and climatic changes analysis;
large collections of data generated from scientific experiments
allow geographically distributed researchers to collaborate to
the same research project. Service Grids provide services that
could not be obtained from a single platform: streaming
multimedia services or collaborative applications.
Computational Grids provide the aggregate power of a
collection of processors spread over the network as a unique,

Manuscript received October 25 2004

A. Boccalatte is with Department of Communication, Computer and
Systems Sciences, University of Genova, 16145 Genova lItaly (phone: +39-
010-353-2812; e-mail: nino@ dist.unige.it).

A. Grosso is with Department of Communication, Computer and Systems
Sciences, University of Genova, 16145 Genova lItaly (phone: +39-010-353-
2284; e-mail: nino@ dist.unige.it).

C. Vecchiola is with Department of Communication, Computer and
Systems Sciences, University of Genova, 16145 Genova Italy (phone: +39-
010-353-2284; e-mail: nino@ dist.unige.it).

S. Fazzari was with Department of Communication, Computer and Systems
Sciences, University of Genova, 16145 Genova Italy.

S. Gatto was with Department of Communication, Computer and Systems
Sciences, University of Genova, 16145 Genova Italy.

M. Baldoni, F. De Paoli, A. Martelli, and A. Omicini (Eds.): WOA 2004 — Dagli Oggetti agli
Agenti, Sistemi Complessi e Agenti Razionali, Torino, Italy, November 29" — December 1%
2004. Pitagora Editrice Bologna. ISBN 88-371-1533-4. ht t p: / / woa04. uni to. it

big processor. Grids are an economic and efficient way to
compute, since they bring to the end user an incredible set of
resources with a relatively low cost.

A Grid infrastructure is a complex and high dynamical
environment: multiple, heterogeneous, and distributed
resources need to be managed and accessed by means of a
uniform interface. Real applications need also a customized
interaction according to the different privileges of the users.
The depicted scenario can certainly benefit from Agent
technology [2]. Agents are autonomous software entities with
some level of intelligence; agents work better if they belong to
a community such as a multi-agent system (MAS) [3]. Agents
act in a distributed manner, cooperate, compete, and negotiate
to solve a problem or to perform a task. These features make
the agents an interesting technology to implement Grid
infrastructures.

In this paper GrEASe, an agent-oriented architecture which
provides services in a Grid is described. GrEASe is
implemented by the use of the AgentService programming
platform [4].

A brief overview on agent technology and multi-agent
systems is provided in Section Il and how this technology can
be applied to grid computing is explained. Section 1l includes
the description of AgentService programming platform.
Section IV the describes the features of GrEASe, while
Section V presents an interesting use case of such architecture
followed by a possible application of GrEASe to a real
scenario. Conclusions follow in Section VI.

Il. AGENTS TECHNOLOGY AND GRID COMPUTING

A. Agents and Multi-Agent systems

A software agent is an autonomous software entity able to
expose a flexible behavior. Flexibility is obtained by means of
reactivity, pro-activity and social ability [3]. Reactivity is the
ability to react to environmental changes in a timely fashion
while pro-activity is the ability to show a goal directed
behavior by taking the initiative. Social ability, that is the
ability to interact with peers by means of cooperation,
negotiation, and competition, is one of the most important
features of agent oriented programming: agents do their best
when they interoperate. Interaction is obtained by arranging
agents in communities called multi-agent systems (MAS) [3].
MAS are generally decentralized open systems with
distributed control and asynchronous computation: they

baldoni

provide a context for agents’ activity with the definition of
interaction and communication protocols. In addition they are
scalable, fault-tolerant, reliable, and designed for reuse.

An abstract architecture specification of a generic multi-
agent system has been proposed by the Foundation of
Intelligent Physical Agents (FIPA), an international
organization that promotes standards for agent technologies.
The proposed architecture [6] is implemented by different
multi-agent systems and has been taken as reference model in
the comparison of different implementations of MAS.

B. Agents and Grid Computing

Agent technology has been a useful approach in different
contexts: air traffic management [5], biologic systems
modeling and simulation [7], workflow management [8], and
on-line auction systems [9]. Moreover, different fields of
computing have taken advantages from the agent oriented
approach such as scheduling systems, collaborative smart
agendas [10], information filtering [11], and soft-bots [12].
Agents are reliable components to build more flexible and fail
safe systems, since autonomy and reactivity allow recovering
from fault conditions. This is certainly necessary in high
critical scenarios like air traffic management, but it is also a
desirable in the case of grid computing. The social ability,
such as cooperation, competition and negotiation, is equally
fundamental in grids.

Grids are intrinsically distributed and complex systems, as
they may require more than one step to provide a resource to a
client. Interactions between nodes can change during time in
order to make use of resources available at run time. Each
node belonging to a grid needs to keep availability of the
resources offering and benefits of a certain degree of
autonomy and flexibility. Agent technology has been designed
to model high dynamic and complex systems [13] and can
fulfill many of the requirements related to the development of
a grid infrastructure. By using agent technology, users and
administrators of the resulting system can have a more
friendly and understandable interface to interact with.

Some projects have already proved that the agent oriented
approach could be an interesting solution in the field of Grid
Computing.

A4, acronym for “Agile Architecture and Autonomous
Agent” is a methodology for grid’s resource managing. This
approach, described in depth in [14] [15], is based on a
flexible architecture, able to rapidly adapt to dynamic
environmental changes. Agents are homogeneous and settled
in a hierarchical structure, they have capabilities of service
discovery and service advertisement.

MyGrid [16] is a Grid project which provides a
collaborative environment for biologists working and living in
different countries. The architectural design is based on agents
and exploits their autonomy and their capability to implement
complex interactions through negotiation messages in a
generic Agents Communication Language (ACL). MyGrid
relies on SoFAR (Southampton Framework for Agent
Research) [17], that constitutes the agent oriented

infrastructure used by MyGrid.

The Bond Agent System [18] is based on the JADE
framework [19] and extends it by providing specific agent
behaviours that abstract the concept of grid services.

The agent-oriented approach can take many advantages to
field of Grid Computing. In particular it offers a flexible and
high level approach that is, at the same time, powerful enough
to handle all the different aspects of grid environments. Grids
are dynamics by nature and agents have been modeled in
order to get aware of the context in which they are situated
and to dynamically interact with peers. Agents are also high
level interfaces for humans, if compared to objects, and
system designers can easily deal with them and organize the
entire distributed system in a more clear way. All the
presented projects rely on these features of agency and also
GrEASe takes benefits from them by the means of the
AgentService programming platform.

IIl. THE AGENTSERVICE PROGRAMMING PLATFORM

AgentService [4] is a multi-agent system development
framework that provides a complete support to agent design,
implementation, and management with a full run-time
environment for agents scheduling, control and monitoring.

The framework has been developed with an extremely
modular architecture in order to be customizable and portable
over different architectures and operating systems. Modules
cover:

e the storage subsystem (repository of all templates
used to create agents in the platform);

e the persistence subsystem;

e the messaging subsystem;

e the logging subsystem.

Additional modules can be loaded into the platform in order
to enrich and customize the platform services.

AgentService allows the definition of real, autonomous, and
persistent agents. Agents have a multi-behavioral activity and
organize their knowledge base in a set of persistent data
structures shared among the different activities. Agents are
scheduled and executed within the AgentService platform that
provides them a set of services as defined by the FIPA2000
specification [6]:

e Agent Management System (AMS);
e Directory Facilitator (DF);
e Message Transport Service (MTS).

The agent model implemented in AgentService is based on
the use of behaviors and knowledge. Behaviors include
decisions and computational tasks; they dynamically
determine the agent activity and influence its state.

Knowledge objects define the agent’s knowledge base and
consist of a set of shared data structures that can be persisted
in order to preserve the agent’s state and that are modified by
the activity of Behavior objects.

38

baldoni
38

AgentService provides to the developer a set of Agent
Programming eXtensions (APX) [20] specifically designed to
simplify the development and the implementation of agent
oriented applications; they are a set of templates modeling the
implementation of agents, behaviors and knowledge,
represented as types in a C#-based programming language.

IV. GREASE ARCHITECTURE

A. Overall Overview

GrEASe (Grid Environment based on Agent Services) is an
agent oriented infrastructure for grid computing. GrEASe
architecture is structured in two layers: the lower one
providing the basic services common to every grid, the upper
one providing grid-specific functionalities. Both layers have
been modeled by using an agent-oriented approach.

upper layer H
loweer |ayer H
L= pistorm |

Figure 1 — Structure of a GrEASe node

=
L

B. The Lower Layer: Basic Infrastructure

The lower layer provides the basic grid functionalities
classified as follows:

e node management. grids are dynamic
environments where nodes can subscribe and
unsubscribe at run-time. General information
about the node status need to be accessed in order
to provide the necessary interfaces to monitor and
maintain the entire grid;

e resource querying and discovery: nodes can query
and find resources by wusing a distributed
dispatching system spread all over the nodes;

e authentication: users that access the resources need
to be authenticated, since different policies are
applied depending on the identity of the requestor;

e transport services: dispatch and receipt of the
information and data.

The design and implementation of the lower layer led to the
definition of different types of agents: NodeManager,
Dispatcher, Authenticator, and Carrier.

NodeManager is the maintainer of the node and performs
all the management operations. Three different behaviours
have been designed in order to accomplish all the tasks of the
NodeManager:

e node subscription and un-subscription from the
Grid;

e monitoring services and information about the
status of the node and of the resources;

e resource allocation and monitoring.

Dispatchers agents are spread all over the nodes and
implement the resource querying and discovery process: each
node has an instance of this type of agent. Dispatcher
essentially forwards a request for a resource to the neighbor
nodes, and waits for a response; at the same time it handles
incoming requests from other dispatcher agents. Dispatcher is
critical for performance of the resource search process and can
support different search algorithms by simply changing the
relevant behaviors.

Carrier agents implement the general file transfer service
between nodes: agents inside the node instruct Carrier to send
a file or are notified by the Carrier of an incoming file transfer
for them. Different protocols (e.g. ftp protocol, or its secure
version) can transparently be used to implement file transfer
service, by defining the corresponding behaviors and selecting
the most fitting ones for the specific context.

Authenticator agents are responsible of the user
authentication process. The user profile is evaluated in order
to grant:

e access to the grid system;
e access to the specified resource by applying the
right policy.

Authenticator implements a two-level authentication
strategy: first the credentials provided by the user are checked
for the access to the grid system; then the availability of the
resource is granted on the basis of the successful validation of
the authorization criteria.

C. The Upper Layer: Grid-specific Components

Different types of grids are defined according to the
different types of resources they share: processor-cycles,
documents and data in general, or services. Therefore, specific
requirements need to be fulfilled according to the different
grid types. Resources of data-grids should be accessed at the
same time by multiple clients. Conversely, in a computational-
grid resources can be assigned only to a single client at time
since the same processor cycles cannot be shared between
multiple users.

The upper layer of the GrEASe architecture takes care of all
the peculiar features related to the specific type of the chosen
grid. The upper layer is defined by all those agents that strictly
interact with the resources belonging to the grid and hosted in
the node. For example let’s define agents’ behaviors
according to the requirements of Computing Grids: the
submission of a task to a node for computing means not only
the transfer of the executable code of the task, but also the
transfer of the requested input and output data. In addition, if
tasks are not monolithic it may be convenient to monitor their
progress. These functionalities can be encapsulated by the
implementation of specific run-time behaviors, one for

39

baldoni
39

handling the task execution, another for monitoring task
progress. A similar approach can be adopted for Data and
Service Grids.

V. GREASE IN ACTION

In order to see how GrEASe agents interact to provide a
grid service the process of resource querying and discovery
will be briefly described.

Figure 2 shows an instance of the AgentService platform
running on each grid node (two expanded) that schedules
resource agents and infrastructure agents. A client application
asks NodeManager of the nearest node by providing user
credentials to access the grid. NodeManager forwards the
credentials to the co-located Authenticator and waits for
feedback. Authenticator verifies the user credentials and in
case of success sends an approval message to the user and
notifies the NodeManager, which updates the user login
status.

|:| Authenticator

D Dispatcher

[l NodeManager

e REGLIESE
— Fesponse

User Agent

Figure 2 — Resource querying process

Once authenticated the users asks the NodeManager for a
given resource. The NodeManager checks the resource
availability on its node: if the resource is found it notifies the
user, and following the user’s confirmation, it instructs Carrier
to dispatch the resource; if the resource is not available in the
node, NodeManager forwards the request to the co-located
Dispatcher who will distribute the request to others Dispatcher
agents across the network, according to the selected resource
search algorithm. Every Dispatcher reports the query to its
NodeManager and the same process described before applies.
If no resources are found in the grid, a time-out function
associated to the query makes the query inactive. If more than
one node answers that the resource is available, the user asks
to send only the first answering node. All the messages across
the nodes use the address provided by Directory Facilitator.

Knowledge objects used in this process are:
e Grid topology by Dispatcher;
e User credentials by Authenticator;
e Resource availability by NodeManager;
e Logged users by NodeManager.

The architecture of GrEASe is flexible enough to handle all
the different scenarios of Grid Computing. An interesting
application of GrEASe can be found in the modeling and the
simulation of the peer-to-peer (p2p) nets for sharing data: such
networks can be considered a sort of Data Grids:

e they provide to the end user a huge volume of data
that is spread all over the network;

e the end user access all the data available in the
network and the this access is independent from
the physical location of data;

e nodes of the net can act either as servers for other
nodes or as clients that feed data.

There are some aspects that make Data Grids different from
peer-to-peer networks:

e peer-to-peer networks do not implement
sophisticated access control techniques and do not
have refined user profiles;

e peer-to-peer networks normally provide many
different copies of the same data and do not worry
about the synchronization of the different copies.

These aspects make peer-to-peer networks only less
complex than Data Grids.

By the use of GrEASe it is possible to model each node of
the network with an installation of the AgentService platform
that runs the agents defined by the GrEASe architecture. The
NodeManager will be responsible for the local resources of
the node, while the Dispatcher and Carrier will be
programmed in order to interact with peers also by using the
most known p2p protocols: in this way the nodes of the
GrEASe architecture can easily be integrated with the already
existing p2p networks. Since peer-to-peer networks normally
have simple user policies the Authenticator will provide only
the basic functionalities of authentication when needed.

In peer-to-peer networks resources normally refer to simple
files and for this reason there is no need to define particular
agents that represents the resources inside the platform. The
upper layer will be configured with particular agents:

o if the node is attached to an end user the upper
layer will require a user-agent that handles the user
requirements and control the behavior of the node
for the user;

e in the case of the node is intended to measure and
monitor the traffic that flows through it a special
agent can be designed to track all this kind of
information and report it to the user;

The introduction of the agents into the upper layer is rather
simple because agents rely on the platform services to perform
their activity: by querying the Directory Facilitator can
dynamically discover the NodeManager; each agent uses the

40

baldoni
40

message based system provided by the MTS to interact with
the other agents and they can easily interact with the other
“citizens” of the platform once they know the ontology that
NodeManager, Dispatcher, Carrier, and Authenticator support.
These ontologies are made available to each agent by the
platform through the Directory Facilitator.

The architecture provided with GrEASe, the services
offered by the AgentService platform, and the approach
defined with the agent-oriented paradigm, allow a quick and
not difficult implementation of the described example. In fact,
designers can better concentrate on the peculiar aspects of the
example rather than define the overall infrastructure and the
programming model needed to implement the example.

VI. CONCLUSION AND FUTURE WORK

Agent technology and in particular agent oriented
decomposition has played a key role in the design and the
implementation of GrEASe. The division of the tasks to the
different types of agents has led to a flexible and customizable
architecture. Interaction between agents is done with clean
and fixed interfaces defined by the messages they exchange
and this allows loose coupling among the different
components.

The approach taken with GrEASe is different from the ones
adopted by the other similar projects like A4 and the Bond
Agent System: while A4 leverages on a hierarchical structure
used to organized the resources in the grid, GrEASe adopts a
two-level architecture that separates the features common to
all the grid types from the features peculiar to the specific grid
type. Moreover, GrEASe is not tied, as in the case of the Bond
Agent System, to a strong BDI architecture but the use of
AgentService allows a more open environment.

The architecture provided with GrEASe, the services
offered by the AgentService platform, and the approach
defined by the agent-oriented paradigm offer to developers a
basic set of functionalities. In particular, the agent oriented
approach and the fact that agents live inside a multi-agent
system that relies on the services of a platform, are an
important abstraction on which the GrEASe architecture is
founded. GrEASe exploits the services of AgentService in
order to deliver to the developer an high-level tool to model
real applications in the field of Grid Computing. A simple
example has been discussed in order to show to the user that
the approach promoted by GrEASe can be an interesting
solution.

Currently GrEASe implements the resource search and
delivery in the three common grid types: Data, Computational
and Service. The most natural expansion of future
development is to allow the interaction between GrEASe and
other existing legacy grids. In this case AgentService will be
used to shape Interface Agents to access legacy grids in
accordance to their individual established rules.

REFERENCES

[1] 1. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid.
Enabling Scalable Virtual Organizations”, International Journal of
Supercomputer Applications, 2001.

[2] N.R. Jennings, and M. Wooldridge “Agent-Oriented Software
Engineering”, Proceedings of the 9th European Workshop on Modelling
Autonomous Agents in a Multi-Agent World : Multi-Agent System
Engineering (MAAMAW-99), 1999.

[3] G. Weiss, Multi-agent Systems — A Modern Approach to Distributed
Artificial Intelligence, G. Weiss Ed., Cambridge, MA, 1999.

[4] A. Boccalatte, A. Gozzi, and A. Grosso, “Una Piattaforma per lo
Sviluppo di Applicazioni Multi-Agente”, WOA 2003: dagli oggetti agli
agenti — sistemi intelligenti e computazione pervasiva, Villa Simius,
Italy, September 2003.

[5] A. S. Rao, M. P. Georgeff, and D. Kinny, “A Methodology and
Modelling Technique for Systems of BDI Agents Agents Breaking
Away”, Proceedings of the Seventh European Workshop on Modelling
Autonomous Agents in a Multi-Agent World, (MAAMAW?’96), published
by Springer as Lecture Notes in Artificial Intelligence 1038, 1996.

[6] “FIPA Abstract Architecture Specification”, FIPA standard SC00001L,
http://www.fipa.org/specs/fipa00001/SC00001L .pdf.

[71 H. Van Dyke Parunak, “Go to the Ant: Engineering Principles from
Natural Multi-Agent Systems”, Forthcoming in Annals of Operations
Research, special issue on Artificial Intelligence and Management
Science.

[8] R. Sacile, E. Montaldo, M. Coccoli, M. Paolucci, and A. Boccalatte,
“Agent-based architectures for workflow management in
manufacturing”, SSGRR 2000, L’Aquila I, Aug. 2000.

[9] C.Beam, and A. Segev, “Automated Negotiations: A Survey of the State
of the Art”, Wirtschaftsinformatik, VVol. 37-3, 1997, pp. 263-268.

[10] B. P. C. Yen, “Agent-based Distributed Planning and Scheduling in
Global Manufacturing”, in Proc. of the thrid Annual International
Conference on Industrial Engineering Thories, Applications and
Practice, Hong Kong, December, 2000

[11] P. Maes, and A. Moukas, “Amalthaea: An Evolving Multi-Agent
Information Filtering and Discovery System for the WWW?”, Journal of
Autonomous Agents and Multi-Agent Systems, vol. 1, no. 1, 1998, pp.
59-88.

[12] O. Etzioni, and D. Weld, “A Softbot-Based Interface to the Internet”,
Communications of the ACM, 37, 7, 1994.

[13] M. Wooldridge, “Intelligent Agents”, in Multi-agent Systems — A
Modern Approach to Distributed Artificial Intelligence, G. Weiss Ed.,
Cambridge, MA, 1999, pp. 27-78.

[14] J. Cao, D. P. Spooner, J. D. Turner, S. A. Jarvis, D. J. Kerbyson, S.
Saini, and G. R. Nudd, “Agent-Based Resource Management for Grid
Computing”, in Proc. of the 2nd IEEE/ACM International Symposium
on Cluster Computing and the Grid (CCGRID’02), 2002.

[15] J. Cao, D. J. Kerbyson, G. R. Nudd, “Performance Evaluation of an
Agent-Based Resource Management Infrastructure for Grid Computing”,
in Proc. of 1st IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGrid '01), Brisbane, Australia, May 2001.

[16] L. Moreau, S. Miles, C. Goble, M. Greenwood, V. Dialani, M. Addis, N.
Alpdemir, R. Cawley, D. De Roure, J. Ferris, R. Gaizauskas, K. Glover,
C. Greenhalgh, M. Greenwood, P. Li, X. Liu, P. Lord, M. Luck, D.
Marvin, T. Oinn, N. Paton, S. Pettifer, M. V Radenkovic, A. Roberts, A.
Robinson, T. Rodden, M. Senger, N. Sharman, R. Stevens, B. Warboys,
A. Wipat, and C. Wroe, “On the Use of Agents in a Biolnformatics
Grid”, in Proc. of the Third IEEE/ACM CCGRID'2003 Workshop on
Agent Based Cluster and Grid Computing, Sangsan Lee, Satoshi
Sekguchi, Satoshi Matsuoka, and Mitsuhisa Sato ed., Tokyo, Japan, May
2003, pp 653-661.

[17] L. Moreau, N. Gibbins, D. DeRoure, S. El-Beltagy, W. Hall, G. Hughes,
D. Joyce, S. Kim, D. Michaelides, D. Millard, S. Reich, R. Tansley, and
M. Weal, “SoFAR with DIM Agents: An Agent Framework for
Distributed Information Management”, in Proc. Of The Fifth
International Conference and Exhibition on The Practical Application of
Intelligent Agents and Multi-Agents, Manchester, UK, Apr 2000, pp.
369-388

[18] M.A. Khan, S.K.Vaithianathan, K. Sivoncic, and L. Boloni, “Towards
an Agent Framework For Grid Computing”, CIPC-03 Second
International Advanced Research Workshop on Concurrent Information
Processing and Computing, Sinaia, Romania, 2003.

41

baldoni
41

[19]

[20]

F. Bellifemmine, G. Rimassa, and A. Poggi, “JADE — A FIPA compliant
Agent Framework”, in Proc. of the 4th international Conference and
Exhibition on The Practical Application of Intelligent Agents and Multi-
Agents, London, 1999.

A. Boccalatte, C. Vecchiola, and M. Coccoli, “Agent Programming
Extensions relying on a component based platform”, in Proc. of the 2003
IEEE International Conference on Information Reuse and Integration,
Las Vegas, NV, October 2003, pp. 24-31.

42

baldoni
42

Design and development of a visual environment
for writing DyLOG programs

Claudio Schifanella, Luca Lusso, Matteo Baldoni, Cristina Baroglio
Dipartimento di Informatica — Universitdegli Studi di Torino
C.so Svizzera, 185 — 1-10149 Torino (ltaly)
Tel. +39 011 6706711 — Fax. +39 011 751603
E-mail: {schi,baldoni,baroglio }@di.unito.it , lussoluca@tiscali.it

Abstract—In this article we present a visual development envi- and allows the programmer to work at a more abstract level,
ronment for writing DyLOG programs, explaining the motivations skipping the syntactical details of the language. Moreover, it is
to this work and the main design choices. We will also analyze important to notice that the learning curve of logic languages

the main components of the system and the features offered . .) . . .
to the user. The visual environment encompasses a fully new is usually quite steep: the programming environment supplied

implementation of the DyLOG language, where Java is used DY VisualDyLOG aims also at solving this problem.
instead of Sicstus Prolog, and an OWL ontology that will allow An interesting application domain for agents develeoped by

the use of the language in Semantic Web applications. means of these tools is the Web, and in particular irSiman-
tic Weh Indeed, the web is more and more often considered as
a means for accessing to interactiveb servicesi.e. devices
Engineering multi-agent systems (MASS) is a difficult taskhat can be retrieved, invoked, composed in an automatic way.
one of the ways for achieving the successful industrial d&@e this aim, there is a need for languages that allow web
ployment of agent technology is to produce tools that suppe#rvice specification in a well-defined way, capturing what
the developer in all the steps of design and implementatiche services do, how they do it, which information they need
Many researchers in the Agent Oriented Software Engineeriftg functioning and so on, in order to facilitate the automatic
(AOSE) community are developing complete environments fantegration of heterogeneous entities. Recently some attempt to
MAS design. Just to mention a few examples, AgentTool [Etandardize the description of web services has been carried on
is a Java-based graphical development environment to h@pAML-S [10], OWL-S [11], WSDL [12]). While the WSDL
users analyze, design, and implement MASs. It is designedinitiative is mainly carried on by the commercial world, with
support the Multiagent Systems Engineering (MaSE) methahe aim of standardizing registration, look-up mechanisms and
ology [2], which can be used by the system designer interoperability, OWL-S (and previously, DAML-S) is more
graphically define a high-level system behavior. Zeus [3] toncerned with providing greater expressiveness to service
an environment developed by British Telecommunications fdescriptions in a way that can beasonedabout [13], by
specifying and implementing collaborative agents. DCaseldRploiting theaction metapharIn particular, we can view a
(Distributed CaseLP, [4], [5], [6]) integrates a set of specifiservice as an action (atomic or complex) with preconditions
cation and implementation languages in order to model aadd effects, that modifies the state of the world and the state
prototype MASs. In this scenario, the quality of the toolsf agents that work in the world. Therefore, it is possible
that the designer can use strongly influences ¢heice of to design agents, which apply techniques for reasoning about
a given specification languageThe availability of a visual actions and change to web service descriptions for producing
environment that is intuitive to use, and simplifies the desigrew, composite, and customized services. These researches are
of the agents in the system, can, actually, make the differenbesically inspired by the language Golog and its extensions
In this paper we present a visual environmerjii4], [15], [16]. In previous work, we have studied the use of
(VisualDyLOG) for the development ofDyLOG agents. DyLOG agents in the Semantic Web, and in particular, we
DyLOG is a logic language for programming agents, baséthve described the advantages that derive from an explicit
on reasoning about actions and change in a modal framewogresentation of theonversation policiegollowed by web
[7], that allows the inclusion, in an agent specification, alsservices in their description (currently not allowed by OWL-
of a set of communication protocols. In ([8]) is propose&). Actually, by reasoning on the conversation policies it is
a methodological and physical integration BiLOG into possible to achieve a better personalization of the service
DCaseLP in order to reason about communication protocofuition [17], and it is also possible to compose services [18].
By using VisualDyLOG, the user can specify in a simpleThis research line has driven us to the implementation of an
and intuitive way all the components of ByLOG program OWL [19] ontology, to be used as an interchange format of
by means of a visual interface. The adoption of such @yLOG programs, with the purpose of simplifying the use
interaction device bears many advantages w.r.t. a text editor §1d the interoperation ddyLOG agents in a Semantic Web

I. INTRODUCTION

M. Baldoni, F. De Paoli, A. Martelli, and A. Omicini (Eds.): WOA 2004 — Dagli Oggetti agli
Agenti, Sistemi Complessi e Agenti Razionali, Torino, Italy, November 29" — December 1
2004. Pitagora Editrice Bologna. ISBN 88-371-1533-4. ht t p: / / woa04. uni to. it

baldoni

44

context. situated in a multi-agent context. In this case it is natural to
The paper is organized as follows. Sectibnis a very have access to the agent internal state.
brief introduction to the main characteristics of tBgLOG We introduce an example that will be used in the rest of
language. Sectiofil describes the developed editing environthe paper, in order to better explain concepts. More details
ment while SectionV describes the developed OWL ontologyare included in the original work [26]. Let us consider
and motivates the choice of the OWL language. Conclusiotie example of a robot which is inside a room. Two air
follow. conditioning units can blow fresh air in the room and the
flow of the air from a unit can be controlled by a dial.
[I. THE DyLOG LANGUAGE In the following we report the code of the Simple Action
turn_dial(l) that turns the dial of the unit clockwise from a
Logic-based executable agent specification languages hpegition to the next oneB, o5 aNd M, ¢ are written asB
been deeply studied in the last years [20], [21], [15]. In thigelief) and M (dual of B) for simplicity.
section we will very briefly recall the main features®fLOG,;
the interested reader can find a thorough description of tiis A DyLOG implementation

IaanuLacg)]g n [22]6.[2hS|]. | lodi ing | ¢ At the basis of the development of tBgLOG programming
yLVG IS a high-level jogic programming 1fanguage 1olyironment there is a Java reimplementation of the language
modeling rational agents, based on a modal theory of actiofizy ot s interpreter. The choice of this implementation

and mental attitudes wheneodalitiesare used for representing|(,:mguage is due to the great diffusion of it, to its well-known

actions while behefs model the agents_internal state. Itportability, and to the huge amount of available applications
accounts both forsimple (atomic) andcomplex actionsor and frameworks

procedures. Atomic actions are either world actions, af“fecting.l.he first step consisted in the development oftiRyLOG

t_he wor_ld, or mentgl actions, 1.e. sensing and communic ackage, which implements all tiy/LOG constructs, offering
tive actions producing new beliefs and then affecting t

B the programmer a set of classes and interfaces which allow

agent m.e_ntal state. Ato”.“c actions are descnped n ter_mstﬁé creation and editing of programaDyLOG has been built
precondition lawsand action lawsthat, respectively, define on tuProlog [27], a light-weight Proiog engine written in

those c_ondltlons that mUSt hold in the agent mental state ﬁjﬁva, which allows the instantiation and the execution of Pro-
the action to be applicable, and the changes to the ag

tal state that 4 by th i " N programs by means of a minimal interface. In this way, it
mental state that are caused by the action execution. O_tfg ossible to exploit some of the mechanisms, made available
that besides the preconditions to a simple action execulti

) X o he tuProl ine, which h Dyl
some of its effects might depend upon further condnmrﬁégft e tuProlog engine, which are used both yLOG and

» X ! Prolog, such aaunification Moreover, tuProlog supports
(cond]tlonal effe.ct)s Cor.npllex aCtI.OI’]S are defined througf?nteractions based on TCP/IP and RMI, a useful feature to
(possibly recursive) definitions, given by means of PrOIOQHe design of multi-agent systems. The implementation of the

like clauses and by action operators from dynamic logic, Iikte ; . .
S : DyLOG package is currently being completed by extendin
sequence;”, test “?” and non-deterministic choiceJ”. The e P geis cu y beIng P y ex g

action theorv allows cobing with the oroblem of reason_nthetuPrologengine so to obtain muDyLOG inference engine.
: y W ping wi b "9 The structure of the classes which implement the language

about complex actions with incomplete knowledge and Lonstructs follow the definition of DyLOG program. A

particular' to address the te'mporal projection apd planni ogram is an instance of the cld3smainDescriptionwhich
proble_n_1 in presence of sensing and co_r_nml_mlcanon. . contains instances of the main kinds of program components:
Intuitively, DyLOG allows the specification of ratlonala et of initial observations, a set of actions that define
agents that reason about their own behavior, choose courset%gcf behavior of the agent a’nd a set of communicative ac-
actions conditioned by their mental state and can use sensl8s. Each of such categories is represented by an adequate

and cqmmunication for obta'lining nelwlinformatiqn. The agelf'z&xonomy, that reproduces the language specifications and
behavior is given by alomain descriptionwhich includes a offers a programming interface for operations like creation,

specification of the agents initial beliefs, a description of ﬂ}%odification and deletion
agent behavior plus a communication kit (denotedbyt*’*), ' |

that encodes its communicative behavior. Commun|cat|ont|§e classDyLOGStruct an extension of theuProlog Struct

lsuppl)ozct.e? bOIT. at thetlevell s\j.'trﬂ'tlve sse?ch actand gt E['he class: by means ddyLOGStructevery DyLOG construct can
cvel ol interaction protocalsWith regards to communica IOn’lg)e turned into a correspondirtgProlog structure, with the

2Cnler12tjllspcta|£) proacrr]l, also adopt_ed t_by thet_stand?frd t':tlhébssibility of exploiting the afore mentioned mechanisms. In
[24], s taken, where communicative actions affec is case we use a different notation (prefix notation) in order

internal mental state of the agent. Some authors [25] hat\éemeet the internal representation of tb@rolog Structclass.

proposed asoual gpproac;hto agent corT“]mu.mcatlon”[zS], For example the first Precondition Law mentioned above is
where communicative actions affect the “social state” of tr}% resented in this manner:
. :

system, rather than the internal states of the agents. Di1°ferenIO
approaches are well-suited to different scenarind.OG is a
language for specifying amdividual, communicating agent possible(turndial(l),if([belief(robot,in_front_of(1)),

. The connecting point betweeruDyLOG and tuProlog is

baldoni
44

45

O(Bin_front_of (I) A Beover_up(I) D (turn_dial(I))T)
O(Bflow(I,low) D [turn_dial(I)|Bflow(I, high))

(M flow(I,low) D [turn_dial(I)]M flow(I, high))
O(Bflow(I, high) D [turn_dial(I)]|Bflow(I,of f))
E./\/lflow(], high) D [turn_dial(I)]M flow(I,of f))

(

(

(

0

0

O(Bflow(I,of f) D [turn_dial(I)]B flow(I,low))
M flow(I,of f) D [turn_dial(I)]M flow(I,low))
O(Bflow(I, P) D [turn_dial(I))|B-flow(I, P))
O(Mflow(I, P) D [turn_dial(I)]JM~flow(I, P))

Fig. 1. The DyLOG code for the simple actioturn_dial(l).

O

belief(robot,covetup(1))])) show just a portion of the selected instance. Nevertheless a
miniaturized overview of the whole instance will always be
. VisuAL DYLOG available in area number (3) (ti@utline View. Last but not
In this section we will show the main characteristics anlast, log messages are printed in the so callagl View(area
features offered byisualDyLOG. This environment is devel- number (5)).
oped in Java using thEclipse platform [28] and allows the VisualDyLOG internal architecture is based on the Graphical
development of DyLOG program by means of a graphicalEditor Framework (GEF), an Eclipse plug-in. GEF, by exploit-

user interface. ing the Model-View-Controller pattern, allows the creation of
)) a graphical representation, given an existing data model. In
A. The Eclipse project our application, such a model is given by the instances of the

Eclipse is a platform designed for building integrated desackagetuDyLOG, explained in Sectioi-A . In particular, by
velopment environments (IDEs) and it represents a proveneans of GEF:
reliable, scalable technology upon which applications can be, the graphical representation is modified after a change in
quickly designed, developed, and deployed. More specifically, the model has occurred:;

its purpose is to provide the services necessary for integrating the model is changed by modifying the graphical repre-
software development tools, which are implemented as Eclipse sentation of it, exploiting the “event-action” paradigm.

plug-ins. The main characteristic of the design of Eclipse i$nese notions are sketched by Figdren Figure4, instead,
actually, that —except for a small runtime kernel- everything jfe graphical notationused to represent the main language
a plug-in or a set of related plug-ins: the effect of this choicgynstructs are shown.

is an increase of the software reusability and extendability. |t has peen designed so to make the us&/isfialDyLOG
Applications are deployed and distributed as stand-alone tog{gre intuitive: similar constructs are represented by shapes
using the Rich Client Platform [29], which represents thgiih the same morphology; such shapes recall flow chart

smallest subset of Eclipse plug-ins that are necessary to bui{hhols, contributing to a reduction of the learning process
a generic platform application with a user interface. of new users.

Today Eclipse (originally released by IBM) is one of the
most used platforms for developing applications, it has formé&d An e€xample of use
an independent and open eco-system, based on royalty-freln this section we will show how to build a Simple Action
technology, and it has established a universal platform for todlg means ofVisualDyLOG; in particular, we will use as an

integration. example theturn_dial action, whoseDyLOG definition has
. been introduced in Sectidh (see Figurel). The first step for
B. The environment creating a Simple Action consists in selecting the appropriate

The VisualDyLOG environment is represented in Figurecategory from the Program View, and in assigning to it name
2. We can distinguish different areas, each characterized &yd arity (the Program View also allows the creation of a new
specific functionalities. With reference to the mentioned figuraction law for a specific simple action). The new action will
area number (1) (thBrogram View contains a whole view of be added to the set of available Simple Actions in the Program
the DyLOG program; it shows all the instances of the variougiew itself. By means of the Editor View, instead, it is possible
constructs, kind by kind, and it also allows the creation artd specify all the characteristics of the action: a working area
deletion of the instances. The area number Ejitor View is associated to each precondition law and to each action law
shows a visual representation of an instance contained in that make the just created simple action; each such area can be
Program View and selected by the user. The property valusslected and worked upon by clicking on a tab at the bottom
of such an instance are reported in tperties View(area of the Editor View. The palette at the right of the Editor View
(4)). By working in the two latter views, the user can edit thean be used to insert beliefs and terms in the working area.
selected instance. Since instances might in some cases be doiterder to edit a component it is necessary to click on the
complex, there are situations in which the Editor View mightorresponding graphical representation of it and, then, modify

baldoni
45

Visual Dylog.
File Window Help

=g

sui [uns (FENEED

| BE Cutine 51 =0

46

il Edit an actionLaw of: switch_off/3
[3 switch_offj3 Palette -
switch_on/2 1y select
turn_dial/1 I, Marquee
) comvodicons | & ase em
Belief Fuent
Disgelief Fluent 3
[Z] conversstionPolicies Negative Term
[® cetvessageacts
1 <ondition
s Elproperties 52, =
ERE -
Property Value
=erguments
a0 Y
2 G
a2 K
Simsc
3
mame switch off
< &
Precondition | Acton
& Log#) View 25 *® =0
| Time. | Level | Message
14:47:00.906 =) Co\pocuments and Deskiop prova

Fig. 2. A screenshot of th&/isualDyLOG environment: (1) the Program View, (2) the Editor View, (3) the Outline View, (4) the Properties View, and (5)
the Log View.

@Cmtmlle%
@

- Model

Fig. 3. GEF interaction model: th#odel in our case theuDyLOG package, th&/iew and theController, represented by GEF.

’ non(robot,in_front_of(v)))

belief(robet,on)) BeliefFluent - Term

Simple Action

Test Action Negative Term

Complex Action

switch_off(X,Z,)

. [
\

nen(belisi(rabot,in_fronz_of(¥)))) DisBeliefFluent

Fig. 4. The graphical notation used MisualDyLOG

its properties by means of the Property View. In Figbrthe the world, robot is the agent to believe that_front_of (I)
working area used to create and modify the Precondition afd cover_up(I) in order to execute the action. Notice also
the above mentioned action is shown. In the exarmyole dial the prefix notation of fluents.

precondition consists of two fluents: the robot must be in front

of the dial Bin_fornt_of(I)) and the cover of the dial must

be open Beover_up(I)). In the figure, they are represented In Figure6 the part of the interface devoted to the handling
as light blue ovals. For the sake of simplicity, in tbgLOG of one of the Action Laws is shown. The just described
representation of Figuré the agent name is omitted from theinteraction schema is used also for the creation and editing of
fluents. In the graphical representation, instead, it is the fitse other constructs of the language, such as complex actions
argument of the fluents: since agents have a subjective view(Bigure 7), sensing actions, speech acts, and so forth.

baldoni
46

47

Vol EED
Ble Cdt Navgate Sewch Project Rn Window tep

- Q- | @ e |ma- | Eoyig ”
@ program View 23 =r m 01| [Bz outine 53 =5

53 : T =
5 MDWE‘"DSE‘D“M Edit precondition for: switch_off/3

Palette L

Iy select

[, Marquee

mplexActions
eediacts

[ConversationPolicies
[GetitessageActs

(= Base term *
| BeliefFluent

Dsfelef Fiuent

Negative Term

Elpropertis £ =

Property Value

Preconditionlav | Actionlaw1
B Log4 View £3 x=0

| Time | Level | Message
233402671 =) Loadied program: C:\Programmi\Ecpse_3\potice himl

Fig. 5. Representation of a precondition law: beliefs are represented as light blue ovals, disbeliefs as blue ovals with a red border, terms as red ovals, w
the action name is depicted as an orange rectangle.

Visual Dylog. [BEE
Fie Window Help
2

@ Program View 3% CO| e (CREEEN 01| (5= outine i

1 (7] DomainDescrpton

=1 (7 simplections Edit an actionLaw of: turn_dial/1
_on) [Ty Select
5, arquee s B
— Base term »
/2 =

Belef Fluent
DisBelef Fivent,
Negate Term

] Sensinghctions
[speechacts

[conversationPoicies
[5 Gethiessageacts

condition
efeet

Elproperties 52 . om!
= R
Property Value
= arguments
a1
ay 1
name turn_dial

<
Precondition | Action | Action
B Log4) View 23 X =0

| Time | Level | Message
1447:00.906 Fo Co¥Documents and o o

Fig. 6. Representation of an action law: the middle line divides preconditions to the effects from the action’s effects themselves.

IV. AN OWL ONTOLOGY FORDyLOG that is compatible with the infrastructure of the Semantic Web.

In parallel with the work aimed at developing a program'rIence the choice of defining an OWL. ontology.

ming environment for the language, we have also developedOWL is a Web Ontology language [19], developed by the
an ontology (calledyLOG Ontology) to be used for SemanticW3C community. The main characteristic of this language
Web applications and, in particular, in the case of Semanticr.t. earlier languages, used to develop tools and ontologies
Web Services. We have already shown, in previous work, hdar specific user communities is that it is compatible with the
the action metaphor and the mechanisms for reasoning abarghitecture of the World Wide Web, and with the Semantic
actions and change can fruitfully be exploited in many Semaweb in particular. In fact, OWL uses URIs (for naming) and
tic Web application frameworks [30], such as in educationgte description framework provided by RDF, and adds the
applications and for the composition of web services. In ord&llowing capabilities to ontologies: the possibility of being
to allow the development of real applications over the weljstributed across many systems, full compatibility with Web
there was a need of representingLOG programs in a way standards for accessibility and internationalization, openess

baldoni
47

t favigste Search Project Eun

Q- | |e|we

Sreamten 0| i | Smihof

4 Visual Dylog EEX

48

[| [oylog
0| BEoutine 5% =0

ESH LS Damer e pton Edit complexLaw for: raise_to,

Complextawd | Complexdan 1

Palette >
Iy select =

1, Marquee
(= Base term 2
Test Action

® Logea view 53

| Tme [ievel [Message

23:34:02.671 INFQ

Loaded program: C:\Programmi Ecipse_3inetice himl

Ei

':8 EeliefFluent

C) DisBeliefFluent
EH(C) Tarm

) Agent

—@ Atorm

—@ Literal

—@ MegativeTerm
L{E) Testaction
—@ ActionTerm

ST Law

—@ ActionLaw
—@ CotnplexActionlaw
—@ PreconditionLaw
—@ Actiontlame

S Action

—@ ComplexAction
—@ SenzingAction
L) Simplesction
(=HE) Act

—@ ConversationPalicy
() Getaction

—@ Speechict
—(C) owit

—@ Eehaviour

—@ DomainDescription
L{cisn

Fig. 8. The taxonomy of thdDyLOG ontology

and extensiblility.

g. 7. Representation of a ComplexAction.

are to be retrieved over the web in an intelligent way, so
that they can interoperate and accomplish a common goal. A
few examples are the OWL-S language [11], for web service
functional description, FIPA OWL [31], an ontology for FIPA
agents and ACL messages, and ConOnto [32], that allows the
description of context aware systems. In the following we will
describe the ontology that we have designed for describing
DyLOG agents in a Semantic Web context.

A. TheDyLOG ontology

As mentioned in the previous section, represenfiyg OG
programs by means of ontological terms allows the use of
our language in the development of interoperating agents in a
Semantic Web framework. Another advantage is the possibility
to specify the syntactic constraints of the language directly
within the ontology definition: for instance, a Simple Action
must have one and only one Precondition Law; this constraint
can be specified by imposing a proper restriction to the
cardinality of the corresponding property. A reasoner can be
used for verifying that the syntactic constraints are respected.

For representing aDyLOG program by means of the
ontology it is necessary to start with an instance of class
DomainDescription which contains the properties for spec-
ifying the behavior, the communication policies and the initial

OWL builds on RDF and RDF Schema; it enriches the v@bservations (respectivelyehaviour ckit ands0). Each such
cabulary so to allow the description of properties and class@soperty is represented by an instance of a class that specifies
Some examples of add-ons are relations between classgshe characteristics of the correspondidgLOG construct
(e.g. disjointness), cardinality (e.g. "exactly one”), equalitysy means of properties and restrictions imposed to capture the
richer typing of properties, characteristics of properties (e.gyntactic constraints. In Figur@ we report the taxonomy of

symmetry), and enumerated classes.

the ontology, while in Figur® we present, as an example, the

Recently, OWL has been used for defining a set of onefinition of the classSSimple Actiorand its properties.
tologies that can be considered as declarative languages anitl is interesting to observe that, within &imple Action
specifications for agents (more generally, web services) thastance, the order of th&ction Lawinstances is meaningful

baldoni
48

49

(owl:Class rdf:ID=" SimpleAction™)

(rdfs:subClassOf rdf:resource="# Action" /)

(rdfs:subClassOf) - (owl:Restriction)

(owl:cardinality rdf:datatype="#int") 1 (/owl:cardinality)
(owl:onProperty)

(owl:ObjectProperty rdf:about="# preconditionLaw"/)

(lowl:onProperty) (lowl:Restriction) (Irdfs:subClassOf)
(rdfs:subClassOf) - (owl:Restriction) - (owl:onProperty)
(owl:ObjectProperty rdf:about="# actionLawSed/)

(lowl:onProperty)

(owl:maxCardinality rdf:datatype="#int")1{/lowl:maxCardinality)
(lowl:Restriction) {/rdfs:subClassOf) (lowl:Class)

(owl:ObjectProperty rdf:ID=" actionLawSed')

(rdfs:irange rdf:resource="#ActionLawSeq"/)

(rdfs:domain) - (owl:Class) - (owl:unionOf rdf:parseType="Collection")
(owl:Class rdf:about="# SpeechAct/)

(owl:Class rdf:about="# SimpleAction"/)

(lowl:unionOf) (Jowl:Class) (/rdfs:domain) (/fowl:ObjectProperty)
(owl:ObjectProperty rdf:ID=" preconditionLaw")

(rdfs:range rdf:resource="#PreconditionLaw"/

(rdfs:domain) - (owl:Class) - (owl:unionOf rdf:parseType="Collection")
(owl:Class rdf:about="# SpeechAct/)

(owl:Class rdf:about="# SimpleAction"/)

(lowl:unionOf) (Jowl:Class) (/rdfs:domain) (/owl:ObjectProperty)
(owl:ObjectProperty rdf:ID=" actionName")

(rdfs:domain) - (owl:Class) - (owl:unionOf rdf:parseType="Collection")
(owl:Class rdf:about="# Action"/)

(owl:Class rdf:about="# PreconditionLaw"/)

(lowl:unionOf) (Jowl:Class) (/rdfs:domain)

(rdfs:irange rdf:resource="#ActionName"/) (/owl:ObjectProperty)

Fig. 9. An excerpt from the OWLDyLOG ontology: definition of simple action.

because it might influence the program execution (like the tuProlog package. The new package, name®yLOG
prolog). Nevertheless, such an ordering cannot be represerdaetlially exploits the basic mechanisms already offered by
directly in OWL. To this aim, we have defined an auxiliaryuProlog such as the methods for unification. The reason
structure (a linked list) that solves the problem. We have reliéor changing implementation language (an implementation of
on this solution whenever an ordering had to be imposed oueyLOG in Sicstus Prolog is already available) is that Java
the instances of a given property. is more portable and allows us to exploit applications and
In order to exploit theDyLOG ontology within the environ- frameworks that are already available, in particular, Eclipse:
ment described in this article we addedttdylLOG package a well-known platform for building integrated development
functionalities to import and export@yLOG program in Java environments. By means of this platform it is easy to develop
representation to OWL and vice versa. This implementati@pplications that can be deployed and distributed as stand-
uses libraries provided from Jena [33]: a framework, producatbne tools. The implementation of the graphical programming

by HP labs, for develop Semantic Web applications. environment is almost complete; what still remains to do is
the re-implementation of thByLOG engine, which is on the
V. CONCLUSIONS AND FUTURE WORK way. Also the OWL ontology forDyLOG is ready to use

In this paper we have describ&tisualDyLOG, a graphical ?n? v\\,/\:ll t;)e ”s?/ont:]esttetﬁi in a Eemarx:lcl: \éVel:\)/ frramew;)rlk.f Irn
design and programming evironment for the modal logi ct, we believe tha S package De Vvery useiu’ 10
. : : ~the development of Semantic Web Services and we plan to

languageDyLOG. The project basically relies on two main e . : . .)
choices. On a hand, a fully new, Java implementation of e It n coope_rathn with Fhe University of Han_novgr In an
DyLOG language has been developed, as an extensioneélFam'ng setting: integrating ByLOG web service in the

baldoni
49

Personal Reader architecture (see [34]).

(1]
(2]

(3]
(4]

(5]

(6]

(7]

(8]

[9]
[20]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]

[21]

[22]

[23]
REFERENCES

AgentTool development systemhttp://www.cis.ksu.edu/sdeloach/ai/
projects/agentTool/agentool.htm

S. A. DeLoachMethodologies and Software Engineering for Agent Sy§-24]
tems Kluwer Academic Publisher, 2004, ch. The MaSE Methodology,
to appear.

ZEUS Home Page,Http://more.btexact.com/projects/agents.htm (25]
E. Astesiano, M. Martelli, V. Mascardi, and G. Reggio, “From Re-
quirement Specification to Prototype Execution: a Combination of a
Multiview Use-Case Driven Method and Agent-Oriented Techniques[,%]
in Proceedings of the 15th International Conference on Software En-
gineering and Knowledge Engineering (SEKE’03) Debenham and

K. Zhang, Eds. The Knowledge System Institute, 2003, pp. 578-585.
I. Gungui and V. Mascardi, “Integrating tuProlog into DCaseLP to e|]
gineer heterogeneous agent systems,” proceedings of CILC 2004. Av: gl
able at http://www.disi.unige.it/person/MascardiV/Download/CILC04a 29]
pdf.gz To appear.

M. Martelli and V. Mascardi, “From UML diagrams to Jess rules{30]
Integrating OO and rule-based languages to specify, implement and
execute agents,” iProceedings of the 8th APPIA-GULP-PRODE Joint
Conference on Declarative Programming (AGP’0B) Buccafurri, Ed., [31]
2003, pp. 275-286. [32]
M. Baldoni, L. Giordano, A. Martelli, and V. Patti, “Reasoning aboulF’?’]
Complex Actions with Incomplete Knowledge: A Modal Approach,” in 34]
Proc. of ICTCS’2001ser. LNCS, vol. 2202. Springer, 2001, pp. 405—
425.

M. Baldoni, C. Baroglio, |I. Gungui, A. Martelli, M. Martelli, V. Mas-
cardi, V. Patti, and C. Schifanella, “Reasoning about agents’ interaction
protocols inside dcaselp,” iProc. of the International Workshop on
Declarative Language and Technologies, DALT'04Leite, A. Omicini,

P. Torroni, and P. Yolum, Eds., New York, July 2004, to appear.

B. ShneidermanDesigning the user interface Addison-Wesley, 1998.
DAML-S, “http://www.daml.org/services/daml-s/0.9/,” 2003, version
0.9.

OWL-S, “http://www.daml.org/services/owl-5/

WSDL, “http://www.w3c.org/tr/2003/wd-wsdI12-20030303/,” 2003, ver-
sion 1.2.

J. Bryson, D. Martin, S. Mcllraith, and L. A. Stein, “Agent-based
composite services in DAML-S: The behavior-oriented design of an
intelligent semantic web,” 2002. [Online]. Availableiteseer.nj.nec.
com/bryson02agentbased.html

H. J. Levesque, R. Reiter, Y. Lemmnce, F. Lin, and R. B. Scherl,
“GOLOG: A Logic Programming Language for Dynamic Domain,”

of Logic Programmingvol. 31, pp. 59-83, 1997.

G. D. Giacomo, Y. Lesperance, and H. Levesque, “Congolog, a concur-
rent programming language based on the situation calcubusificial
Intelligence vol. 121, pp. 109-169, 2000.

S. Mcllraith and T. Son, “Adapting Golog for Programmin the Semantic
Web,” in 5th Int. Symp. on Logical Formalization of Commonsense
Reasoning2001, pp. 195-202.

M. Baldoni, C. Baroglio, A. Martelli, and V. Patti, “Reasoning about
interaction for personalizing web service fruition,” Proc. of WOA
2003: Dagli oggetti agli agenti, sistemi intelligenti e computazione
pervasiva G. Armano, F. De Paoli, A. Omicini, and E. Vargiu, Eds.
Villasimius (CA), ltaly: Pitagora Editrice Bologna, September 2003.
——, “Reasoning about interaction protocols for web service compo-
sition,” in Proc. of 1st Int. Workshop on Web Services and Formal
Methods, WS-FM 2004M. Bravetti and G. Zavattaro, Eds. Elsevier
Science Direct. To appear, 2004, electronic Notes in Theoretical Com-
puter Science.

OWL, “http://lwww.w3.0rg/2004/OWLT

K. Arisha, T. Eiter, S. Kraus, F. Ozcan, R. Ross, and V. Subrahma-
nian, “IMPACT: a platform for collaborating agentdEEE Intelligent
Systemsvol. 14, no. 2, pp. 64—-72, 1999.

M. Fisher, “A survey of concurrent METATEM - the language and its
applications,” inProc. of the 1st Int. Conf. on Temporal Logic (ICTL'94)
ser. LNCS, D. M. Gabbay and H. Ohlbach, Eds., vol. 827. Springer-
Verlag, 1994, pp. 480-505.

M. Baldoni, L. Giordano, A. Martelli, and V. Patti, “Programming
Rational Agents in a Modal Action LogicAnnals of Mathematics and
Artificial Intelligence, Special issue on Logic-Based Agent Implementa-
tion, 2004, to appear.

50

M. Baldoni, C. Baroglio, A. Martelli, and V. Patti, “Reasoning about
self and others: communicating agents in a modal action logic,” in
Theoretical Computer Science, 8th Italian Conference, ICTCS' 2863
LNCS, C. Blundo and C. Laneve, Eds., vol. 2841. Bertinoro, ltaly:
Springer, October 2003, pp. 228-241.

FIPA, “Fipa 97, specification part 2: Agent communication language,”
FIPA (Foundation for Intelligent Physical Agents), Tech. Rep., Novem-
ber 1997, available ahttp://www.fipa.org/ .

M. P. Singh, “A social semantics for agent communication languages,”
in Proc. of IJCAI-98 Workshop on Agent Communication Languages
Berlin: Springer, 2000.

M. Baldoni, L. Giordano, A. Martelli, and V. Patti, “Programming ratio-
nal agents in a modal action logic,” annals of Mathematics and Atrtificial
Intelligence, Special issue on Logic-Based Agent Implementation. To
appear.

tuProlog Home Page http://lia.deis.unibo.it/research/tuproldg/

Eclipse platform, http://www.eclipse.orgd

Eclipse Rich Client Platform, Hittp://dev.eclipse.org/viewcvs/index.cgi/
~checkout-/platform-ui-home/rcp/index.htril

M. Baldoni, C. Baroglio, and V. Patti, “Web-based adaptive tutoring: An
approach based on logic agents and reasoning about actimsyial

of Artificial Intelligence Review2004, to appear.

FIPAOWL, “http://taga.umbc.edu/ontologies/fipaowl.dwl

CONONTO, ‘http://www.site.uottawa.caimkhedr/contexto.htrdl

Jena Semantic Web Frameworkittp://jena.sourceforge.nét/

N. Henze and M. Herrlich, “The personal reader: a framework for
enabling personalization services on the semantic weltdac. of ABIS
2004 2004.

http://www.cis.ksu.edu/~sdeloach/ai/projects/agentTool/agentool.htm
http://www.cis.ksu.edu/~sdeloach/ai/projects/agentTool/agentool.htm
http://more.btexact.com/projects/agents.htm
http://www.disi.unige.it/person/MascardiV/Download/CILC04a.pdf.gz
http://www.disi.unige.it/person/MascardiV/Download/CILC04a.pdf.gz
http://www.daml.org/services/owl-s/
citeseer.nj.nec.com/bryson02agentbased.html
citeseer.nj.nec.com/bryson02agentbased.html
http://www.w3.org/2004/OWL/
http://lia.deis.unibo.it/research/tuprolog/
http://www.eclipse.org
http://dev.eclipse.org/viewcvs/index.cgi/~checkout~/platform-ui-home/rcp/index.html
http://dev.eclipse.org/viewcvs/index.cgi/~checkout~/platform-ui-home/rcp/index.html
http://taga.umbc.edu/ontologies/fipaowl.owl
http://www.site.uottawa.ca/~mkhedr/contexto.html
http://jena.sourceforge.net/
baldoni
50

Using Method Engineering for the Construction of
Agent-Oriented Methodologies

Giancarlo Fortino, Alfredo Garro, and Wilma Russo
D.E.lL.S.
Universita della Calabria
Via P. Bucci, 87030 Rende (CS), Italy
Email: {fortino, garro, russoju@deis.unical.it

Abstract— Great emphasis has been recently given to agent- « the agent-oriented philosophy for modelling and manag-
oriented methodologies for the construction of complex software ing organizational relationships is appropriate for dealing

systems. In this paper two approaches for the construction of with the existing dependencies and interactions.
agent-oriented methodologies and based on methods integration

are presented:meta-model-driverand development process-driven .
The former is based on the MAS meta-model adopted by The development of complex software systems by using the

designers for the development of a MAS for a specific problem agent-oriented approach requires suitable agent-oriented mod-

in a specific application domain. The latter is based on the elling techniques and methodologies which provide explicit

instantiation of a software development process in which each support for the key abstractions of the agent paradigm

phase is carried out using appropriate method fragments and by S | thodoloai " Ivsis. desi d.' |

the mutual adaptation of the work products coming out from evera. metho 099'es Supporting analysis, design and imple-

each phase. mentation of Multi-Agent Systems (MAS) have been to date
proposed in the context of Agent Oriented Software Engineer-

. INTRODUCTION ing (AOSE) [14]. Some of the emerging methodologies are
In analysing and building complex software systems, G&i@ [16], MaSE [7], Prometheus [15], Tropos [4], Message

number of fundamental techniques for helping to manaé?]’ Passi [6], and Adelfe [2]. Although such methodologies
complexity have been devised [3]: ave different advantages when applied to specific problems

D ition the basic_techni for tackling | it seems to be widely accepted that an unique methodology
* e(;)(l)mpoi '3[_1 'd'e t?flc _etc nlqu”e or tackling argsgannot be general enough to be useful to everyone without
problems Dy dividing them Into Smaler, More Manageai, . |aye| of customization. In fact, agent designers, for solv-
chunks, each of which can then be approached in relati

isolati It helps tackli lexity b it limit iY\eg specific problems in a specific application context, often
ISolaton. ,e ps tackling complexity because it fimi S'prefer to define their own methodology specifically tailored
the designer’s scope.

: - L or their needs instead of reusing an existing one. Thus, an
« Abstraction the process of defining a simplified moder proach that combines the designers need of defining his

: . a
tht.?e system that etrEphasILz_es SOT?Seta'IS ort?_rogerttlg\%n method-ology with the advantages and the experiences
while suE)pressmg others. IL1s uselul because itimits l]:%ming from the existing and documented methodologies is
designer’s scope of interest at a given time. highly required

* _O:gamlz?tmn;'he pbrotcess oihdeﬂmr'\g and n}:anggmg thi possible solution to this problem is to adopt the method
interreationships between Ine various systems COmp@ﬁgineering paradigm so enabling designers of MAS to use

nents. The ability to specify organizational relationship hases or models or elements coming from different method-

helps tackling complexity by enabling a number of baSiSlogies in order to build up a customized approach for their

components to be grouped together and treated as, A problems [12]

hlgher-leygl unit of a_maly3|s, and .by prpwdlng a meang, particular, the development methodology is constructed

of 'descr|b|.ng the high-level relationships between t assembling pieces of methodologiesethod fragments

various units. _ ~ from a repository of methodsnethod basg. The method base
Recently the agent-oriented approach [13] has been widdyhyilt up by taking method fragments coming from existing
recognized as very suitable for the development of complgyent-oriented methodologies (such as Adelfe, Gaia, Message,
software systems since it fully exploits the techniques listgshssi Tropos, etc.) or ad hoc defined methods. Currently
above. In particular in the context of complex software syshis approach is adopted by the FIPA Methodology Technical

tems: Committee (TC) [20].
« the agent-oriented decompositions are an effective wéyis therefore crucial to define guidelines for methods inte-
of partitioning the problem space; gration in order to both construct the methodology (retrieving

« the key abstractions of the agent-oriented mindset (agerit&e method fragments from the method base and integrating
interactions, and organizations) are a natural meanstbém) and apply it in the actual development life cycle.
modelling; In this direction, the paper proposes two approaches for

M. Baldoni, F. De Paoli, A. Martelli, and A. Omicini (Eds.): WOA 2004 — Dagli Oggetti agli
Agenti, Sistemi Complessi e Agenti Razionali, Torino, Italy, November 29" — December 1%
2004. Pitagora Editrice Bologna. ISBN 88-371-1533-4. ht t p: / / woa04. uni to. it

baldoni

52

the construction of agent-oriented methodologies by using existing among the meta-model elements produced by
methods integration: (imeta-model-drivenwhich is based each fragment.

on the MAS meta-model adopted by the designer for thgance, the obtained methodology is able to completelyer
development of a MAS for a specific problem in a specifihe MAS meta-model for a given problem in a specific
application domain; (iidevelopment process-drivamhich is application domain.

based on the instantiation of a software development process

in which each phase is carried out using appropriate method g cepion

fragments. Protocol>—5 4
The remainder of this paper is organized as follows. In section
Il and Ill the meta-model-driven and the development process- rmommosonter | 10\ =
driven approaches are respectively described. In section 1V, 1 Profocol
conclusions are drawn and on-going research activities delin- Input
Processing
eated. Protocol
. . . Output
Il. THE MAS META-MODEL-DRIVEN APPROACH ervice Input
_ _ . Apfitude Skill) roedy
A method fragment [18] is a portion of methodology which Servie Output
is composed of the following parts: 5= =
1) A process specification, defined with a SPEM diagram VIS0 | Pre-condition Predicate
[21], which defines the procedural aspect of the frag- _
ment; Post-condition Concept Action
2) One or more deliverables such as AUML/UML diagrams
and text documents [1]; Fig. 1. An example MAS meta-model

3) Some preconditions which represent a kind of constraint
since it is not possible to start the process specified inAn example MAS meta model is reported in Figure 1.
the fragment without the required input data or withouReferring to the MAS meta-model of Adelfe, Gaia and Passi
verifying the required guard conditions; a set of methods fragments that are able to produce a piece of
4) A list of elements (which is a part of the MAS metathe MAS meta-model can be chosen. To completely cover the
model subsumed by the methodology from which it waglAS meta-model selected fragments can be combined and,
extracted) to be defined or refined through the specifigdnecessary, new fragments can be defined (see Figure 2).

process; Using this approach, the integration among the fragments is
5) Application guidelines that illustrate how to apply théhased on the relationships existing among the elements of the
fragment and related best practices; MAS meta-model. Thus, in order to obtain a completely and

6) A glossary of terms used in the fragment in order t@ell-defined ad-hoc methodology, a propeethod fragments
avoid misunderstandings if the fragment is reused ingxecution ordeiis to be defined.
context that is different from the original one;

7) Composition guidelines which describe the con- Produced by the "Identify
text/problem that is behind the methodology from which ~ 7/9guce? bv an and cocument

L . ad hoc defined the interaction protocols"
the specific fragment is extracted; _fragment of Gaia
8) Aspects of fragment which are textual descriptions of e " [Brotocol .
specific issues such as platform to be used, application Purpose
area, etc; :) - \‘
H H niti ‘ﬁor/Responder 1\1 . |
9) Dependency relationships useful to assemble fragments. \ il |

It should be noted that not all of these elements are mandatory;
some of them (for instance notation or guidelines) could be
not applicable or not necessary for some specific fragment.

To build his own methodology by exploiting theneta-
model-drivenapproach, the designer must:
o choose or define a MAS meta-model suitable for the

Produced by the |

"Individuate agent's ‘ervice "~ Pre-condition “
aptitudes and skills" | ! |

specific problem and/or the specific application domain; fragment of ADELFE | . /
« identify the elements that compose the meta-model of the \. Post_condmy/
MAS under development; N\ o
Produced by-the"Bevelop a
« choose the method fragments that are able to produce the Services Model" OF:];?)‘I’:;; qovine
identified meta-model elements; fragment of Gaia fragment of PASSI

« defining a development process characterized fogthod
fragments execution ordemn the basis of the relationship Fig. 2. An example of meta-model-driven methods integration

baldoni
52

53

On the basis of the relationships shown in figure 2) the
. . . A simulation
method fragments execution order is the following: Wék Erodcts

L . - —a |)
1) the Agents Identification fragment of Passi [19]; - T;w s | noiyus | 08 #Besign| Taiomertagon Simulaton
)

lon
~ Statement,”))yWork products: Mork Rroduets _ Work Products 2 “Work Prodijcts

2) the concurrent execution of the ad-hoc defined fragment, ... (amtiysis Dosgn) | Detated Implementation
and the Individuate agent’s aptitudes and skills fragmerﬁp?"‘”""/ \ ’

/ \Design
Performe}ﬂ;y using

\\ //

- Performed by using Performed by using Deployment
Of Adelfe [17],)) m;erthr(;d_rfé%;énggts method fragmems method fragments
3) the concurrent execution of the Develop a Service from Gaia from PASSI Performed by using method fragments
Model fragment of Gaia and the Identify and document from a Statecharts-based methodology

the interaction protocols fragment of Gaia [11];

o : Fig. 4. Development process-driven methods integration
4) the Ontology definition fragment of Passi [19].

Acquaintance

Il. THE DEVELOPMENT PROCESEDRIVEN APPROACH Roeatiosel oy | P pgor
. . N - ~o_Mgdel | 2771 \\\\ Interactions
The development process-driven approach focuses on the in- [E<z2]__3 ey < gModel
.. i N \ A T > Tee—i
stantiation of a software development process that completelfiuema™=~-_ /"< L--1"des -\ g
vers the development of MAS Figure 3 e N T vl | s
covers e eve Op e o see gu S . Interactions N = AgentBehaviors
Model Agent Model
Requi t: Model Detailed ;
e(él;l:::::n s Analisys o eDesign dee:ilge;\ Implementation
4%”’"[1‘3“07’\
W""*E)r\;;“c‘s ® Fig. 5. Dependencies among work products of the instantiated process

T Reatinoents _ Andlysis 0836 ctpnedesian | fubiementation’ Simulation
)/’Slatemenl))fww product;)))”ofk Products Y¥ork Products ¥ “Work Prodycts

Requirements Analysis Design Detailed Implementation
Capture Design

wpoas 1 e meta-model-driverapproach provides the following ad-
Depﬁ)ym vantage: flexibility for the definition of methodologies and
meta-models of the MAS to be developed. Conversely, it has
Fig. 3. An example of software development process some drawbackg() difficulty of integration of different frag-
ments due to different semantics of the meta-model concepts;

To build his own methodology by exploiting thievelop- (;;) selection and/or definition of the meta-model to adopt for

ment process-driveapproach, the designer must: the specific problem and/or application domain.

« choose or define a software development process suitablee development process-driveypproach is characterized by
for the specific problem and for the specific applicatiothe following advantages: flexibility for the construction of
domain; methodologies by means of the instantiation of each stage of

« instantiate the development process by selecting, for eable development process. On the other hand, the disadvantages
phase, suitable method fragments, chosen from ageate the following:(7) process rigidity;(iz) low flexibility of
oriented methodologies proposed in the literature or athe system meta-model since the meta-model of the adopted
hoc defined. methodology must be usegiii) adaptation among the work

An example software development process [8] is report@foducts which is sometimes difficult to achievéy) choice

in Figure 3. Referring to the development phases specified &)d definition of the process to instantiate for the specific
Tropos, Gaia, Passi and by a Statecharts-based methodol@gplem and/or application context. On going research activity
[10], a set of methods fragments that are able to carry d&tbeing focused on:

each phase of the development process are to be chosed) definition of adaptation techniques among work products
To completely cover the development process the selected produced by different methods and/or method fragments;
fragments can be combined and, if necessary, new fragmentg) extraction from and definition of method fragments of
can be defined (see Figure 4). Using this approach, the already existing methodologies and the mutual adapta-
integration between the fragments is achieved by individuating tion among the defined method fragments. This activity
and/or defining dependencies among work products produced is being carried out in the context of the FIPA Method-
by the fragments of the instantiated process. Notice that the ology TC;

work products produced in a given fragment might constitute 3) the experimentation of the two presented approaches for
the input for the next fragment provided that they contain all ~ the e-Commerce application domain [9].

the in-formation required to its initialization (see Figure 5).

REFERENCES
IV. CONCLUSIONS [1] B. Bauer, J.P. Muller, and J. Odell. Agent UML: A Formalism for

Thi h d h he i . Specifying Multiagent Interaction. In Paolo Ciancarini and Michael
IS paper has proposed two approaches to the Integrat'cmWooldridge, editors Agent-Oriented Software Engineeringages 91—

of methods fragmentsmeta-model-driverand development 103. Springer-Verlag, Berlin, 2001.
process_drlvenThese approaches are not mutua”y eXC|USIV8;] C. Bernon., M.P. GIEIZeS, G. PICé_lI’d, and P. Glize. The Adelfe Methodol-
rather. hvbrid approaches containing features of both of them ogy For an Intranet System Design. H’r_noc. of the Fou;th International

) » Ny . pp g Bi-Conference Workshop on Agent-Oriented Information Systems (AOIS)
might be defined as well. Toronto, Canada, 2002.

baldoni
53

[3] G. Booch. Object-Oriented Analysis and Design with Applications.
Addison Wesley, 1994.

[4] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini.
TROPOS: An Agent-Oriented Software Development Methodoldgyr-
nal of Autonomous Agents and Multi-Agent Syste3(®):203-236, 2004.

[5] G. Caire, F. Leal, P. Chainho, R. Evans, F. Garijo, J. Gomez, J. Pavon,
P. Kearney, J. Stark, and P. Massonet. Agent Oriented Analysis using
MESSAGE/UML. InProc. of the 2nd In-ternational Workshop on Agent-
Oriented Software Engineering (AOSE)NCS 2222. Springer-Verlag,
Berlin, 2002.

[6] M. Cossentino, P. Burrafato, S. Lombardo, and L. Sabatucci. Introducing
Pattern Reuse in the Design of Multi-Agent Systems. In Ryszard Kowal-
czyk, Jorg P. Muller, Huaglory Tianfield, Rainer Unland, editakgent
Technologies, Infrastructures, Tools, and Applications for E-Servjces
Lecture Notes in Atrtificial Intelligence (LNAI) volume 2592, pages 107—
120, Springer-Verlag, Berlin Heidelberg, Germany, 2003.

[7] S. A. DeLoach, M. Wood, and C. Sparkman. Multiagent system engi-
neering. International Journal of Software Engineering and Knowledge
Engineering 11(3):231-258, April 2001.

[8] G. Fortino, A. Garro, and W. Russo. From Modeling to Simulation
of Multi-Agent Systems: an integrated approach and a case study. In
Gabriela Lindemann, Jorg Denzinger, Ingo J. Timm, Rainer Unland,
editors, Multiagent System Technologidsecture Notes in Artificial In-
telligence (LNAI) volume 3187, pages 213-227, Springer-Verlag, Berlin
Heidelberg, Germany, 2004.

[9] G. Fortino, A. Garro, and W. Russo. Modelling and Analysis of Agent-
Based Electronic Marketplacd®S| Transactions on Advanced Research
2004, to appear.

[10] G. Fortino, W. Russo, and E. Zimeo. A Statecharts-based Software
Development Process for Mobile Agentsinformation and Software
Technology 46(13):907-921, 2004.

[11] A. Garro, P. Turci, and M.P. Huget. Expressing Gaia Methodology
using Spem. FIPA Methodology TC, working draft v. 1.0/04-03-15,
[http:/ffipa.org/activities/methodology.html]

[12] B. Henderson-Sellers. Method Engineering for OO Systems Develop-
ment. Communications of the ACMI6(10), 2003.

[13] N. R. Jennings. An Agent-Based Approach for Building Complex
Software SystemsCommunications of the ACM4(4), 2001.

[14] J. Lind. Issues in Agent-Oriented Software EngineeringPioc. of the
First International Workshop on Agent-Oriented Software Engineering
(AOSE) LNCS 1957, pages 45-58. Springer-Verlag, Berlin, 2001.

[15] L. Padgham and M. Winikoff. Prometheus: A methodology for devel-
oping intelligent agents. IfProc. of the Third International Workshop
on Agent-Oriented Software Engineering (AOSBYCS 2585, Springer-
Verlag, Berlin, 2003.

[16] M. Wooldridge, N. R. Jennings, and D. Kinny. The Gaia methodology
for agent-oriented analysis and desigdournal of Autonomous Agents
and Multi-Agent System$8(3):285-312, 2000.

[17] M. P. Gleizes et al. Adelfe fragments, rel.0, March 2004.
[http://www.pa.icar.cnr.it/ cossentino/FIPAmeth/docs/adétegmentsv0.pdf]

[18] Method Fragment Definition.FIPA Methodology TC, working draft,
Nov. 2003, [http://fipa.org/activities/methodology.html]

[19] M. Cossentino. PASSI fragments: All
fragments, draft. rel 0.1, Feb. 2004.
[http://www.pa.icar.cnr.it/ cossentino/FIPAmeth/docs/pasagments0_1.zip]

[20] Foundation for Intelligent Physical Agents (FIPA) Specifications.
[http://www.fipa.org]

[21] Software Process Engineering Metamodel Specification, Version 1.0,
formal/02-11-14. Object Management Group Inc. , November 2002.

54

baldoni
54

A Personal Agent Supporting
Ubiquitous Interaction

Giovanni Cozzolongo, Berardina De Carolis, and Sebastiano Pizzutilo

Abstract— D-Me (Digital Me) is a multiagent system
supporting ubiquitous and personal interaction with services
available in active environments. It has been modeled as
composed by two interacting entities: the Environment, in which
various services are available, and a Personal User Agent, his/her
digital “alter ego”. A relation between these two entities is
represented by the task the user intends to perform and the
services the environment can provide for accomplishing user’s
tasks. Then, the personal user agent exploits several knowledge
sources for proactively reminding or executing tasks according to
the current context.

Index Terms— Personal agents, ubiquitous computing, smart
environments.

I. INTRODUCTION

THERE are many different ways in which context
information can be used to make applications more user

friendly, flexible and adaptive especially in ubiquitous
and pervasive computing where the context and usage needs
change rapidly [1].

In ubiquitous computing (UbiComp) computers fade into
the background, technology is present but invisible to users
and the computation is possible everywhere and with any sort
of device [2]. Then, interaction between users and services
provided by a smart environment is very complex as it can
happen at every time, in different situations and places. In this
kind of situation, adaptation to user and context features
seems to be important in order to decrease complexity and
increase the conversational bandwidth of interaction (3 P.J.
Brown, 1999). Context-awareness, then, refers to the ability of
a system of extracting, interpreting and using context
information intelligently in order to adapt its functionality to
the current context of use [4,5].

Considering the interaction between a user and a context-
aware system, there are at least two aspects that are worth
mentioning: information presentation and service fruition
[5]. As far as the first aspect is concerned, results of
information services should be adapted not only to static user
features, such as her background knowledge, preferences, sex,
and so on, but also to more dynamic ones related to the
context (i.e. activity, location, affective state and so on) [6].
The second aspect regards execution of users tasks triggered
by context features. For instance user's tasks present in a to-
do-list or agenda could be proactively reminded or executed
when the user enters in an environment or is in a situation in
which those task are enabled [7,8]. Moreover, their execution
can be contextualized according to available resources,
location and so on.

This paper presents an approach to address this second

issues: taking advantage from user and context modeling for
achieving effective ubiquitous interaction with services
available in smart environments.

A way to approach this problem is to take inspiration from
the personal interface agents research area [9,10]. In this
paradigm, the user delegates a task to the agent that may
operate directly on the application or may act in the
background while the user is doing something else. An agent
is, in this case, a representative of the user and acts on his/her
behalf more or less autonomously. Moreover, it has to be able
to communicate to the user in an appropriate way, without
being too much intrusive, according to the context situation,
user preferences, habits and needs. Then, importing this
interaction metaphor in the Ubicomp vision, the ideal personal
assistant, in addition, should exhibit a context-aware
intelligence, doing exactly what the user expects him to do
successfully in the current context.

Our work represents a first step in this direction. D-Me is a
MultiAgent System (MAS) composed at least of two
interacting entities: the Environment, a physical or logical
place in which various services are available, and one or more
mobile users interacting with ubiquitous services through a
Personal Agent. A relation between these two entities is
represented by the task the user wants to perform and the
services that the environment can provide for accomplishing
user’s tasks. For this reason, in order to give to the user the
possibility of delegating and controlling their D-Mes, when
interacting with the environment, we developed, as a first
prototype, a Smart To-Do-List .

A To Do List is a typical example of application that
requires personalization and can take advantage from user and
context modeling. Context-aware systems of this type remind
the user of tasks based on the situational context. For example,
if a user’s to-do list contains the task ‘buy food before going
back home’ and the user passes by a supermarket while going
back home, then a useful context -aware reminder would
notify the user to buy food. CyberMinder [7] and PDS[8] are
examples of systems of this type. In particular, CyberMinder
takes into account user’s activities, location, time and user
history as the context information. It can notice simple events
(e.g., notifying a user of a meeting just based on time) or
complex situations (e.g., reminding a user of an event using
other people’s context). The PDS system, in addition, utilizes
machine learning in order to support a user’s daily activities in
an everyday computing setting. Another system that
addresses the issue of context awareness of user interaction in
real spaces is illustrated in [11]. In this system, two agents
(one representing the user and the other representing the
environment) cooperate for achieving context-aware

M. Baldoni, F. De Paoli, A. Martelli, and A. Omicini (Eds.): WOA 2004 — Dagli Oggetti agli
Agenti, Sistemi Complessi e Agenti Razionali, Torino, Italy, November 29" — December 1
2004. Pitagora Editrice Bologna. ISBN 88-371-1533-4. ht t p: / / woa04. uni to. it

baldoni

information presentation about the specific nature of the place
the user is currently visiting.

Our approach takes advantage of the inherent properties of
agents by adding to a simple context aware reminder
proactivity and autonomy: if there is a task in the user to-do-
list that can be completely or partially executed in the current
context by requiring a service to the environment, its
execution can be delegated to the personal agent given the
appropriate autonomy level.

In this paper, we describe the D-Me MAS focusing on the
description of the Personal Agent. In particular, Section II
outlines some architectural requirements and describes the
global organization of the D-Me system. Section III focuses
on the main features of the user Personal Agent outlining how
it exploits several knowledge sources for supporting
“personal” interaction with the Environment. In Section IV,
conclusions and future work are discussed.

II. OUTLINE OF THE D-ME ARCHITECTURE

Fig.1 illustrates the architectural schema of D-Me MAS
developed according to FIPA specifications [12].

In this system, each user is represented by a Personal Agent
(PA) that exploits some knowledge sources to remind and/or
request, more or less autonomously, execution of environment
services matching entries in the user To-Do-List that are
enabled in a particular context.

On the other side, the environment is 'active': it is modeled
as an organization of specialized agents:

- a Keeper Agent that coordinates the exchange of
information between the other agents, acting as a directory
facilitator (FIPA DF) and as a Agent Management System
(FIPA AMS). Every other agent in the system has to register
with it using the protocol appropriate for its role in the
environment. For instance, a Service Agent should use a
"serviceRegister " protocol, a D-Me agent uses its protocol.

- Service Agents, which provide services and are able to
execute tasks;

- D-Me Personal Agents, representing users in the
environment, that can look for contextually relevant services.
A PA asks to the Keeper the address of other agents (personal
or service) using a protocol that can look for them by name (a
known agent) or some keywords (a type of service). In case of
positive response, service execution can be asked directly to
the corresponding agent, otherwise, the request is repeated
until a timeout.

- a Context Agent, which can provide information about
the environment context.

Users may interact with environment services in a remote
way or by being physically in the environment and may move
from one environment to another. Managing inter-
environment communication is the task of the Environment
Keeper with whom every Keeper must register.

Fig. 1. D-Me MAS

—_— Kesaper
Agenil = Envi

REsponst

Ernvironments
Kesper

) _Eﬁngi_smri

b A Context Agert].._. — Sensors

—

- T
[~ g {
= \'f{){f’fﬁ G\l"'}{\(?s;‘o
e ‘\xﬁfe : o 0,
& 0, T\
% OA’J’%\?"E”% S, %
§2 Ve %,
NI NN o\
0, "Oq‘“'-,.ll\ S~
%}P\’@@ i
@ NS \-.\\
D Mo PA 2
ServiceRequest
: ServiceResponse
N — o Fr

om the implementation viewpoint, D-Me has been developed
using the JADE toolkit [13]. In particular, the PA, that we will
see in details later on, runs on a mobile device and has been
implemented with JADE-Leap [14].

While the high-level communication protocols have been
implemented using Agent Communication Language (ACL)
messages, whose content refers to D-Me ontologies, the
service discovery function has been developed using a
framework for peer to peer communication, JXTA [15, 16].
Since FIPA has not yet delivered a definitive reference model
for dynamic service discovery, we integrated the functionality
of the D-Me Keeper agent with JXTA discovery middleware;
this means that every time an agent registers in the
environment, the Keeper will handle, besides standard
information, also information about its public services. In this
way, when an agent joins a platform, every other agent can be
aware of its services. We are aware this is not a standard and
definitive solution but, since our aim is not to create a new
reference model for service discovery, we adopted a
temporary solution until FIPA will provide this type of
support [17].

In the rest of the paper, we will not going deep into this
issue, since our aim is to show how the system works from the
user point of view.

III. THE D-ME PERSONAL AGENT

Fig.2 describes the D-Me PA. This agent is the core of the
user’s side of the D-Me system.

To support contextual service fruition, we developed a to-
do-list application in which the user, through a friendly user
interface, sets up a set of tasks to be performed in different
context and environment and gives to his/her PA the
autonomy to perform the task entirely or only in part [18].
When the user PA is in presence of a smart environment, that
can provide services useful to the execution of scheduled
tasks, it requests, on user behalf, their execution by passing to
the environment user related information, that can be used to
get personalized results.

56

baldoni
56

1 1
| MUP |
— 1 1
PUMA . :

I~ 1
\: Personal !
: ¢ 1 Context 1
e S 1 1
- D-ME Personal | |
B Agent i+ Task Models | |
— I 1 1
5 - !
User ! To-Do-list '
Interface Agent H H
| KBs |

Fig. 2. D-Me Personal Agent

To achieve this aim, the PA is modeled as a BDI agent [19];
its reasoning mechanism is implemented as a cyclic behavior
that continuously checks if, given the current set of agent
beliefs (mental state) and given its desires (goals), some
intentions and plan can be triggered and executed.

At this stage of the implementation, we modeled the
knowledge for achieving the following macro-desires:

- execute totally or in part tasks specified in the user to-do-
list: this desire is quite complex and it is achieved by
accessing the specification of the task in the user to-do-list
and executing the correspondent task model according to the
associated constrains (autonomy, user and context features).

- create new tasks if required: sometimes the context
triggers the execution of tasks that were not explicitly stated
in the to-do-list. In this case this desire become active given
the appropriate level of agent’s autonomy on that family of
actions.

- get user-related information relevant for adapting task
execution: in order to adapt task execution and to
communicate results to the user appropriately, the agent
needs to know information about the user. These
information can be stored in a user profile or can be inferred.

- get context-related information relevant for
contextualizing task execution: as for user related data,
assessing the current context situation is important
especially for triggering and adapting task execution.

- communicate personalized results: results of tasks can be
of various nature (information presentation, reminders,
notifications, and so on). The way in which the agent
communicates to the user is adapted to user interests,
knowledge, preference and so on, but also to context
features.

Then, In order to achieve these desires, the Personal Agent
exploits the following knowledge sources:

i) the to-do-list, containing the description of the task and
its constraints in terms of activation condition, priority, and
autonomy level;

ii) the formal description of the task, that the agent can
use in order to execute it;

iii) the Mobile User Profile (MUP), containing situational
information about the user managed by the Personal User
Modeling Agent (PUMA);

iv) the personal context situation listing the value of
sensors that can be detected from devices that the user wears
(heart beat monitors, temperature, etc.), and

v) the environment context situation (light, noise, etc.)
requested to the Context Agent.

These joint sets of information forms the agent’s set of
beliefs and can be used to trigger opportune intentions
formalized as “plan recipes”. Planning is a fundamental and
yet computationally hard problem [20], since D-Me is
potentially running on different types of personal devices with
limited computational power, predefined plan recipes seem to
be a good compromise between flexibility and resource
constraints.

To demonstrate our solution approach, we use the following
scenario as a running example throughout the remainder of
this paper:

The user enters into the to-do-list a very urgent task: “buy
food before going home (18.00)”. She finished working and is
now driving home. D-me reminds her, using the car display as
an output device, the task in the list that should be performed
outside the office before coming back home. In this case, D-
Me reminds her to buy food. The user acknowledges the
message and drives to the supermarket, where she usually
shops. When the user goes into the supermarket the agent
shows the list of missing food and the related special offers on
her PDA or telephone. The list is obtained by matching the
items provided by the home fridge agent, that checks the
fridge content using tagged objects technology, and the
supermarket special offers (obtained using the service
discovery technology of the supermarket keeper).

Let’s see in more details how these knowledge sources are
used by the agent to support context-aware interaction with
the environment.

A. D-Me Autonomy

D-Me Personal Agent exhibits an autonomous behavior
when achieving its desires that has to match, somehow, the
user delegation type. In particular, in the context of ubiquitous
computing, we recognized the need to model autonomy at
different levels:

- Execution Autonomy: related to execution of actions
(tasks, subtasks, request of services, and so on).

- Communication Autonomy: related to the level of
intrusiveness in communicating to the user. Can the agent take
the interaction initiative in every moment or there are
constraints related to the user and the context? Then, it is
necessary to determine how much a message can be intrusive
in a certain context.

- Personal Data Diffusion Autonomy: it is related to the
autonomy of performing tasks requesting the diffusion of
personal data like those contained in the user profile.

- Resource Autonomy: the agent may use critical
resources of the user in order to executed delegated tasks (i.e.
credit card number, time to schedule appointments).

Each dimension has an associated value that vary from
"null" to "high" in a 5 values scale. The "null" value
represents the absence of autonomy, the system has to execute
what explicitly requested by the user. It cannot infer any
information or decide to modify task execution without
explicitly asking it to the user. The opposite value, "high",
represents the maximum level of autonomy that gives to the

57

baldoni
57

agent the freedom to decide what to do always according to
constraints imposed by the user (i.e. budget limits). The other
values determines an incremental growing of the autonomy in
making decisions and inferring information [18].

Initially, as we will see later on, the user sets explicitly the
autonomy level for a task in the to-do-list. During the
interaction, autonomy levels are revised according to the type
of feedback the user provides to the agent: positive feedback
enforces the autonomy on that category of task , negative one
reduces it. We are aware this is a simple mechanism, however
it will give us the possibility to conduct a further study aiming
at learning which is the most appropriate relation between the
agent’s level of autonomy and the type of user delegation on a
category of tasks.

B. To-Do-List and Task Models

In order to give to the user personal agent the capability to
reason on this information, it is necessary to specify the entry
in the To-Do-List in terms of type or family of task,
environment and context information relevant for task
execution, user related preferences, agent’s autonomy. To

this purpose, we

S developed an interface
4 [Homere B in Java running on a
Elhiing PDA that enables user

Task [BuyFOOD = to input this
ction: [Reming | information in a quite

simple way (Fig. 3).
A To-Do-List entry
is then formalized in

Drate: |30IDQIQDD4
Tirme: |18:DD

Priority. XML and stored in the
high © medium (" low set D-Me KBs. An
example of entry

: (| Privacy |
<« BM=et »

Fig. 3. A snapshot of the To Do List Interface.

corresponding to “buy
food before coming
back home” is the
following:

<Knowl edge

xm ns: xsi ="http://ww. w3. or g/ 2000/ 10/ XM_Schena-

i nst ance" xsi : noNanmespaceSchemaLocati on="C: \ DmeSyst em
\dat i\ Know edge. xsd" sl ot Nanme="ToDoLi st" >

<Task sl ot Nanme="taskDefinition" id="1" nane="buy"
key="f ood action="rem nd" dat e=2509041800"
bel ongi ngScope="honel i f e" environment="al | " p-
env="supernmarket" priority="high" what="food |Iist"
when="bef ore” whenevent =" goi ng back hore"

rem ndBef ore="1755" next &k="3"
<Aut onormny sl ot Name="aut onony" executi on="hi gh"

communi cat i on="hi gh" per sonal Dat a="m ddl e"

resour cesExpl oi tati on="1ow' />

</ Task>

</ Knowl edge>

This specification states which is the task name, the type of
associated D-Me action to be performed when the contextual
situation triggers it (remind in this example), the scope of the
task (homelife) that can be used to trigger user preferences in
that scope, the environment in which the task should be
reminded and the one in which the task should be performed
(p-env). Additional information regards the priority, the
deadline and the type of agent aufonomy on that task.

In this example, the agent has an high execution and
communication autonomy, a medium autonomy in
communicating personal data to the environment and low
autonomy on resource exploitation (in this example this is
translated in the fact that the agent cannot buy and pay
autonomously the food unless it is explicitly authorized by the
user).

When user and context features triggers one of the tasks
present in the user To-Do-List, the agent’s desire of executing
a task is achieved by selecting the appropriate plan in the D-
Me KB.

In this case the Remind(U, Do(Task , env, p-env, Cti)) plan
is selected. In this case, U denotes relevant user features, Task
denotes Buy(food), env the environment in which the remind
can be notified (all), p-env the environment in which the user
task can be performed (supermarket) and Ct# represents the
context at time #.

C. P.UM.A.: Personal User Modeling Agent

Mobile personalization can be defined as the process of
modeling contextual user-information which is then used to
deliver appropriate content and services tailored to the user’s
needs. As far as user modelling is concerned, a mobile
approach, in which the user "brings" always with her/himself
the user model on an personal device, seems to be very
promising in this interaction scenario [21]. It presents several
advantages: the information about the user are always
available, updated, and can be accessed in a wireless and quite
transparent way, avoiding problems related to consistency of
the model, since there is always one single profile per user.

Based on this idea, in the context of our research on
personalization of interaction in ubiquitous computing [22,
23], we have designed and implemented a Personal User
Modeling Agent (PUMA).

In developing its architecture we considered the following
issue: a personal device is used mainly in situations of user
mobility. Normally, when the user is in more “stable”
environments (i.e. home, office, etc.) he/she will use other
devices belonging to that environment (i.e. PC, house
appliances, etc.). In this view, the personal device can be seen
as a “satellite” of other “nucleus” devices that the user uses
habitually in his/her daily life. Then, the PUMA has to be able
to handle this nucleus-satellite relation.

With this aim, instead of implementing a truly mobile
agent, the PUMA is cloned and lives on all the user
platforms/devices. However, although the chosen approach
simplifies the implementation, it requires transferring
knowledge needed for user modeling and opens consistency
problems in maintaining a global image of user preferences,
interests, habitual behavior, etc. In our approach, user models
are organized in a hierarchy [24] whose nodes represent
relevant interaction environments, task families, interest
groups (Fig. 4).

In particular, the roots of the hierarchy represents user
modeling scopes (interaction environments). Each node in the
hierarchy represents a subset of user model data relevant to
the specified domain, task, etc. Then the PUMA accesses and
reasons on the Mobile User Profile portion that is in focus

58

baldoni
58

according to the user task and environment.

N

Budget

Fig. 4: An example of hierarchical User Model

This approach presents the main advantages of decreasing the
complexity of representing an unified view of the user profile
even if it requires particular attention in structure modelling
and decomposition.

In another project we are testing how the same approach
could be implemented using a hierarchy of Bayesian network
instead of MUPs allowing in this way a better treatment of
uncertainty that is typical of ubiquitous computing [25].

As far as representation is concerned, beside considering
static long term user features (age, sex, job, general interests
and so on) it is necessary to store information about more
dynamic “user in context” features.

For instance, the fact that a user, when is shopping at the
supermarket, buy cookies only when there is a 3x2 special
offer is related to a contextual situation. If we want to give to
the user PUMA the capability to reason on this type of facts,
we need a representation language rich enough to formalize
user properties related to contextual situation, understandable
potentially by every environment, flexible and compact
enough to be stored on the user personal device. In a first
version of D-Me we developed our own ontology for
describing mobile user profiles, however, since it was not the
main aim of our research, in this second version of the
prototype, we decided to adopt UbisWorld [26, 27] language
as user model ontology of our Personal Agent. In this way we
have a unified language able to integrate user features and
data with situational statements and privacy settings that better
suited our need of supporting situated interaction. This
language is rich enough to deal with the representation and
provide privacy-protection features. It allows representing all
concepts related to the user by mean of the UserOL ontology,
to annotate these concepts with situational statements that may
be transferred to an environment only if the owner user allows
this according to privacy settings. An example of a situational
statement is the following:

<SituationalStatement version="Full_0.1">
<content>
<subject><UbisWorld:Nadja /></subject>
<predicate><UserOL:buying cookies /></predicate>
<predicate-range><UserOL:normal,specialoffer,3x2/>
</predicate-range>
<object>special offer <object>
</content>
<restriction>< location>supermarket<location></restriction>
<meta>

<owner><UbisWorld:Nadja /></owner>
<privacy><UbisWorld:friends /></privacy>
<purpose><UbisWorld:commercial /></purpose>
<retention><UbisWorld:short /></retention>
<viewer><UbisWorld: X-Supermarket /></viewer>
<evidence>not-specified</evidence>
<confidence>high</confidence>

</meta>

</SituationalStatement>

This approach can be used to represent some parts of the
real world like an office, a shop, an house or an airport. It
represents persons, objects, locations as well as times, events
and their properties and features.

User preferences, interests, etc. are collected by the PUMA
in two ways:

- using a graphical interface (Fig.5) in which the user can
explicitly insert her preferences and related privacy settings
regarding particular domains,

- other information (i.e. temporary interests) can be derived
when the user insert a task in the To-Do-List.

User feedback and actions in the digital and real world may
reproduce changes in the user model. The PUMA observes the
user actions: when new information about the user can be
inferred, it updates or adds
a new slot in the MUP and
sets the “confidence”
attribute of that slot with
an appropriate value that

& User Information 9 =]
Mental |

eristios | Abilities | Pemena ity |
| tdentite [interest |

@ v 2w

Define your level of interest for husie:

Sl O G is calculated by the
Preferred music genre? [Pop .
R vra— weighted average of all

Last CD you listened? [American life

and don't forget to set the privacy:

the user actions having an
impact on that slot. The

Privacy Access:

e e confidence attribute may
O e, (D be set to low, medium and
Privacy Reten H h. h
@) longlyesr] () middlel. (1 shorrday) lg .

[ok | Even if we have chosen

ok | | Exit

the mobile approach, we
cannot assume that the
user will have with
her/himself an handheld device and this type of device still
presents hardware-related limits (capacity, computational
speed, battery,...).

At this aim, in D-Me the PUMA could be stored on a
Remote Server trusted by the user [28]. In the near future
these technological constraints will be overcome by the spread
of many personal an powerful device [29,30]

Fig. 5. An interface for initial setting
of the PUMA.

D. Context Information

Both entities, D-Me Agents and the Environment, need to
sense and elaborate context information. In our approach,
Context is grounded on the concept of "user task executable
in an environment". Therefore, given a task in the user to-do-
list, once the user has been classified according to the strategy
of the UM component, its execution and results can be
influenced by the context in which the interaction occurs and,
in particular, by:

- static environment features: scope (daylife, social
relations, budget, etc..), physical features, such as

58

baldoni
59

desciption of objects relevant for interaction, type of
environment (public, private).

- dynamic environment features: for instance noise light
level and tagged object;

- dynamic user features, that identify the physical and
social surroundings of the user that can be derived by
specific data sensors (emotional state, location, activity
the user is performing, time, ...);

- device employed.

At the present stage of the prototype, we do not work on
hardware sensors. They will be realized in the next stage. At
the moment we simulate their values through an interface that
communicates relevant changes to the Context Agent that
knows the global context situation at the considered time. The
context situation relevant at time ti is represented in an XML
structure compliant to the D-Me context ontology.

E. Interacting with the user

The Communication Behavior of the Personal Agent is used
to interact with the user for communicating results of tasks or
for asking information/confirmations required for task
execution. We consider the following families of
communication tasks:

- request for input. If, for instance, the to-do-list includes a
task that requires additional information to be executed.

- information provision: Information may be presented
when explicitly requested by the user or proactively
prompted by D-Me because related to the current user
task. In our scenario the supermarket special offers will be
displayed as a consequence of the service discovery task.

- request for confirmation: if a task involves a step that
requires a D-Me action and the agent does not have a full
autonomy on that task, then the agent will ask the user for
confirmation before performing it.

- notification messages. Proactive task execution is notified
by D-Me, for instance, in the previous case, if the agent
has the autonomy to perform an action then it will not ask
for permission and will just notify it.

- remind messages. This is the typical message generated
for the shopping task in our example.

User and context related factors are taken into account in
generating the communication about a task in the following
way [31]:

1. user preferences and features: results of information
provision tasks are filtered, ordered and presented
according to what has been inferred about the user starting
from her profile data (interest, know-about, know-how).
Possible user disabilities are taken into account for media
selection.

2. activity: this influences information presentation as
follows. If the user is doing something with a higher
priority respect to the one of the communication task, then
the message is postponed until the current activity ends. If
the communication regards the current activity, media used
in the message take into account the available body parts.

Therefore, a voice input is preferable to a textual when, for
instance, the user is running with her/his PDA asking for
information about the next train to catch.

3. location of the user in the environment: texts, images and
other media may be selected according to the type of
environment (public vs. private, noisy vs. silent, dark vs.
lightened, etc.) in which the users are and, more precisely,
to their relative position to relevant objects in the
environment.

4. emotional state: factors concerning the emotional state
influence the level of detail in information presentation
(short messages are preferred in stressing situation), the
intrusiveness (bips and low priority messages are avoided
when the user is already nervous), and the message
content. For instance: if a user requests information in
conditions of emergency, the agent will have to avoid
engendering panic, by using reassuring expressions or
voice timbre [32].

5. device: the display capacity affects the way information is
selected, structured and rendered. For instance, natural
language texts may be more or less verbose, complex
figures may be avoided or substituted with ad hoc parts or
with written/spoken comments.

To accomplish the communication task, the agent applies
the following strategy: starting from XML-annotated results
of a Service Agent, decides how to render them at the surface
level taking into account the rules described above encoded in
XSL.

IV. DISCUSSION AND FUTURE WORK

Effective ubiquitous interaction requires, besides techniques
for recognising ‘user in context’ features, a continuous
modeling of both the user and the context. Therefore,
ubiquitous computing systems should be designed so as to
work in different situations that depend on several factors:
presence of a network connection, -characteristics of
interaction devices, user location, activity, emotional state and
so on. However, in the near future, the network connectivity
will be no more a problem, and we will not be worried about
this constraint, as we are going towards an “interconnected
world”. Moreover the spread of technologies, such as for
example RFID, will render the information about the context
very rich and easy to use [33].

This work represents a step towards supporting
personalized interaction between mobile users and a smart
environment. Every user is represented by a D-Me Agent that,
according to the content of her/his “To Do List”, performs
tasks on the user behalf by negotiating services with the smart
environment.

Since the interaction happens through a personal agent, we
started to consider the “delegation-autonomy” adjustment
necessary for achieving cooperation between the user and
his/her representative. However, more work in understanding
how the user feedback influences the level of autonomy
especially when this feedback is implicit (until now we
considered only explicit feedback).

Moreover, as RFID are taking a key role in ubicomp we are
investigating how to use them in such a system, so as to

60

baldoni
60

“sense” the active tagged object. Those kind of object are part
of the context and can influence the execution of several tasks
as well as other information.

ACKNOWLEDGMENTS

We thanks students who cooperated in implementing the
prototype described in this paper: in particular, Ignazio
Palmisano, Luigi Iannone, and Roberto Tagliento. Finally, we
thank Fiorella de Rosis to which we owe several fruitful ideas
underlining this work.

REFERENCES

1.S. Greenberg. Context as
Interaction, 2001, 16.

a dynamic construct. Human-Computer

2.M. Weiser. Some computer science issues in ubiquitous computing.
Commun. ACM, 1993, 36(7):75-84.

3.P. J. Brown, N. Davies, M. Smith, P. Steggles. Panel: towards a better
understanding of context and context-awareness. In H-W Gellersen (Ed.)
Hand-held and ubiquitous computing: HUC'99 proceedings, Springer,
1999.

4.G. Chen, D. Kotz, A Survey of Context-Aware Mobile Computing
Research. Technical Report TR
http://citeseer.nj.nec.com/chen00survey.html.

5.A. K. Dey, Understanding and Using Context. Personal and Ubiquitous
Computing 5 (2001) 1, 4-7.

6.L. Ardissono, A. Goy, G. Petrone, M. Segnan and P. Torasso. Ubiquitous
user assistance in a tourist information server. Lecture Notes in Computer
Science n. 2347, 2nd Int. Conference on Adaptive Hypermedia and
Adaptive Web Based Systems (AH2002), Malaga, pp. 14-23, Springer
Verlag 2002.

7.H.E. Byun, K. Cheverst, User Models and Context-Awareness to Support
Personal Daily Activities. Workshop on User Modelling for Context-Aware
Applications. 2002.

8.AK. Dey, G.D. Abowd, CyberMinder: A Context -Aware System for
Supporting Reminders. Proc. Symposium on Handheld and Ubiquitous
Computing, Bristol. (2000).

9.P. Maes, "Agents that Reduce Work and Information Overload,"
Communications of the ACM, Vol. 37#7, ACM Press, 1994.

10.H. Lieberman, T. Selker , Out of Context: Computer Systems That Adapt
To, and Learn From, Context. IBM Systems Journal, Vol 39, Nos 3&4, pp.
617-631, 2000.

11.A.Celentano, D. Fogli, P. Mussio, F. Pittarello. Agents for Distributed
Context-Aware Interaction. AIMS '02, Workshop on Artifical Intelligence in
Mobile Systems, Lyon, France, July 22, 2002.

12.http://www .fipa.org.

13. http://sharon.cselt.it/projects/jade/
14. http://leap.crm-paris.com/

15. http://www jxta.org

16.M. Pirker, M. Berger, M. Watzke,, An Approach for FIPA Agent Service
Discovery in Mobile Ad Hoc Environments , Workshop on Agents for
Ubiquitous Computing., Ubiagent04.

17. FIPA Agent Discovery Service
http://www fipa.org/specs/fipa00095/PCO0095A.pdf

18. R. Falcone, C. Castelfranchi. Tuning the Collaboration Level with
Autonomous Agents: a Principled Theory. AI*IA 2001: 212-224.

19. A. S. Rao and M. P. Georgeff, BDI-agents: from theory to practice, in
"Proceedings of the First Intl. Conference on Multiagent Systems", San
Francisco, 1995.

Specification:

20. T. Bylander. The computational complexity of propositional STRIPS
planning. Artificial Intelligence, 69:161-204, 1994.

21. A. Kobsa, Generic User Modeling Systems. UMUAI vol. II nos.1-2 pp.49-
63. Kluwer Academic Publisher. 2001.

22.A. Cavalluzzi,B. De Carolis., S. Pizzutilo., G. Cozzolongo: Interacting with
embodied agents in public environments. AVI 2004: 240-243.

23.G. Cozzolongo, B. De Carolis, S. Pizzutilo, Supporting Personalized
Interaction in Public Spaces. In Proceedings of the Artificial Intelligence in
Mobile Systems 2004. (Ubicomp Workshop). Baus J., Kray, C., Porzel, R.
(Eds.). Nottingham, UK, 2004.

24 .M. Samulowitz, Designing a Hierarchy of User Models for Context-Aware
Applications. Position Paper at
www.teco.edu/chi2000ws/papers/23_samulowitz.pdf

25.A. Jameson, Modeling Both the Context and the User. Personal and
Ubiquitous Computing. Vol 5. Nr 1. Pp 29-33. 2001.

26.D. Heckmann: Ubiquitous User Modeling for Situated Interaction. User
Modeling 2001: 280-282

27.D. Heckmann, Ubis World, www.u2m.org

28.B. De Carolis, S. Pizzutilo, I. Palmisano, A. Cavalluzzi, A Personal Agent
Supporting Ubiquitous Computing. UM'03 9th International Conference on
User Modeling. June 22-26, 2003.

29.www.vodafone.com
30.R.Want, http://www.intel.com/research/exploratory/personal_server.htm

31.B. De Carolis, F. de Rosis, S. Pizzutilo, Adapting Information Presentation
to the "User in Context". IICAI 2001 Workshop on Al in Mobile Systems,
Seattle, 2001.

32.A Cavalluzzi, B De Carolis, V Carofiglio and G Grassano:
Emotional dialogs with an embodied agent.
In P Brusilovsky, A Corbett and F de Rosis (Eds): "User modeling '03".

33.T. Pederson, From Conceptual Links to Causal Relations -Physical-Virtual
Artefacts in Mixed-Reality Space. PhD thesis, Dept. of Computing Science,
Umed university, report UMINF-03.14, ISSN 0348-0542, ISBN 91-7305-
556-5., 2003, http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-137.

61

baldoni
61

Un’Applicazione di E-government per la
Gestione di Gare d’Appalto nella Pubblica
Amministrazione

A. Grosso, M. Coccoli, and A. Boccalatte, Dist — University of Genova

Abstract—Lo sviluppo pervasivo delle nuove tecnologie
dell’informazione, e in particolare di Internet, rappresenta un
fattore di accelerazione e, al tempo stesso, lo strumento per
“reinventare” le modalita di organizzazione e funzionamento
delle amministrazioni pubbliche. In questo articolo viene
presentato un sistema per la gestione automatica sul Web di gare
d’appalto bandite dalla Pubblica Amministrazione in Italia
basata sulla tecnologia ad agenti offerta dal framework
AgentService. L’applicazione si avvantaggia quindi dell’elevata
dinamicita e flessibilita delle comunita di agenti software e della
interoperabilita offerta dai Web Service.

Index Terms—e-government, on-line
auction.

multi-agent system,

. INTRODUZIONE

L A diffusione di internet e la crescita del commercio
elettronico stanno modificando alcune convenzioni del
mondo economico, questo ha richiamato fortemente
I’attenzione di governi e pubbliche amministrazioni, che sono
intervenute a regolamentare il settore. Al momento attuale, sia
da un punto di vista tecnico che legale, I’e-commerce pud
essere considerato una tecnologia matura e capace di attrarre
sia imprese private che enti pubblici. Molte importanti
istituzioni, ed in particolare la Comunita Europea e la
Repubblica Italiana, stanno promuovendo lo sviluppo di
servizi Internet per i cittadini, incoraggiando la nascita di
sistemi informativi in grado di snellire la burocrazia e renderla
pit tempestiva [1].

Lo sviluppo pervasivo delle nuove tecnologie
dell’informazione, ed in particolare di internet, rappresenta
infatti un fattore di accelerazione e, al tempo stesso, lo
strumento per:

“reinventare” le modalita di organizzazione e
funzionamento delle amministrazioni pubbliche;

- offrire ai cittadini, visti come “clienti”, servizi piu
tempestivi, qualitativamente migliori e facilmente accessibili

Manuscript received October 27, 2004.

A. Grosso, M. Coccoli, and A. Boccalatte are with the Department of
Communication, Computer and System Sciences, University of Genova, via
Opera Pia 13, 16145 Genova, ltalia (phone: +39 103532284; fax: +39
103532154; e-mail: {agrosso, coccoli, nino}@dist.unige.it).

M. Baldoni, F. De Paoli, A. Martelli, and A. Omicini (Eds.): WOA 2004 — Dagli Oggetti agli
Agenti, Sistemi Complessi e Agenti Razionali, Torino, Italy, November 29" — December 1%
2004. Pitagora Editrice Bologna. ISBN 88-371-1533-4. ht t p: / / woa04. uni to. it

(quindi meglio distribuiti) attraverso 1’'uso della rete e della
communication technology [2];

- contribuire, attraverso una maggiore interazione, a
migliorare in modo significativo il rapporto tra apparati statali
e cittadini;

- fornire servizi mirati, personalizzati, trasversali rispetto
alle singole competenze e accessibili ovunque, in ogni
momento.

La necessita di fornire servizi migliori, piu efficienti,
tempestivi e che non pesino eccessivamente sui bilanci &
un’esigenza sentita oggi da ogni pubblica amministrazione a
tutti i livelli e in qualsiasi parte del mondo [3].

Formalmente il governo elettronico (e-government) puod
essere definito come [l'utilizzo delle nuove tecnologie
telematiche nei rapporti tra la Pubblica Amministrazione (PA)
e i cittadini, tra la PA e le imprese e tra gli organi della PA al
loro interno (fra le diverse amministrazioni o i differenti livelli

dello stato) [4]. Quindi, il "governo elettronico” interessa le
applicazioni interne ed esterne delle tecnologie
dell'informazione e della comunicazione (ICT) nel settore
pubblico [5].

La Presidenza del Consiglio dei Ministri e il Ministro per
I'innovazione e le tecnologie hanno emanato una Direttiva [6]
che fissa le linee guida per l'anno 2004 in materia di
digitalizzazione della pubblica amministrazione, indicando
come punti cardine i servizi on-line per cittadini e imprese e la
trasparenza dell’azione pubblica.

In questo articolo viene presentata un’applicazione di e-
government per la gestione di gare d’appalto bandite dalla
pubblica amministrazione, che propone un nuovo approccio
per la gestione di aste on-line basato sulla tecnologia ad
Agenti ed i Web Service. Web Auction Server System
(WASS) ¢ un sistema per la gestione delle contrattazioni nelle
aste sul Web. WASS e pensato per essere utilizzato nella
pubblica amministrazione italiana per rendere automatico ed
economico il processo di acquisizione delle risorse, ma & in
grado di operare anche in contesti differenti come ad esempio
portali per il commercio elettronico. WASS ¢ strettamente
legato alla tecnologia offerta dal framework AgentService [7].

Nella sezione Il viene introdotto I’utilizzo della tecnogia ad
agenti nelle aste on-line, mentre nella sezione 111 & illustrato il
workflow per I’acquisizione di beni e servizi nella pubblica
amministrazione. La sezione IV presenta le principali

baldoni

carratteristiche dei sistemi multi-agente e descrive le
caratteristiche del framework AgentService. L architettura e le
funzionalita del WASS sono dettagliate nella sezione V, dopo
di che vengono evidenziate le conclusioni.

Il. AGENTIE ASTE ON-LINE

Il commercio elettronico basato sulle aste on-line sembra
essere un’area in cui il web dimostra di essere piu efficace
rispetto ai sistemi tradizionali; questo e dovuto principalmente
alla sua natura altamente interattiva, al coinvolgimento di
molti fornitori rispetto alle vendite tradizionali di tipo singolo
fornitore-compratore, ed infine ad una significativa riduzione
dei costi. Se si considera anche il proliferare su internet di
applicazioni per aste on-line come Auctionline, Onsale,
InterAUCTION ed eBay, risulta evidente che la contrattazione
basata sulle aste e divenuta una delle principali forme di
commercio elettronico.

Le aste sul Web costituiscono un meccanismo conveniente
per automatizzare le transazioni commerciali, ci0 €
principalmente dovuto alla semplicita con cui avvengono le
interazioni nella negoziazione “multi-party”, ma anche al fatto
che le aste on-line sono in grado di minimizzare le scorte e
ridurre significativamente i costi sia di gestione che di
consegna. Inoltre & opportuno osservare che I’applicazione di
aste on-line nel campo della PA puo portare, in aggiunta ai gia
citati vantaggi, una maggior trasparenza nella contrattazione e
assegnazione degli appalti, cio & dovuto all’automatizzazione
del servizio che limita al minimo I’intervento umano e quindi
una possibile frode.

In generale, i sistemi per la gestione delle aste hanno
un’elevata complessita; questa non é data solamente da oneri
computazionali, ma principalmente & dovuta a problemi di
progettazione, perché occorrera focalizzarsi su come
aumentare il rendimento e allo stesso tempo soddisfare le
esigenze dei partecipanti/compratori.

Le aste sono un dominio applicativo altamente attrattivo per
i ricercatori del settore dell’intelligenza artificiale (Al), che
coinvolge lo sviluppo di “auction server” [8, 9], la
definizione di agenti per la contrattazione e le euristiche [10].
D’altra parte, le aste non sono impiegate solamente per il
commercio sul Web, ma costituiscono anche uno dei
principali meccanismi di coordinazione per problemi di
allocazione di risorse/task basati su agenti [11, 12, 13, 14].

L’interesse dei ricercatori nell’ambito della
programmazione ad agenti & ormai una realta. | concetti base
di “agente autonomo” e “sistema multi-agente” (MAS),
introdotti nel campo della Distributed Artificial Intelligence
(DAI), possono essere applicati a contesti differenti per la
distribuzione del controllo dei processi decisionali tra i
componenti dei sistemi. Attualmente sono a disposizione un
certo numero di strumenti software creati per rendere piu
semplice la programmazione orientata agli agenti: questi sono
in genere composti da librerie e “tool” che guidano gli utenti
durante la progettazione, I'implementazione ed il testing dei

sistemi multi-agente. La tecnologia ad Agenti sembra quindi
in grado di fornire il paradigma di programmazione adatto a
modellare i sistemi di aste on-line. Questo & dovuto alle
proprieta intrinseche degli agenti come I’autonomia e la
proattivita, che saranno trattate nei prossimi paragrafi.

. 1L WORKFLOW NELLA PUBBLICA AMMINISTRAZIONE

Con il termine workflow, usato nelle sue diverse accezioni,
ci si puo riferire: ad un processo aziendale, alle specifiche di
un processo generico, ad un software che implementi ed
automatizzi un processo, o ad un’applicazione per il
coordinamento delle persone e dei computer che creano il
processo stesso.

Con I’introduzione di modelli e principi di contabilita
economica e controllo di gestione, gli ordinamenti contabili
delle amministrazioni e degli enti pubblici stanno cambiando
radicalmente. La gestione della pubblica amministrazione
diventa sempre piu simile a quella delle aziende private:
individuazione di programmi ed obiettivi, adozione di sistemi
di ~ programmazione, consuntivazione e controllo,
pianificazione per obiettivi, monitoraggio dei risultati.

In questi ultimi anni si assiste all’introduzione nell’ente
pubblico di una cultura aziendale, rivolta al conseguimento di

risultati, obiettivo perseguito con decisione anche da
molteplici interventi legislativii. E un processo di
modernizzazione complesso, che riguarda i sistemi

informatici, ma che ha anche un forte impatto organizzativo,
che richiede nuove figure professionali e un intervento
capillare per favorire I’evoluzione culturale parallelamente
all’introduzione all’utilizzo di nuovi criteri gestionali.

Il concetto di workflow pud quindi essere affiancato anche
alla realta delle istituzioni pubbliche comprendendo attivita di
razionalizzazione e, conseguentemente, di informatizzazione,
dei processi di una generica amministrazione.

Tutti i sistemi di workflow assumono come elemento
costitutivo primario il concetto di processo, inteso come entita
fondamentale alla base della struttura logica e funzionale, su
cui si fonda sia un’azienda privata che un ente pubblico.

Un processo & pertanto caratterizzato principalmente da:

- un prodotto che, trasferendo valore al cliente, rappresenta
il vero obiettivo dell'organizzazione;

- un insieme di attivita che rappresentano il flusso operativo
del processo.

Per la produzione dei prodotti/servizi sono in genere
coinvolte una o pil strutture organizzative, attraverso una
distribuzione di compiti e responsabilita, codificati in norme e
procedure.

Per poter operare sui processi & necessario poterli
rappresentare ed analizzare. E' importante quindi disporre di
modelli per la loro rappresentazione in grado di evidenziare
tutti i loro aspetti critici, quali ad es. le risorse consumate, il
processo di trasformazione, il prodotto/servizio, le regole e i
vincoli di trasformazione (controlli), i tempi e i costi, ecc.

63

baldoni
63

IV. AGENTI SOFTWARE E SISTEMI MULTI-AGENTE

Un agente é definibile come un’entita computazionale in
grado di agire in modo autonomo [15], acquisire informazioni
dall’ambiente circostante ed agire secondo la propria base di
conoscenza, scambiare informazioni con altri agenti o con
esseri umani, e perseguire i propri obiettivi intraprendendo
opportune iniziative. Gli agenti, perseguono il raggiungimento
dei goal prefissati eseguendo delle funzioni o task che,
frequentemente, appaiono vincolate da relazioni di
interdipendenza o di conflittualita [16]. Un agente opera in un
ambiente di esecuzione condiviso con altri agenti e
applicazioni software; gli agenti sono in grado di interagire
con I’ambiente in cui vivono, al fine di perseguire il proprio
obiettivo [17]. Gli agenti sono adattativi, possono imparare dai
cambiamenti dell’ambiente che li circonda: le capacita di
apprendimento e adattabilita consentono all’agente di
raggiungere con successo i propri obiettivi [16].

L’abilita sociale degli agenti costituisce una delle piu
importanti caratteristiche della programmazione orientata agli
agenti. Un sistema multi-agente, MAS (multi-agent system),
rappresenta una comunita sociale di membri interdipendenti
che agiscono individualmente [18].

L architettura che pu0 essere considerata standard de facto
per i sistemi multi-agente & quella descritta all’interno delle
specifiche proposte dalla Foundation of Intelligent Physical
Agents (FIPA) [19].

A. AgentService

AgentService € un ambiente completo per la progettazione,
I’implementazione ed la distribuzione di applicazioni orientate
agli agenti; fornisce quindi una specifica piattaforma di
esecuzione degli agenti ed un linguaggio di programmazione
agent-oriented. La Common Language Infrastructure (CLI)
costituisce la base dell’ambiente di programmazione ed
esecuzione di AgentService: gli agenti sviluppati con
AgentService hanno pieno accesso al mondo dei componenti e
all’ampia gamma di servizi offerti dalla CLI. Analizziamo ora
gli elementi chiave proposti da Agent Service.

Il modello di agente: I’agente & composto da due elementi
fondamentali: comportamenti e unitd di conoscenza. |
Behaviour rappresentano le attivita concorrenti eseguite
dall’agente. La Knowledge & composta da strutture dati
persistenti condivise tra i behaviour e determina lo stato
dell’agente.

Il framework ad agenti: una piattaforma di programmazione
ad agenti che si basa sul modello sopra descritto e segue le
specifiche architetturali indicate da FIPA. Gli agenti in
esecuzione con i relativi comportamenti concorrenti sono
ospitati all’interno di uno specifico dominio applicativo
(AppDomain) della CLI. L’esecuzione e la sincronizzazione
dei comportamenti concorrenti € gestita dalla piattaforma.
AgentService che garantisce un elevato grado di scalabilita e
sicurezza grazie alle caratteristiche offerte dagli AppDomain.
In accordo al Document Object Model proposto con il
framework, vi € una netta separazione tra la definizione di
agente da parte del programmatore (design time agent) e la

relativa istanza di agente in esecuzione (runtime agent). Tale
separazione garantisce maggiore semplicita di
programmazione ed assoluta autonomia all’agente. Le
capacita sociali degli agenti si determinano tramite lo scambio
di messaggi che si basa sul canale di comunicazione offerto
dal sistema di “Remoting” della CLI.

Agent Programming Extensions (APX): un set di estensioni
del linguaggio di programmazione C# mirate a semplificare
lo sviluppo di applicazioni con AgentService. Il modello ad
oggetti di AgentService & nascosto da APX, cosi che allo
sviluppatore possa essere presentata una pitu semplice
interfaccia orientata agli agenti che comporta limitati
cambiamenti alla sintassi del C#.

B. Common Language Infrastructure

La Common Language Infrastructure & uno standard
ECMA [20] e ISO-IEC [21] che definisce un ambiente
virtuale di esecuzione. CLI €& wuna piattaforma di
programmazione orientata ai componenti in cui moduli di
codice sono eseguiti in un contesto sicuro.

La Common Language Infrastructure e stata progettata per
essere il target di differenti linguaggi di programmazione;
offre una ricca libreria di classi ed un ampio set di servizi a
runtime che garantiscono un’efficace esecuzione del codice.
L’interoperabilita di linguaggio & una delle caratteristiche piu
innovative della CLI: moduli scritti in differenti linguaggi di
programmazione possono interoperare con facilita senza
bisogno di connettori software realizzati ad-hoc.

Sono disponibili implementazioni differenti della CLI per
diversi sistemi operativi e diverse piattaforme hardware.
Un’implementazione shared source della CLI & SSCLI
comunemente nota con il nome di Rotor [22].

V. WEB AUCTION SERVER SYSTEM

In questo paragrafo viene presentato un sistema per la
gestione di aste on-line. Web Auction Server System (WASS)
garantisce ai fornitori un modo semplice ed automatico per
competere in una contrattazione attraverso la tecnologia
offerta dal framework AgentService e promossa grazie ai Web
Service.

L’obiettivo del WASS & quello di fornire
all’amministrazione pubblica italiana una via di accesso al
mercato elettronico nel rispetto delle regole di workflow
imposte dalla legislazione vigente. Le gare telematiche indette
per I’acquisto di beni e servizi sono infatti regolamentate da
una precisa normativa’.

L applicazione si prefigge quindi lo scopo di snellire le
procedure amministrative per quel che riguarda
I’approvvigionamento di beni o servizi da parte degli organi
della Pubblica Amministrazione. E’ stato realizzato un sistema
di negoziazione che provvede a valutare in maniera
automatica le offerte inviate dai fornitori partecipanti alla

! D.P.R. del 4 aprile 2002, n. 125, pubblicato sulla G.U. del 30 maggio
2002 e dalle successive linee guida

64

baldoni
64

gara, predisponendo una graduatoria sulla base dei criteri
scelti dall’amministrazione ordinante. Per I’abilitazione dei
fornitori sono predisposti dall’amministrazione appositi bandi.

In particolare, I’applicazione si propone di:

- automatizzare il reperimento dei fornitori; attualmente
avviene tramite contatto diretto oppure tramite gara pubblicata
su un quotidiano di livello nazionale e pud quindi dare luogo a
esborsi di denaro;

- confrontare, tramite procedure automatiche, tutte le
proposte raccolte e valutarne i risultati;

- migliorare i tempi di esecuzione dell’intero processo di
acquisto, minimizzando soprattutto quelli imputabili alla
burocrazia, riducendo i costi anche in termini di risorse umane
e di documenti circolanti;

- aumentare la velocitd di ricerca delle informazioni,
predisponendo la memorizzazione su supporti di tipo digitale
e quindi in database per un facile e rapido accesso ai dati.

Inoltre si introducono novita quali:

- la possibilita di attivare una gara d’appalto direttamente
on-line;

- il controllo on-line I’andamento delle gare in tempo reale;

- la modifica delle informazioni presenti nelle basi di dati in
maniera sicura e rapida senza dover compilare richieste o altri
tipi di modulistica.

L’idea del WASS ¢ nata dallo studio del flusso di
documenti che awviene in relazione all’attivita di
approvvigionamento in una amministrazione comunale.

Il sistema proposto si basa, per cio che riguarda la gara
d’asta, sul paradigma ad agenti e, per la promozione e
distribuzione del servizio, sui Web Service. La modellazione
dei partecipanti all’asta attraverso I’uso di agenti software
consente di sfruttare la caratteristica di alta flessibilita propria
delle comunita di agenti (I’ingresso dinamico di nuovi agenti
alla gara € una caratteristica nativa delle “agent society”) e la
loro proattivita (ogni offerente & in grado di agire in maniera
autonoma ed indipendente e pud partecipare ad un asta o fare
un rilancio senza dover necessariamente essere stimolato da
un’altra entita).

Il sistema WASS si appoggia su di una base di dati per
I’archiviazione delle informazioni relative a gare, fornitori e
risorse da acquisire, e per la realizzazione di report. Oltre al
data base, la struttura del WASS & formata da tre componenti
fondametali:

- I’interfaccia web, per la parte grafica e di autenticazione.
Rappresenta il mezzo di comunicazione fra gli utenti e il web
service ed & materialmente il sito che rappresenta I’agenzia e
dal quale partono tutti i servizi disponibili. Contiene tutti i
controlli e form che servono per I’acquisizione dei dati
necessari per I’esecuzione di query sul database e per
I’immissione dei dati relativi all’appalto, alla verifica della
situazione della gara, e della congruenza dei dati immessi.

- il Web Service, espone i servizi del WASS rendendoli
accessibili alle pagine Web, consentendo ad esse I’accesso alla
base di dati. Contiene materialmente le query che vengono
richiamate dalle pagine web e restituisce i risultati delle
interrogazioni alle stesse. Il Web Service & anche riferimento

per la piattaforma ad agenti infatti contiene i metodi di avvio
e gestione della contrattazione per la creazione di report sullo
stato della gara.

- il sistema multi-agente, all’interno del quale gli agenti,
creati con AgentService, rappresentano i fornitori e la
Pubblica Amministrazione ed implementano [I’intero
meccanismo di contrattazione.

Possiamo ora riassumere il procedimento di attivazione ed
esecuzione dell’asta. L’impiegato invia attraverso un pagina
web la richiesta per una nuova gara d’appalto. La richiesta
viene sottoposta al Web Service che accede al data base delle
gare e costruisce un nuovo profilo di asta al quale verranno
associati i possibili fornitori interessati in base alla categoria
merceologica di appartenenza. La gara e la lista dei fornitori
vengono quindi inviate alla piattaforma ad agenti, che attiva la
contrattazione e dopo il tempo stabilito fornisce il risultato al
Web Service che lo rende disponibile al sito Web.

A. Abilitazione dei fornitori alla gara

Le ditte fornitrici si iscrivono al sistema inviando una
richiesta scritta alla Pubblica Amministrazione. In essa le ditte
fornitrici devono inserire i dati identificativi della societa:

- ragione o denominazione sociale;

- Partita IVA;

- Codice Fiscale;

- via e numero civico della sede legale della societa;

- CAP della sede legale della societa;

- citta della sede legale della societa;

- nazione della sede legale della societa;

- rappresentante legale;

- categoria merceologica di appartenenza.

- caratteristiche dei beni forniti.

L’azienda deve inoltre dimostrare di essere in regola con i
pagamenti INPS e INAIL e deve impegnarsi, qualora si
aggiudichi una gara, a fornire i beni nella qualita e
caratteristiche, che ha dichiarato di fornire, in sede di
iscrizione.

Una volta accertate le credenziali I’ufficio della Pubblica
Amministrazione comunichera all’amministratore del sistema,
che non fa parte della Pubblica Amministrazione, come gia
specificato, i parametri della ditta. Quest’ultimo effettuera la
registrazione nel database, comunicando in maniera scritta alla
ditta fornitrice I’avvenuta iscrizione con esito positivo.

La contrattazione € basata su agenti software & quindi
necessario che ogni ditta fornitrice presenti tramite client Web
le indicazioni per caratterizzare i comportamenti dei suoi
agenti in modo da rendere completamente automatica la
contrattazione. E’ tuttavia possibile disabilitare e abilitare on
line I’agente, per escluderlo o0 meno, da contrattazioni future,
ed e prevista la costruzione di una serie di procedure per poter
cambiare o aggiornare alcuni comportamenti degli agenti.

Il Sistema e impostato in modo da ricercare la ditta
fornitrice da far partecipare alla gara in base alla categoria
merceologica indicata in fase di registrazione.

65

baldoni
65

B. Contrattazione

Attualmente, nella maggior parte dei casi, una gara di
appalto o di fornitura utilizza il meccanismo dell’offerta a
busta chiusa, in cui ogni partecipante effettua una offerta che
non puo piu essere modificata e raggiunta la data di scadenza
del bando, vengono aperte le buste e valutata I’offerta
migliore. Nel sistema proposto viene invece istituita un’asta al
ribasso, una delle tipologie d’asta indicate dalla
regolamentazione degli appalti pubblici; tale modalita d’asta
prevede che vengano formulate pit offerte da parte di uno
stesso fornitore. | valori delle offerte vincenti sono rese
pubbliche in modo che tutti conoscano I’offerta migliore
temporanea, mentre viene tenuto nascosto solo colui che I’ha
formulata. Anche in questo caso, la contrattazione termina una
volta scaduto il tempo.

All’interno del sistema WASS troviano due tipi di agenti,
descritti in AgentService da due differenti template, che
dovranno condurre la contrattazione:

- bidder agent, che rappresenta I’offerente, nel nostro
caso interpreta il ruolo del fornitore;

- auctioneer agent, che rappresenta il banditore, nel
nostro caso la pubblica amministrazione.

Analizziamo quindi come si articola lo svolgimento della
gara. Dopo che la richiesta di appalto & stata sottoposta al
WASS, il sistema si occupera di trasmettere le informazioni
necessarie al MAS; uno specifico agente di servizio in grado
di interoperare con il back-end del Web Service si occupera di
comunicare all’agente banditore la descrizione della gara ed i
possibili partecipanti selezionati dal WASS in base alla
categoria merceologica.

L’auctioneer agent comunichera ai bidder agent
potenzialmente interessati I’apertura della nuova gara
indicandone il tipo di contrattazione e la scadenza. A questo
punto I’asta ha inizio. A tal proposito nell’applicazione sono
stati implementati due tipi di aste al ribasso:

- semplice;

- pesata.

L’asta semplice & basata sul controllo dell’importo
dell’offerta pervenuta. Ovviamente I’offerta con I’importo
minore, si aggiudica la qualita di vincente temporaneo. Tutte
le offerte successive vengono misurate in base al vincente
temporaneo e vengono scartate tutte le offerte superiori.
L’offerta minore alla scadenza si aggiudichera I’asta.

L’asta pesata, si basa sul calcolo di un punteggio (P), pesato
in base all’importo dell’offerta ed ai giorni di consegna.

P=a*W, +b*W,

| coefficienti W; e W, sono i pesi, mentre a & dato dal
rapporto tra I’importo dell’offerta migliore e quello
dell’offerta ricevuta, e b dal rapporto tra il miglior tempo di
consegna (espresso in giorni) ed il tempo di consegna
proposto. Si aggiudica I’asta colui che ottiene il punteggio
maggiore al termine dei giorni previsti per la contrattazione.

Ogni volta che riceve una offerta, I’agente della pubblica
amministrazione la confronta con [I’offerta migliore

temporanea, e periodicamente, calcola il vincitore
momentaneo. Il controllo dell’offerta migliore viene effettuato
da un comportamento dell’auctioneer agent; quindi grazie alla
modularita dei behaviour di AgentService & possibile
modificare con facilita il criterio della scelta del vincente in
funzione del tipo di asta o di quanto indicato dalla gara di
appalto. Bastera per questo che il programmatore fornisca
all’agente banditore il nuovo comportamento, selezionandolo
ad esempio dalle librerie di AgentService.

Alla fine di ogni giorno di contrattazione o, in ogni caso,
dopo un determinato periodo di tempo, I’agente della pubblica
amministrazione comunica il vincente a tutti gli altri agenti, in
modo tale che possano eventualmente riformulare le loro
offerte oppure decidere di abbandonare la contrattazione
qualora avessero raggiunto i loro limiti di sconto applicabile
imposti dai rispettivi fornitori.

Al termine dell’asta viene inviata una e-mail alla ditta
vincitrice, nella quale vengono riepilogati i dettagli della gara,
la descrizione completa degli articoli e delle loro
caratteristiche tecniche, i tempi di consegna pattuiti, ecc. La
ditta fornitrice dovra rispondere alla e-mail, per confermare la
fornitura, in caso contrario, trascorso un termine di tempo, si
processera la seconda migliore offerta.

Il progetto WASS, attraverso un servizio di report, fornisce
in tempo reale una vista semplice e dettagliata dei messaggi
che gli agenti si stanno scambiando nel corso di un processo
di gara. Questo feed-back immediato su cio che la piattaforma
sta processando su un server remoto garantisce un elevato
grado di trasparenza delle operazioni di contrattazione dal lato
front-end sia del fornitore sia dell’impiegato statale. Al
contempo il sistema mantiene I’anonimato dei fornitori
partecipanti.

C. Bidder Agent

Analizziamo ora come & modellato il “template” dell’agente
che rappresenta i partecipanti alla gara on-line. Secondo il
modello proprio di AgentService, I’agente viene descritto
attraverso i comportamenti, che ne caratterizzano I’attivita, e
le unita di conoscenza, che ne costituiscono il sapere.

Vediamo quindi quali sono le knowledge e i behaviour che
definiscono il bidder agent:

Knowledge

- Active Auction: contiene le informazioni sulle aste a cui
sta attualmente partecipando. Per ciascuna asta viene
identificato il tipo, la quantita e il tipo di merci per cui si sta
contrattando ed eventualmente il prezzo di partenza suggerito
dall’acquirente;

- Auction Repository: contiene informazioni su ogni asta a
cui I’agente ha partecipato, consiste in pratica in un archivio
storico utile all’agente come base statistica per formulare
offerte sempre piu vincenti;

- Budget: & composta di tutti i dati necessari all’agente per
formulare le offerte, quali ad esempio il prezzo limite e altre
indicazioni stabilite dal fornitore che rappresenta;

Behaviour

- Communicator: concerne tutta I’attivita di comunicazione

66

baldoni
66

tra offerente e banditore: ricezione del bando dell’asta, invio
delle offerte e ricezione delle informazioni sullo stato attuale
dell’asta.

- Operator(s): implementa un particolare algoritmo di
contrattazione strettamente legato al tipo di asta a cui I’agente
partecipa.

- Manager: quando viene a conoscenza dell'inizio di un'asta
decide in base al “Budget” se parteciparvi ed in caso di scelta
favorevole con quale strategia contrattare con gli altri agenti.

Il Template del bidder agent pué naturalmente essere
modificato, definendo differenti behaviour e knowledge, o piu
facilmente personalizzando gli Operator. Ad ora sono
implementati Operator con algoritmi per la contrattazione in
aste al ribasso di tipo semplice, vickrey, busta chiusa, ed aste
al rialzo di tipo inglese.

Vediamo ora come si articola I’attivita del bidder agent
durante la partecipazione ad un’asta. L’agente banditore
dell'asta comunica l'inizio dell'asta attraverso il behaviour
Communicator; quest'ultimo inserisce in Active Auction i
parametri dell'asta e il prezzo di partenza e attiva il behaviour
Manager.

Il Manager decide se partecipare 0 meno all'asta a seconda
del prezzo limite e delle indicazioni contenute in Budget; se
decide di parteciparvi sceglie l'algoritmo da utilizzare per
calcolare [l'offerta usando le strategie implementate in
Operator. 1l Manager poi si occupera di aggiornare I'Auction
Repository. Le offerte vengono poi inviate all’auctioneer
agent tramite il Communicator, che, come visto nel paragrafo
precedente, tra le tante offerte ricevute, stabilisce, in funzione
del tipo di asta, quale & la vincente. Il banditore si occupera
quindi di notificare I’ammontare dell’offerta temporaneamente
migliore a tutti gli agenti in gara per eventuali rilanci. Questo
fino al sopraggiungere del tempo limite per I’asta.

VI. CONCLUSIONI

Considerando il panorama estremamente eterogeneo per cio
che concerne I’Information Tecnology (IT) all’interno delle
amministrazioni pubbliche, I’attenzione & stata rivolta ad
aspetti quali l'interazione tra tecnologie diverse su varie
piattaforme e su diversi dispositivi. L’adozione di standard
aperti e I’assenza di vincoli di linguaggio o piattaforme da
utilizzare risulta decisiva al fine di rendere raggiungibili i
risultati prefissati. Da qui la scelta di uno strumento software
quale il Web Service, basato su standard aperti e caratterizzato
da portabilita e interoperabilita. Si e percio voluto realizzare
un’applicazione Web semplice, intuitiva e funzionale, che
presentasse un alto grado di autonomia riducendo al minimo
gli interventi, sia dell’amministrazione pubblica che dei
fornitori. Per far fede a tale principio, é stato sviluppato un
servizio che si avvalesse della tecnologia ad agenti proprio per
la loro capacita di compiere azioni autonome in contesti
complessi.

Gli agenti, grazie a caratteristiche quali autonomia e
proattivita, si candidano ad essere la strategia vincente per

modellare il nascente quadro economico nel quale sempre piu
spesso sara richiesto alla macchina di esibire comportamenti
“intelligenti”.

Il progetto WASS presenta ampi margini di miglioramento
in quanto in questa sua prima realizzazione costituisce una
solida infrastruttura software di base, sulla quale poter
implementare ulteriori servizi e funzionalita. Il progetto é stato
concepito proprio come punto di partenza estremamente
“aperto” e flessibile in termini di:

- adattabilitd ad eventuali nuovi vincoli normativi in materia
di approvvigionamento per via telematica o ad esigenze
peculiari di un ente pubblico. Queste possono risultare
decisamente differenti per effetto della disomogeneita
esistente tra le realta comunali, provinciali e regionali sia a
livello nazionale che in altri paesi;

- possibilita di implementare una piu ampia casistica dei
comportamenti (behaviour) per ogni singolo agente
partecipante alla gara. Questo rende I’agente sempre piu
capace di adattarsi autonomamente alle differenti circostanze.
Ad esempio, prevedendo cambi di comportamento di uno
stesso agente fornitore in funzione dell’importo complessivo
della commessa, dell’andamento della trattativa d’asta in
corso, o della differente categoria merceologica oggetto della
trattativa d’asta, ecc. In questo ambito la letteratura di
riferimento dalla quale poter attingere nuove logiche
comportamentali € rappresentata dalla Teoria dei giochi [23].

- possibilita di affiancare altre tipologie d’asta a quelle ad
ora previste.

La suddivisione del progetto WASS in tre componenti
distinti, permette di mantenere un ottimo livello di modularita
e di chiarezza a servizio dello sviluppatore. In una visione di
pill ampio respiro e grazie a tale modularita, alla soluzione si
potranno affiancare altri progetti in grado di integrarsi,
interagire e di automatizzare i processi che precedono la gara
d’appalto (studio di fattibilita, richiesta di finanziamento,
autorizzazione, capitolato, pre-qualificazione), nonché i flussi
documentali che gli stessi originano. Inoltre, per ottenere
questa ulteriore semplificazione delle operazioni a carico degli
impiegati statali, potrebbe essere necessaria una parallela
riformulazione e standardizzazione di tali fasi.

Il sistema proposto, proprio per la sua architettura, ben si
adatta ad operare anche in contesti differenti da quello del
settore pubblico. A tal fine occorrera, oltre alla
personalizzazione dell’interfaccia, che i ruoli del banditore e
dei partecipanti all’asta siano interpretati da soggetti
differenti e che i relativi agenti che li rappresentano utilizzino
gli appropriati algoritmi di contrattazione attraverso gli
Operator della libreria del WASS (ad esempio una casa d’aste
con un’asta all’inglese).

L’interesse verso I’informatizzazione dei processi delle
pubbliche amministrazioni & dimostrato dal numero crescente
di applicazioni che hanno per oggetto I’e-government; nel
caso dell’acquisizione di risorse & interessante valutare e
rapportare al WASS il progetto eMarket proposto dal
Ministero delle Comunicazioni e Tecnologie Informatiche
della Romania [24].

67

baldoni
67

Come specificato dai realizzatori, il sistema eMarket € un
progetto di commercio elettronico portato avanti dal governo
della Romania nell’ambito dell” “European eGovernment
Framework” nella forma di un mercato virtuale su internet. I
progetto pilota € iniziato nel marzo del 2002 con lo scopo di
offrire una strada alternativa alle acquisizioni pubbliche. Le
aste sono organizzate dalle istituzioni pubbliche e sono rese
disponibili a qualsiasi societa privata. Il meccanismo di offerta
& molto semplice ed il sistema garantisce la vittoria al miglior
offerente. L’eMarket sembra offrire molti dei vantaggi
discussi per il WASS, primo fra tutti trasparenza e
concorrenza nelle aste, ma il sistema di contrattazione ¢
sostanzialmente differente dato I'impiego nel WASS della
tecnologia ad agenti. Il WASS garantisce, per le caratteristiche
prorpie dei MAS, un livello piu elevato di automatizzazione
del processo di contrattazione e maggiore flessibilita di
utilizzo vista la facile riusabilita e personalizzazione dei
componenti gia realizzati e la possibilita di programmarne di
nuovi progettati ad hoc per rispondere a esigenze differenti.

Considerando il mercato in cui sivaa collocare un
sistema fortemente autonomo come quello realizzato, &
indubbia una certa perplessita da parte degli operatori nel
delegare decisioni di importanza strategica “completamente
nelle mani di un software”. In tale contesto, potrebbe essere
oggetto di studio una soluzione piu equilibrata dal punto di
vista del grado di interazione e decisione concesso ai suoi
utenti, limitando gli agenti all’esecuzione automatica di task
ripetitivi e quindi a strumenti computazionali per il supporto
alle decisioni. Queste alternative potrebbero, in un secondo
tempo, essere testate dal punto di vista delle prestazioni e
confrontate con quelle del WASS.

BIBLIOGRAFIA

[1] eEurope 2005 Action Plan:
http://europa.eu.int/information_society/eeurope/2005/all_about/action_
plan/text_en.htm

[2] “E-government: nuovi paradigmi organizzativi e formativi nelle regioni
e negli enti locali”: http://www.di.unipi.it/parete/Inltalia.html

[3] “E-government — maggior autonomia e iniziativa ai cittadini”:
http://www.eu.microsoft.com/italy/business/filePub/58382952wpEgovP
A.pdf

[4] “E-government”: http://cittadinionline.caltanet.it/egovern.shtml

[5] “Lasocieta dell’informazione™:
http://www.mininnovazione.it/ita/soc_info/politiche_governo/affariregio
nali.shtml

[6] DIRETTIVA 18 dicembre 2003 - Linee guida in materia di
digitalizzazione dell'amministrazione per I'anno 2004. (GU n. 28 del 4-2-
2004).

[7]1 A. Boccalatte, A. Gozzi, A. Grosso, C. Vecchiola, “AgentService”, The
Sixteenth International Conference on Software Engineering and
Knowledge Engeneering (SEKE’04), Banff Centre, Banff, Alberta,
Canada 20-24 June 2004.

[8] P.R.Wurman,, M. P.Wellman, and W. E.Walsh. The Michigan Internet
AuctionBot: A Configurable Auction Server for Human and Software
Agents. In Second International Conference on Autonomous Agents
(AGENTS’98), 1998.

[9]1 J. A. Rodriguez-Aguilar, P. Noriega, C. Sierra, and J. Padget. Fm96.5 a
java-based electronic auction house. In Second International Conference
on The Practical Application of Intelligent Agents and Multi-Agent
Technology(PAAM’97), 1997.

[10] P. Garcia, E. Gimenez, L. Godo, and J. A. Rodriguez-Aguilar.
Possibilistic-based design of bidding strategies in electronic auctions. In
The 13th biennial European Conference on Artificial Intelligence
(ECAI-98), 1998.

[11] F. Ygge and H. Akkermans. Making a case for multi-agent systems. In
M. Boman and W. V. de Velde, editors, Advances in Case-Based
Reasoning, number 1237 in Lecture Notes in Artificial Intelligence,
pages 156-176. Springer-Verlag, 1997.

[12] F. Ygge and H. Akkermans. Power load management as a computational
market. In Proceedings of the Second International Conference on Multi-
Agent Systems (ICMAS-96), 1996.

[13] B. A. Huberman and S. Clearwater. A multi-agent system for controlling
builging environments. In Proceedings of the First International
Conference on Multi-Agent Systems (ICMAS-95), pages 171-176.
AAAI Press, June 1995.

[14] M. P.Wellman. A market-oriented programming environment and its
application to distributed multicommodity flow problems. Journal of
Artificial Intelligence Research, (1):1-23, 1993.

[15] Michael J. Wooldridge, Nicholas R. Jennings, Agent Theories,
Architectures, and Languages: A Survey, Workshop on Agent Theories,
Architectures \& Languages (ECAI'94), 1994.

[16] M. Wooldridge, “Intelligent Agents”, in Multi-agent Systems — A
Modern Approach to Distributed Artificial Intelligence, G. Weiss Ed.,
Cambridge, MA, pp. 27-78, 1999.

[17] G. Weiss, Multi-agent Systems — A Modern Approach to Distributed
Artificial Intelligence, G. Weiss Ed., Cambridge, MA, 1999.

[18] Shen, W. and Norrie, D. (1999) “Agent-Based Systems for Intelligent
Manufacturing: A state-of-the-Art Survey”. Knowledge and Information
Systems, 1(2):129-156.

[19] FIPA Abstract Architecture Specification, FIPA standard SC00001L.:
http://www.fipa.org/specs/fipa00001/SC00001L.pdf.

[20] Standard ECMA-335: Common Language Infrastructure (CLI) 2nd
Edition, Dec. 2002, ECMA:
http://www.ecma-international.org/publications/standards/Ecma-
335.htm.

[21] Standard ISO/IEC 23271:2003: Common Language Infrastructure,
March 28, 2003, 1SO.

[22] Microsoft Shared Source CLI:
http://msdn.microsoft.com/library/default.asp?url=/msdnmag/issues/02/
07/sharedsourcecli/toc.asp

[23] S. Tijs. Introduction to Game Theory, New Delhi, Hindustan Book
Agency, 2003.

[24] E-market, Electronic System for Public Acquisition:
http://www.e-licitatie.ro/index_en.htm

68

baldoni
68

Coordinated Change of State for Situated Agents

Giuseppe Vizzari and Stefania Bandini
Dipartimento di Informatica, Sistemistica e Comunicazione
Universita degli Studi di Milano—Bicocca
Via Bicocca degli Arcimboldi 8, 20126 Milano, Italy
{giuseppe.vizzari, bandip@disco.unimib.it

Abstract— Situated Multi Agent System models are character- fact, field based interaction and other approaches focused on
ized by the representation and exploitation of spatial information modelling agent environment [19], are intrinsically multicast
related to agents, the environment they inhabit and their posi- ntaraction mechanisms that may be useful to represent actions

tions. Specific coordination mechanisms exploiting the contextual . . .\
spatial information can be defined. In particular this paper will and interactions that should bservableby other entities

focus on issues and proposed solutions related to the coordinatedin the system. However this observability property should not
change of state for situated agents. automatically characterize all possible actions and interactions

of a Multi Agent model. To this purpose, Multilayered Multi
Agent Situated System (MMASS) [1] defines theaction
action which allows the coordinated change of the states of
Agent coordination represents a very active and challengiagents which are positioned in sites forming a clique (i.e. a
area of the research in Multi-Agent Systems (MAS). Theomplete subgraph) in the spatial structure of their environ-
term coordination refers to the interaction mechanisms thaent. This operation, which also allows a direct exchange of
allow autonomous agents to select and carry out their actianformation among the involved entities, is not observable by
within a concerted framework. The separation of the ageother agents. The aim of this paper is to describe issues related
computation model, specifying the behaviour of a single aget, coordinated changes in the state of situated agents, and
from the coordination model is a proposal that goes back poopose approaches for the management of these issues, with
the early nineties [7]. In particular, the concept of Linda tuplspecific reference to the reaction MMASS action.
space [6] and the related coordination language is the mosfThe following section will better describe the problem,
diffused metaphor adopted by current coordination languaga®wing how existing situated MAS approaches tackle the is-
and approaches. The basic model has been enhanced, onsomreof coordinated agent change of state. Section Il will focus
hand at a technical level, in order to allow a distributedn the design and implementation of mechanisms supporting
implementation of the conceptually centered tuple space [16hordinated change of state of situated agents, discussing
On the other hand, tuple spaces have been also extendedyinchronous and asynchronous cases. Conclusions and future
order to allow the specification of tuple-based coordinatiatevelopments will end the paper.
media presenting reactive and programmable behaviours (see,
e.g., [14], [15], [4]), and also allowing the specification andl. COORDINATED CHANGE OF STATE IN SITUATEDMASS
enforcement of organizational abstractions aqd c_onstramtq:)espite most agent definitions emphasize the role of the
(e.g. roles, access control rules) to agent coordination [17]gnyironment, currently most model do not include it as a first

Situated MASs (see, e.g., [1], [10], [20]) are particular ageRiass apstraction. The number of situated MAS models (that
based models which provide the representation and exploifga mogels providing a representation of spatial features of
tion of spatial information related to agents and their pos't'oébent environment) is thus relatively small, and the topic of

into the environment they inhabit. While the previously dEﬁneE’oordinating the change of state of situated agents is still not
approaches to agent coordination provide general-purpose &Rely analyzed.

ordination languages and mechanisms, situated MASs present o of the first approaches providing the possibility to

issues that could benefit from specific mechanisms for agepltine the spatial structure of agents’ environment is rep-
interaction. For instance, the conceptfield (i.e. a signal that |ogented by Swarm [12]. Swarm and platforms derived by
agents may spread in their.environment, wh.ich can influen&e(e_g_ Repad{ Mason [8]) generally provide an explicit
the behaviour of other entities) has been widely adopted Qi resentation of the environment in which agents are placed,
the generation of coordinated movements (see, €., [2], [3l}q often provide mechanisms for the diffusion of signals.
This kind of mechanism is devoted to the interaction of agernignetheless they generally represent useful libraries and tools
which may be positioned on distant points of their space, thggg ihe implementation of simulations, but do not provide a
can be situations in which agents which are in direct Coma&Smprehensive, formally defindidteraction model In other
(considering a discrete representation of agents’ environmegt).4s they do not provide support to the coordinated change

may wish to perform a coordinated change in the respectiyfsiate among agents, but just define and implement a spatial
state (for instance in order to model the exchange of infor-

mation) without causing modifications in the environment. In thitp://repast.sourceforge.net

I. INTRODUCTION

M. Baldoni, F. De Paoli, A. Martelli, and A. Omicini (Eds.): WOA 2004 — Dagli Oggetti agli
Agenti, Sistemi Complessi e Agenti Razionali, Torino, Italy, November 29" — December 1%
2004. Pitagora Editrice Bologna. ISBN 88-371-1533-4. ht t p: / / woa04. uni to. it

baldoni

70

structure in which agents, and sometimes signals, may teg';rlo;
placed. Moreover, they generally provide a sequential exed- begin
tion of agents’ behaviours (that are triggered by the environ- iocaiContext:=environment.sense(turn);
ment, which is related to the only thread of execution in the g‘jgﬁrﬁg’2;&fﬁg’:msl‘;Lﬁcégﬁﬁzﬁggtiﬁ)wm)
whole system). This approach prevents concurrency issues andif outcome<>fail then S
allows to obtain compact and efficient simulations even with a end turn:=urn+1;
very high number of entities. The price of these characteristigsie(true);
is essentially that agents are not provided with a thread 9f
execution of their own (i.e. they have a very limited autonomy
and proactiveness), and the execution of their behaviourstig 1. Agent behaviour thread in a synchronous situation.
sequential (although not necessarily deterministic).

The Co-Fields [10] and the Tuples On The Air (TOTA)
middleware [11] provide the definition and implementation gitér they have performed an agreement. The MMASS model
afield based interaction model, which specifically supports tHi9€s not formally specify what this agreement process consists
kind of interaction that implies a local modification of agents2: and how the activities related to this process influence
environment. However the defined interaction mechanism d&€nt behaviour. This choice is due to the fact that such
not provide the possibility to have a coordinated change 8ff @greement process could be very different in different
agent state without such a modification. appl_lcanon dqmalns (e.0. user authentlcatlon, transactions).

A different approach to the modelling and implementatioﬁor mgtgnce, |n.some.(_)f these situations an agent should block
of situated MAS [20] instead focuses on the definition of &S activities while waiting for the outcome of the agreement
model for simultaneous agent actions, including centraliz&40cess, while in others this would be unnecessary. Especially
and (local) regional synchronization mechanisms for agefl @ distributed environment this agreement process could
coordination. In particular, actions can be independent BFNG to possible deadlocks, and in order to better focus this

interfering among each other; in the latter case, they can $PieCt, more details on internal mechanisms related to agent,
mutually exclusive ¢oncurrentactions), requiring a contem- {0 the environment and its composing parts must be given.

porary execution in order to have a successful outcgoiat(
actions), or having a more complex influence among eaﬁh
other (both positive or negative). ’
The previously introduced MMASS model provides two [N synchronous situations a global time step regulates the
mechanisms for agent interaction. The first is based on t&¥ecution of agents actions; in particular, every agent should
concept offield, that is a signal that may be emitted by agent§€ allowed to carry out one action per turn. In order to enforce
and will spread in the environment according to its topologgynchronicity, the management of system time step and agent
and to specific rules specifying field diffusion functions. Thesictions can be delegated to agengsivironment that they
Signa| may be perceived by agents which will react accordiﬁ@/Oke not only for functional reasons (|e perform an action
to their specific behavioural specification. The model algghich modifies the environment) but also to maintain system
defines the possibility for having a coordinated change of ag&yinchronicity (i.e. agent threads are put into a wait condition
state through theeactionoperation. The outcome of this jointuntil the environment signals them that the global system
action depends on three factors: time step has advanced). This proposal assumes that agents
. agents’ positions reacting agents must placed in site&® provided with one thread of execution, and also provides

forming a complete subgraph in the spatial structure H?at the environment has at least one thread of execution
the environment: of its own. In fact the environment is responsible for the

. agents'behavioural specificationsagents must include management of field diffusion (more details on this subject

compatible reaction actions in their behavioural speciﬁ:-an be found in [3]), other modifications of the environment
cation: (as consequences of agents’ actions), and to enforce system

« agentswillingnessto perform the joint action: one of the SYnchronicity.

preconditions for the reaction is the agreement among thdn the following, more details on agent and environment
involved agents. activities and threads of execution will be given; the situation

. . S . that will be considered provides one thread for every agent,
The following section will discuss issues related to the .) k
: . . ; . and a synchronous system. The described approach is valid
design and implementation of this operation, but several . . TR
! .) ! bath for centralized and for distributed situations; in the latter
considerations are of general interest in the development Q . .
. . : ase one of the sites must be elected as a representative of
mechanisms supporting the coordinated change of state for : . ; .)
. the whole environment, and interactions with the environment
situated agents.

can be implemented through a remote invocation protocol

(e.g. RMI or others, according to the chosen implementation
Ill. REACTION platform).

Synchronous environments

Reaction is an activity that involves two or more agents that 1) Agent behaviour management threadhe sequence
are placed in sites forming a clique (i.e. a complete subgrapif) actions performed in the agent behaviour thread is the
and allows them to change their state in a coordinated wdgllowing:

baldoni
70

71

begin turn:=0; procedure reactionManagement(agent, action, turn)
do begin
begin involvedAgents:=action.getReactionPartners();
until(forall i in 1..n, agent_i.actionperformed=true) reactingAgents:=new list();
begin reactingAgents.add(agent);
collect(agent_i,action,agentTurn) agreed:=true;
if agentTurn=turn then forall agent_i in involvedAgents
begin begin
manage(agent_i,action, turn); if agent_i.agreeReaction(involvedAgents) = false then
agent_i.actionperformed:=true; begin
end agreed:=false;
else break;
agent_i.wait(); end
end reactingAgents.add(agent_i);
turn:=turn+1; end
forall i in 1..n if agreed=true then
agent_i.actionperformed:=false; forall agent_i in reactingAgents
notifyAllAgents(); agent_i.performReact(turn);
end else
while(true); forall agent_i in reactingAgents
end agent_i.notifyFailure(turn);
end

Fig. 2. Environment behaviour thread in a synchronous situation.
Fig. 3. Reaction management procedure in a synchronous situation.

« sense its local contextn order to understand what are
the actions whose preconditions are verified, the ageheir action for the current turn, and thus all entities are free to
has to collect information required for action selectiorperform actions for the next one. The environment must thus

and more precisely: keep track of the actions performed by agents in the current
— active fields in the site it is positioned on andurn, and then notify waiting agents whenever system time
adjacent ones; advances. More schematically, a pseudo-code description of

— agents placed in adjacent sites, and their types; the environment thread of execution is shown in Figure 2. In

. select which action to performaccording to the action part.iculgr themanage fungtion inspect_s_the specified action
selection strategy specified for the system (or for tH&vhich mglqdes _the required preconditions a_nd paramet_ers),
specific agent type), the agent must select one action%‘?‘:ks if it is valid and then palls the appropriate subroutines
be performed at that turn (if no action’s preconditions at¥hich effectively perform actions.
satisfied, the agent will simply skip the turn); The previously introduced sequences require a slight in-

. perform the selected actiorin order to perform the tegration to specify how reaction actions are managed. In
previously selected action, the agent must notify tH&iS case the beginning of an agreement process stops other
environment, because the action provides a modificati@gent actions until this process is over, either positively (when

of agent's local context or even simply to maintain syste@! other involved agents agreed) or negatively (when the
synchronicity. agreement failed). In this way, also system time advancement

The last step in agent behavioural management cycle n{g);topped until the reaction process is over, preserving system

cause a suspension of the related thread by the environm&¥fchronicity.

In fact an agent may be trying to perform an action for turn The reaction is triggered by the agent which first re-
t while other ones still did not perform their actions for turrfiuires the execution of this action to the environment. The
t—1. A pseudo-code specification of agent behavioural threlgiter becomes the leader of the group of involved agents,
sequence of activities is shown in Figure 1. Agents must th@lgeries them asking if they agree to take part in the reac-
keep track of current turn and of the previously performéiPn, if an agreement is reached it signals them to change
action. In fact, as will be introduced in the following subsectheir state, then starts again the normal system behaviour,

tion, system dynamics might require an agent to reconsider #owing the advancement of global system time step and
action when it is involved in a reaction process. thus agent execution. More schematically the environment

2) Environment management threadfhe environment, Procedure devoted to the management of reaction is shown

more than just managing information on agents’ spatial cotit 3. An agent receiving anotifyFailure will have a
text, also acts as a monitor in order to handle concurrency fail outcome, and thus will not advance its time step and
sues (e.g. synchronization, agreements among agents). Agéfills start over again its behavioural cycle for the current
must notify the environment of their actions, and the latter witirn. ThereactionManagement procedure is one of the
manage these actions performing modifications to the involvégecific subroutines invoked by the the environment thread of
structures (e.g. sites and active fields) related to the followigecution previously shown in Figure 2 through thenage
turn. The state of the current one must be preserved, in ordiéiction.

to allow its sensing and inspection by agents which still did 3) Examples:A sample scenario illustrating the evolution

not act in that turn. of a centralized synchronous MMASS system is shown is
The environment may also put an agent intavait con- Figure 4. Scenario (a) provides the presence of a set of agents
dition, whenever performing its action would break systerfAgent-1, ..., Agent-n), which do not require the execution

synchronicity. This wait ends when all agents have performed reaction actions. The system dynamics is the following:

baldoni
71

72

2: emit begin
Agent-1 do)
2.1: diffuse n.2: advance begin .
localContext:=mysite.sense();
nextAction:=actionSelect(localContext);
Agent-2 1.1: actionDone outcome:=site.act(nextAction);
(@ while(true);
[_—T Environment end
1: trigger,
: 3: emit j‘]‘ Fig. 5. Agent behaviour thread in an asynchronous situation.
n.1: move
Agent-n n: transport and decides to agree(action 2.2.1);

« the environment indicates all involved agents that they
must perform the reaction (actions 2.3 — 2.5) and then
advances system time.

4) Discussion: The previously described approach to the

26:advance Management of agents, their cycle of execution, their en-
vironment and reaction mechanisms provides a key role of
pgentz fern dreelAentL Agentd the environment, which represents a sort of medium ensuring

2.3: performReact

Agent-1 2: react [Agent-2, Agent-3]

(b) 2:1.1: agreed _ specific properties, and especially system synchronicity. This
T Environment is a global feature of the system, and the simplest way
—_— 2'4:1?;{2?:; T to ensure it. ?s to have a ponceptually centralizgd ur_lit to
1 T i which all entities must refer in order to perform their actions.
2.2: agree [Agent-1, Agent-2] This medium and coordination models providing a centralized
Agent-3 2.2.2: agreed medium (e.g. a tuple space) seem thus similar, in fact, both
| T 2.5: performReact provide an indirect interaction among agents and must tackle
221 slect issues related to the concurrent access to shared resources.

The main difference is the fact that, for instance, a Linda
Fig. 4. A sample scenario illustrating the evolution of a centralizetuple space does not provide abstractions for the definition
synchronous MMASS system. In (a) Agent-2 is put into a wait conditioBf spatial information (e.g. a topology an adjacency relation)
to preserve system synchronicity. In (b) an agreement process for a reacﬁc_l)n ’ . .
among Agent-1, Agent-2 and Agent-n is shown. at should be modelled, represented and implemented. An in-

teresting feature of advanced artifact based interaction models,

and more precisely reactive and programmable tuple spaces,

« Agent-2 performs a trigger (action 1); is the possibility to specify a behaviour for the artifact, which
« Agent-1 emits a field (action 2) and as a consequence #fuld be a way to implement interaction mechanisms defined
environment performs its diffusion (action 2.1); by the MMASS model.

« Agent-2 also tries to perform an emission (action 3), but The described approach provides computational costs that
the environment puts it into a wait condition, as othefould be avoided, in a centralized situation, by providing a

agents did not perform their actions in that turn; single thread of execution, preventing synchronization issues
« agents that are not shown in the Figure perform thely activating agents in a sequential (although non necessarily
actions, which are managed by the environment; deterministic) way (i.e. adopting the approach exploited by

« eventually Agent-n performs a transport action (actiogwarm-like simulation platforms). Whenever autonomy and
n), and as a consequence the environment performs Rf9activeness are not central elements in agent modelling, this
movement (action n.1), advances system time (acti§fuld be a feasible and cost effective choice. It could be the
n.2) and eventually notifies agents. Agent-2 emit actidise of simulations characterized by a large number of entities
(action 3) will now be managed. endowed with very simple behavioural specification. However,

: . . : : ... the described approach can useful when integrating into a

A different case is shown in scenario (b), which exemplifies

; sm[gle environment entities characterized by a higher degree
the sequence generated by a reaction request. Agent-1, Age? = : ; -
" L : ; Of autonomy, proactiveness and heterogeneity (for instance, re-

2 and Agent-3 are positioned in sites forming a clique. In this_.

case system dynamics is the following: active and deliberative agents developed with deeply different

approaches).
« Agent-3 performs a trigger (action 1);

« Agent-1 requires the environment to perform a reaction)
with Agent-2 and Agent-3 (action 2); B. Asynchronous environments

e as a consequence to this request, the environment askB an asynchronous situation, the mechanisms for the man-
Agent-2 if it intends to agree in preforming the reactiomgement of agents and their interactions with the environment,
(action 2.1) and it receives a positive reply (action 2.1.1&re on one hand simpler than in a synchronous case (i.e. there

the environment then asks Agent-3 if it wishes tds no need to ensure that every agent acts once per turn), but

reconsider its action for the current turn (action 2.2); thean also be more complex as there less constraints on action
agent performs anew an action selection (action 2.2tliings. In a centralized situation, it is still possible to delegate

baldoni
72

73

begin begin myReactAction:=this.getAction(reactionRequest); if
do myReactAction<>null then
begin begin
reactionRequest:=mysite.getReactionRequest(); if reactionRequest.author <> this then
newReactManager:=new ReactManagerThread(reactionRequest); begin
newReactManager.start(); agreed:=checkAgreement(reactionRequest);
while(true); site.replyReactReq(reactionRequest, agreed);
end end
if agreed=true then
begin
Fig. 6. Agent reaction detection thread in an asynchronous situation. agreemReached:=site.getReactAgreement(reactionRequest);

if agreemReached=true then
this.changeState(myReaction.nextState);
end

the management of shared resources to an environment entity, end
whose task is actually simpler than in a synchronous situati®f site replyReactReq(reactionRequest, false):

as it does not have to maintain global system synchronicigypd

although it must guarantee the consistent access to shaFr_ed _ _ e
resources. In a distributed and asynchronous situation, eVé('h 7. Agent reaction management thread in an asynchronous situation.
if it would be possible to elect a single representative of Agent basic

agents’ environment (like in the synchronous and distributed threads

case, described in the previous Section), this possibility would / N

represent a bottleneck and is not even necessary. In fact, the
main reason for the presence of a single representative of

agent environment was to assure system synchronicity. This | | _____ Keeeemmmmnmnnnnaans azfjectniq‘;qt
Section will then focus on a distributed and asynchronous | request
scenario, and will describe a distributed approach providing ;
the collaboration ofsites instead of a single centralized ;
environment, for the management of coordinated change of ! Reaction

agents’ states. | Lo T = = = = = ===~ AQreement

1) Agent related threadsAs previously introduces, agents ! !
will now collaborate directly with the sites they are placed i I
on, and their behavioural threads must thus be changed. A ! '

. . - - .
pseudo-code formalization of agent behaviour thread in an ; Rextion
e o Behaviourd] ' detection Additional threads
asynchronous situation is showr_1 in Figure 5. _ thread - e read for reaction
Another change that can be introduced in the agent is the management

presence of a distinct thread for the management of reaction
requests. In fact the agreement process required by the reackigr8. Threads of execution related to a single MMASS agent in a distributed
. . . . nchronous environment.
process can require a certain number of interaction amofit
agents which are placed in computational units spread over
a network. This means that a relevant delay may occur from
the beginning of an agreement process and its outcome (either
positive or negative). Being in an asynchronous situation there
is no need to stop agent behavior in order to wait for this
process to end. An agent may be provided with three kinds of
threads:

(this is checked through thgetAction invocation).
Then it must wait the notification of the success or
failure of the agreement (thgetReactAgreement
invocation may in fact suspend this thread) and, in the
former case, change the agent state.

« its behavioural thread, which is very similar to the one A diagram showing the three kinds of thread related to a

related to the synchronous situation, and whose struct§89/€ @gent are shown in Figure 8.
is shown in Figure 5; 2) Site related threadsSimilar considerations on the in-

. a thread which is devoted to the detection of reactid§nal structure of agents may be also done for sites. The
requests; this thread is responsible to query the sl@itér act as a interfaces between agents and the rest of
for pending reaction requests (which may occur concdfi€ environment, and must manage events generated both
rently) and start the third kind of thread which will man/nternally and externally. In particulainternal eventsare
age the agreement process; a pseudo-code formaliza@§herated by an agent that is positioned on the site, and more
of this thread is shown in Figure 6; precisely they are the following ones:

« threads that are devoted to the effective management sense the local contexthe site must provide an agent
of the reaction process; a pseudo-code formalization of with the information it needs to select which action it
this thread is shown in Figure 7. This kind of thread may perform (active fields in the site and adjacent ones,
must check if the agent effectively agrees to perform agents in adjacent positions and related types);
the reaction, through theheckAgreement invocation « transport requestwhen an agent attempts a transport
(only if it is not the one which actually started the reaction action, the site it is positioned on must communicate with
process). This means that first of all the agent must have the destination one in order to verify if it is empty, and
a react action matching the one specified by the request eventually allow the agent movement, which frees the

baldoni
73

baldoni

74

procedure reactionManagement(agent, action) procedure reactionManagement(site, action)

begin begin
involvedAgents:=action.getReactionPartners(); if this.agent <> null then
reactingAgents:=new list(); begin

reactingAgents.add(agent);

agreed:=true;

forall agent_i in involvedAgents
begin
adjSite:=agent_i.getSite();
adjSite.reqAgreement(action);

this.agent.notifyReaction(action);
agreed:=getReactReply(agent,action);
site.replyReact(agreed);
if agreed=true then
if site.regAgreement()=true then
this.agent.setReactAgreement(action,true);

end end
until(forall a in involvedAgents, a.gotResponse) else

begin site.replyReact(false);

if receiveAgreeResp(agent_i,action) = false then end
begin
agreed:=false;
break; Fig. 10. Reaction management procedure for non-leader sites in an asyn-
end chronous situation.

reactingAgents.add(agent_i)
end
if agreed=true then
forall agent_i in reactingAgents
begin
adjSite:=agent_i.getSite();
adjSite.performReact(action);
end
else
forall agent_i in reactingAgents
begin
adjSite:=agent_i.getSite();
adjSite.performReact(adjSite);
end
end

Fig. 9. Reaction management procedure for the leader site in an asynchronous
situation.

current site;

reaction requestupon reception of a reaction request
by the overlaying agent, the site must propagate it to
involved agents’ sites, which in turn will notify them.
The site must wait for their replies and then notify all
involved entities of the agreement operation outcome; in

other words, the site where the reaction is generated is,

the leader of the group of involved sites; a pseudo-code
formalization of the reaction management procedure for
the leader site is shown in Figure 9;

field emissionwhen a field is generated in a site it must

Externally generated even@re consequences of internal
events generated by agents in other sites; more precisely they
are the following ones:

inspect the siteupon request, the site must provide to
adjacent sites information related to active fields and to
the presence (or absence) of an agent in it;

diffusion propagationwhen a field generated in a differ-
ent site is propagated to the current one the latter must
evaluate its value through the related diffusion function
and, if the value is not null, it must propagate the field
to other adjacent sites according to the adopted diffusion
algorithm;

reaction requestupon reception of a reaction request by
the leader of a reaction group, the site must forward it to
the overlaying agent, wait for its response and transmit
it back to the leader; then it must wait for the outcome
of the reaction and notify the overlaying agent; a more
schematic description of non-leader sites behavior for
management of reaction is shown in Figure 10;
transport when a remote agent attempts a transport
action, the destination site must verify if its state has
changed from the previous inspection performed by the
agent, and if it is still empty will allow the transport
action, blocking subsequent incoming transports.

be added to the set of active fields present in the site, andS
it must be propagated to other adjacent sites accordingtﬁ%
the chosen diffusion algorithm.

ite is thus responsible for many concurrent activities;
proposed structure of threads for a site is shown in
Figure 11: there are two threads respectively detecting internal
With reference to reaction, and especially on the selectionafid external events, and these two threads generate additional
a leader site, there are some additional elements that mushes in order to effectively manage them.
integrated with the previous description of site behaviour. In 3) Inter-thread communicationBoth agents and sites are
an asynchronous environment, there is the possibility that twoovided with a set of threads which must be able to com-
agents concurrently start two related reactions. For instanogynicate among themselves in a safe and consistent way.
given three agents A, B and C, placed in sites forming a cliguégr instance, agent reaction management thread in an asyn-
agent A and Agent B require their respective sites to reaattironous situation communicates to the underlying site by
among themselves and with agent C. There is not a singheans of aeplyReactRequest invocation (see Figure 7).
site which started the reaction, so a leader must be chos€he latter performs a write operation on a thread-safe queue,
Whenever this kind of situation occurs an election protoctihat is a structure with synchronized accessors (observers
must be invoked. The first and probably simplest solution, is tmd modifiers) that may be accessed by site threads but also
associate a unique identifier related to every site (a very simjlg the ones related to the agent that is placed on it. The
way of obtaining it could be the adoption of a combination aeplyReactRequest invocation inserts an event in this
the IP address and TCP port related to the site) and assume thegue, and notifies threads that were waiting for the generation
the one with the lowest identifier becomes the leader of tloé events. In this case the thread interested in the agent reply
reaction group, and others will behave as the reaction requesthe reaction request is the one related to the underlying site
was generated by the leader. which effectively manages the agreement process with other

baldoni
74

75

Site basic . . .
threads 5) Discussion: Some of the concurrency issues that were
/ N\ described in this Section are common also in direct agent

interaction models. In fact, they are generally designed to work
in an asynchronous situation in which messages may be sent
¢ ----0----- :< ------------------------ wﬂ%{j‘ﬂ and received_ at.any time. In ordgr not to mjss any message,

i the communication partners require some kind of indirection

' Propagate mechanism and structure. For instance, the abstraction of
®----- T B field request mailbox is adopted by Zeus [13], and Jade [18] use®ues

! for managing agent messages. In both cases, specific threads

1 of execution, in addition to those that are related to agents,
are adopted to manage communication channels and message

Reaction

T it T T action request exchange.
. . ! X Unlike the synchronous approach, in this case no single
el avent Remote event |m;g£$ Erégggler;e]veirtlt gntlty managing t.he coordm.ated ghange of state among .agents

is provided. While managing this kind of operation in a

Fig. 11. Threads of execution related to a single MMASS site in a distributélistributed way provides a more complex implementation of

asynchronous environment. sites, to which this activity is delegated, this approach seems
more suitable in distributed situations, unless synchronization
is absolutely necessary. In fact, a single entity managing this

involved entities. It could be either the leader, which is PWperation may represent a bottleneck and a single point of

_—— e - =

into a wait condition by the and thesceiveAgreeResp failure, hindering system robustness.
invocation (see Figure 9), or any other involved site, which is
put into a wait condition by @getReactReply invocation IV. CONCLUSIONS AND FUTURE DEVELOPMENTS

(see Figure 1,0)' o) The paper has discussed issues related to the coordinated
4) Precautions on network communicatiowhat was still - change of state for situated MASSs, proposing specific solutions
not considered is the possibility to have failures in networ, svnchronous and asynchronous situations. In particular,
transmission, even if to design a robust distributed protocol fi{e MMASS reaction action was considered as a specific
reaction management is not the focus of this work. Moreovggse of coordinated change of state in situated agents, but
the chosen technologies supporting network communicati@8yera| considerations are of general interest in the design and
could implement mechanisms assuring a reliable form gfsiementation of mechanisms supporting this form of co-
communication. However, considering the simple 10SS @fginated action in situated MASs. In particular the approach
messages related to the orchestration of reaction, a simgl&criped in [20] provides a similar approach to situated agents
protocol providing the transmission acknowledgements and 8, dination: in fact it provides a centralized synchronization,
definition of timeouts in order to avoid deadlock situationgimjjar to the one provided by the environment described in
could be easily implemented. Whenever this kind of iSSUsction 111-A. A distributed mechanism for agent coordination
is detected, the agents’ threads related to the managemenfiso described, but it provides a personal synchronizer for
of reaction could simply try to repeat the whole proces§ery agent while in the approach described in Section 111-B

from the beginning. Moreover, the fact that every agent g,y site is responsible for providing this kind of service to
related to multiple threads of control, greatly reduces thge nosted agent.

dangers and issues related to possible deadlocks. In fact, th¢pis work is part of a wider research aimed at the design

agent behaviour thread is separated from the management g gevelopment of a platform supporting the development of
react_lt_)ns, angl the same can be said for vyhat concerns RMPIASS based systems. In this framework, another work fo-
specific functions (e.g. threads related to field diffusion agg,seq on supporting field diffusion [3], while agent movement
separated from those managing reactions). In this way a failyig pe object of a through analysis: in fact this mechanism
in a reaction process does not hinder the possibility of thgqyires an attention to functional aspects (e.g. concurrent
agent to continue its common behaviour, Iegvmg aside taﬁents’ attempts to move towards the same empty site) and
specific reaction that caused the problem. This price of thegQq non-functional ones related to agent mobility in distrib-
advantages is that agents and sites are more complex frofk&@y environments. In particular the latter represents a whole

computational perspective, and require more resources both,ig, in agent research and software engineering in general
terms of memory and processor time. Eee e.g., [5)).
e

There are also some functional requirements that must
considered: the execution of an action during an agreement REFERENCES
process might change the preconditions that brought an agent _ - . ,
Stefania Bandini, Sara Manzoni, and Carla Simone, “Heterogeneous

to accept the prPDOS?d agreeme'nt. Ir_‘ SpeCIfIC cases th'SICOUJI agents situated in heterogeneous spacAgglied Artificial Intelligence

represent a serious issue, and in this case the possibility of vol. 16, no. 9-10, pp. 831-852, 2002. . _

the reaction management thread to temporarily block the agelgt Stefania Bandini, Sara Manzoni, and Giuseppe Vizzari, “Situated

behavi | one should be introduced. suitablv exploiting the cellular agents: a model to simulate crowding dynamicslEICE
ehavioura ’ y exp g Transactions on Information and Systems: Special Issues on Cellular

inter thread interaction mechanism. Automata vol. E87-D, no. 3, pp. 669-676, 2004.

baldoni
75

(3]

(4]

(5]

(6]
(7]

(8]

[9

[10]

[11]

[12]

Stefania Bandini, Sara Manzoni, and Giuseppe Vizzari, “Toward43]
a specification and execution environment for simulations based on
mmass: Managing at-a—distance interactionPiaceedings of the 17th

European Meeting on Cybernetics and Systems ReseRotiert Trappl, [14]
Ed. 2004, pp. 636-641, Austrian Society for Cybernetic Studies.
Giacomo Cabri, Letizia Leonardi, and Franco Zambonelli, “Mars{15]

a programmable coordination architecture for mobile ageni§EE
Internet Computingvol. 4, no. 4, pp. 26-35, 2000.

Alfonso Fuggetta, Gian Pietro Picco, and Giovanni Vigna, “Understand-
ing code mobility,” IEEE Transactions on Software Engineeringl. [16]
24, no. 5, pp. 342-361, 1998.

David Gelernter, “Generative communication in linda®CM Trans.
Program. Lang. Systvol. 7, no. 1, pp. 80-112, 1985.

David Gelernter and Nicholas Carriero, “Coordination languages afiti7]
their significance,” Communications of the ACMol. 35, no. 2, pp.
97-107, 1992.

Sean Luke, G. C. Balan, Liviu A. Panait, C. Cioffi-Revilla, and S. Paus,
“Mason: a java multi-agent simulation library,” iroceedings of Agent
2003 Conference on Challenges in Social SimulatR@03.

Marco Mamei, Letizia Leonardi, and Franco Zambonelli, “A physically{18]
grounded approach to coordinate movements in a tean®Ptdneedings

of the 1st International Workshop Mobile TeamwdR02, pp. 373-378, [19]
IEEE Computer Society.

Marco Mamei, Franco Zambonelli, and Letizia Leonardi, “Co-fields:
Towards a unifying approach to the engineering of swarm intelligent
systems,” inEngineering Societies in the Agents World Ill: Third
International Workshop (ESAW2002002, vol. 2577 ofecture Notes

in Artificial Intelligence pp. 68-81, Springer—\Verlag. [20]
Marco Mamei and Franco Zambonelli, “Programming pervasive and
mobile computing applications with the tota middleware,”2imd IEEE
International Conference on Pervasive Computing and Communication
(Percom2004)2004, pp. 263-273, IEEE Computer Society.

Nelson Minar, Roger Burkhart, Chris Langton, and Manor Askenazi,
“The swarm simulation system: A toolkit for building multi-agent
simulations,” Working Paper 96-06-042, Santa Fe Institute, 1996.

76

Hyacinth S. Nwana, Divine T. Ndumu, Lyndon C. Lee, and Jaron C.
Collis, “Zeus: A toolkit for building distributed multiagent systems,”
Applied Artificial Intelligencevol. 13, no. 1-2, pp. 129-185, 1999.
Andrea Omicini and Enrico Denti, “From tuple spaces to tuple centres,”
Science of Computer Programmingpl. 41, no. 3, pp. 277-294, 2001.
Andrea Omicini and Franco Zambonelli, “Coordination for Internet
application developmentAutonomous Agents and Multi-Agent Systems
vol. 2, no. 3, pp. 251-269, Sept. 1999, Special Issue: Coordination
Mechanisms for Web Agents.

Gian Pietro Picco, Amy L. Murphy, and Gruia-Catalin Roman, “Lime:
Linda meets mobility,” inProceedings of the 21st International Con-
ference on Software Engineering (ICSE99999, pp. 368-377, ACM
press.

Alessandro Ricci, Mirko Viroli, and Andrea Omicini, “Agent coordi-
nation context: From theory to practice,” @ybernetics and Systems
2004 Robert Trappl, Ed., Vienna, Austria, 2004, vol. 2, pp. 618-623,
Austrian Society for Cybernetic Studies, 17th European Meeting on
Cybernetics and Systems Research (EMCSR 2004), Vienna, Austria,
13-16 Apr. 2004. Proceedings.

Giovanni Rimassa,Runtime Support for Distributed Multi-Agent Sys-
tems Ph.D. thesis, University of Parma, January 2003.

Luca Tummolini, Cristiano Castelfranchi, Alessandro Ricci, Mirko
Viroli, and Andrea Omicini, ““Exhibitionists” and “voyeurs” do it
better: A shared environment approach for flexible coordination with
tacit messages,” idst International Workshop on “Environments for
MultiAgent Systems” (EAMAS 2004panny Weyns, H. Van Dyke
Parunak, and Fabien Michel, Eds., 2004, pp. 97-111.

Danny Weyns and Tom Holvoet, “Model for simultaneous actions in
situated multi-agent systems,” Kirst International German Conference
on Multi-Agent System Technologies, MATE®03, vol. 2831 ot NCS

pp. 105-119, Springer—Verlag.

baldoni
76

Timed Coordination Artifacts withReSpecT

Alessandro Ricci Mirko Viroli
DEIS DEIS
Universita di Bologna — Sede di Cesena Universi@a di Bologna — Sede di Cesena
via Venezia 52, 47023 Cesena (FC), ltaly via Venezia 52, 47023 Cesena (FC), Italy
Email: aricci@deis.unibo.it Email: mviroli@deis.unibo.it

Abstract— Environment-based approaches to Multi-Agent Sys- shown to be Turing-complete, thus allowing any coordination
tems (MAS) advocate the use of abstractions mediating the algorithm to be specified.
interaction between agents, providing an alternative viewpoint
to the standard speech-act-based approach. A remarkable exam- However, in most application scenarios characterised by a
ple is rooted in the notion of coordination artifact embodied high degree of opennes and dynamism, coordination tasks need
entities provided by the MAS infrastructure to automate a g pe time-dependent. On the one hand, it is very useful to

specific coordination task, and featuring peculiar engineering . . .
properties such as encapsulation, predictability, inspectability specify (and then enforce) given levels of liveness and of

and malleability. An example technology supporting this scenario duality of service — e.g. requiring agents to interact with the
is TUCSoN, where coordination artifacts are built as tuple centres coordination artifact at a minimum/maximum frequency. On
programmed with the ReSpecT logic language. the other hand, temporal properties are also fundamental as-
In most application scenarios characterised by a high degree pects concerning interception of violations in the agent-artifact
gf openness and dynamism, coordination tasks need to be time- oot an agent might be required to provide a service
ependent so as to be able to specify and guarantee necessarzv.
levels of liveness and of quality of service. Moreover, temporal Within a given deadline, or might require the artifact to do the
properties are also fundamental for intercepting violations in the Same. As shown in [15], it is sensible e.g. to let coordination
agent-artifact contract, which is at the root of the engineering artifacts provide agents with operating instructions featuring

paper we introduce an extension to theReSpecT language timed coordination tasks

allowing to define timed coordination artifacts in the TuCSoN
infrastructure. This is achieved by adding the management of The need for specifying timed coordination policies
trap events, fired and intercepting using the same mechanism emerged in a parallel way in the field of distributed systems

currently used by ReSpecT to handle communication events, Il Eor inst in Javas 41 orimitivead d
thus in a uniform and coherent way. Examples are provided to as well. For instance, in JavaSpaces [4] primitivead an

show the expressiveness of the language to model temporal-basedake — looking for a tuple analogously ted andin in
coordination tasks. LINDA — comes with a timeout value: when the timeout
expires the request immediately returns a failure. Similarly,
|. INTRODUCTION tuples can provide &asetime when inserted in the space:

In the context of Environment-based approaches to interaghen the lease expires the tuple is automatically removed.
tion on Multi-Agent Systems (MAS), the notion ebordina- All these primitives, and others based on time, can actually be
tion artifact has been introduced as the root of an engineeriige basis for structuring more complex coordination scenarios,
methodology for agent coordination [10], [15]. The key ideguch as e.g. auctions and negotiations protocols including
of this approach is to equip the MAS with a coordinatiofime-based guarantees and constraints.

infrastructure, providing abstractions — called coordination |, this work we discuss how the basReSpecT tuple

artifacts — perceived by the agents as run-time entities lving e model has been extended to support the definition and
in the environment. Coordination artifacts are designed Willhaction of time-aware coordination policies. The basic idea
the goal of automating a specific coordination task, provided 1, exploit the programmability of the coordination medium
to the agents as a service, and featuring peculiar engineerii§anded with a temporal framework to get the capability
properties such as encapsulation, predictability, inspectabilfy nogelling any time-based coordination patterns, realised

and malleability [10], [15]. _ _ ~directly by specifying a suitable behaviour of the artifact.
An example technology supporting this scenario is

TuCSoN [11], [14]. In TUCSON, the nodes of the network can _ The rest of the paper is organised as follows: Section Il
be populated byuple centreplaying the role of coordination discusses in details tieeSpecT extended model, Section Il
artifacts. Tuple centres areitpA-like blackboards, whose Provides some concrete examples exploiting the extended
reactive behaviour can be programmed using the logic-badB@del, Section IV provides some reflections on the features
languageReSpecT, so as to make the tuple centres enca@f the approach and finally Section V provides related works,
sulating any coordination task, from simple synchronizatidiPnclusion and future works.

policies up to complex workflows. In particuldReSpecT is

M. Baldoni, F. De Paoli, A. Martelli, and A. Omicini (Eds.): WOA 2004 — Dagli Oggetti agli
Agenti, Sistemi Complessi e Agenti Razionali, Torino, Italy, November 29" — December 1%
2004. Pitagora Editrice Bologna. ISBN 88-371-1533-4. ht t p: / / woa04. uni to. it

baldoni

78

o == {reaction(p(t),(Specification to remove a tupleifl _r), read a tupler@ _r), insert a tuple
bod (out _r), and check for the absence of a tupf®(r). This
) sequence can contain a direction predigatiepre or post ,

p == cp|rp ReSpecT primitives which is used to filter between reactions to a listening or a
cp == out |in |rd Comm. primitives speaking. In particular, we here consider therefore five kinds
rp == in_r|rd.r | Reaction primitives of external communication events: listening obat , rd , or

out r | no.r o in , and speaking of {n andrd .
body ::= [goal, goal}] Specification body Reactions are non-deterministically picked and executed, by
ph == pre |post Direction predicates aiomically executing all its reaction primitives. Their effect
goal == ph|rp(t) Goals is to change the state of the tuple centre, and to fire new

reactions, as long as they match some other RST — whose
head can specify a reaction primitive (internal communication
events) other than a communication primitive (external com-
munication events). This recursive creation of reactions is the
mechanism by whiclReSpecT achieves expressiveness up to

We describe here informal semantics of a significant frageaching Turing-completeness [3].
ment of theReSpecT language: the reader interested in a Primitivesin _r, rd _r, andno_r might fail (the former
formal presentation should refer to [9], [8]. Then, we descritgyo when the tuple is absent, the latter when it is present),
how this model can be extended so as to deal with timing which case the reaction execution fails, and its effect on
aspects, that is, with the ability to trigger trap events att@e tuple centre is rolled back. The computation fired by the
specified time (in the future). external communication event stops when (if) no more pending
) reactions occur: when this happens the tuple centre waits until
A. The Basic Model the next communication event occurs.

ReSpecT [8] is a logic-based language to program the
reactive behaviour of tuple centres [9]. B. The Extended Model

Tuple centres areoordination mediaextending the basic First of all, the model is extended with a notion of current
model of LNDA tuple spaces [5]. Similarly to INDA, they time of the tuple centrelc: each tuple centre has its own
accept and serve requests for inserting a tupléby prim- clock, which defines the passing of tinfe Actually, tuple
itive out(t)), removing a tuple matching template (by centre time is a physical time, but it is value considered to
primitive in(tt)), and reading a tuple matching templite be constant during the execution of an individual reaction:
(by primitive rd(tt)). With respect to INDA, ReSpecT in other words, we assume that refers to the time when
tuple centres specialise the tuple space model with lodlee reaction started executing. This choice is coherent with
tuples (Prolog-like terms with variables) and unification aReSpecT philosophy concerning reactions, which are meant
the matching criterion; differently from INDA tuple spaces, to be executed atomically (in the case of successful reactions).
tuple centres can be programmed so that whenever an externdih order to getTc in ReSpecT programs a new primitive
communication event occurs a computation reactively starssintroduced:
which may affect the state of the inner tuple space. External
communication events can either @g a listening reception current _time(?Tc)*4
of a request from a coordinated process (eithéna rd ,
out), or (i) a speakingthe production of a reply towards a This primitive (predicate) is successful Tic (typically a
coordinated process (either the reply tina or rd)2. variable) unifies with the current tuple centre time As an

example, the reaction specification tuple
The ReSpecT language can be used to declare a set

of reaction specification tuplegRSTSs), using the syntax of reaction(in(p(X)).(
Figure 1. current_time(Tc),

out_r(request_log(Tc,p(X)))

Fig. 1. The syntax of &eSpecT specification

Il. EXTENDING ReSpecT wiTH TIME

Each RST has a head and a body. When a communication
eventp(t) occurs, all the RSTs with a matching head are
activated, that is, their bodies — each specifying an atomiigserts a new tuple with timing information each time a request
computation over the tuple centre — are used to spawntretrieve a tuplep(X) is executed, realising a temporal log
pending reaction waiting to be executed. Being specified 8§ the requests.

a body, reactions are composed by a sequence of reactiofhe model is then extended with the notiontodp event
primitives rp resembling INDA primitives, which are used Or simply trap, which is an event generated when the tuple
centre reaches a specific time point. A trap occurs because

1Tuple centres can also deal with usual predicative primitinggtt)
and rdp(tt) of LINDA, but these are not considered here for the sake of 3In current implementation the temporal unity is the millisecond
simplicity and without loss of generality. 4A Prolog notation is adopted for describing the modality of arguments:
2we use here the terrlistening related to events following the basic + is used for specifying input argument, - output argument, ? input/output
terminology adopted in [9] argument, @ input argument which must be fully instantiated

baldoni
78

79

of a (trap) source characterised by a unique identifi@, a occurred, however, the trap source is erased.
time Te and a description tupl&d. The language is extended Trap events are listened one by one as soon as the tuple
with the possibility to generate and manipulate trap events acehtre is not executing a reaction; that is — according to the
sources. In particular we introduce the two following featuretuple centre semantics [9], [8] — when it is in the idle state, or
. internally in the tuple centre, a coordination law (i.e. onetween a listening and a speaking stage, or during a reacting
or more reaction specification tuples) might install a tragtage (between the execution of two reactions). When a trap
source, which causes a trap to occur at a specific tinfvent is listened, it is first removed from the trap event queue,
For instance, we may want to generate a trap describég set of the reactions it triggers is determined — by matching
by the tupleexpired(T) a certain intervaLeaseTime the reaction head with the trap description tuple — and then
after the insertion of a tupleeased(T); executing sequentially all such reactions. As for ReSpecT
« the tup|e centre reacts to a trap event ana|ogous|y P@aCting stage, the order of execution of the reactions is not
communication events, by means of proper reactigigterministic.
specification tuples. In the case above, we may wantAn important semantic aspect of this extension concerns the
the tupleT to be removed when the trap described bpriority of reactions fired by external communication events

expired(T) occurs. (standard execution) with respect to those of trap events (trap
In order to support trap generator installation, the language€ecution). The model and implementation described here
extended with two new primitives: feature higher priority of reactions fired by trap events. This

means that if during the standard executions of a reaction chain

new.trap(-ID , @Te +Td) a trap event occurs, the chain is broken, and the reactions fired
kil _trap(@ID) by the trap are gxecuteq. It's quth notir?g that the individugl
reactions are still atomic, not interruptible as in the basic
The first is successful iTe is an integer equal or greater tharReSpecT model: traps event in the trap queue are listened

zero. Its effect is to install a new trap source — with as (and related reactions executed) after the completion of any
identifier — which enters a queue of installed sources. Wheg

X . ! action eventually in execution. Then, chains of reactions can
tuple centre timél'c time will be equal or greater than current0 brok t individual " This is fund tal i
time plus Te, a trap event described by the tuplel will P& Proken, not individual reactions. 1his IS funcamental in

be then generated and inserted into the queue of triggef¥der to preserve the semantic propertieReSpecT model
trap events, whereas its source is deinstalled — i.e. remoJ8fl Also reactions triggered by a trap event are atomic, and

from its queue. Notice that because of the success/failifey cannot be interrupted or suspended: in other words, trap
semantics ofReSpecT semantics, if the reaction includingpanqiers are not interruptible and cannot be nested.

an invocation to primitivenew_trap fails, no trap source . :)) L .
is installed, actually. An example involving theew._trap As will be discussed in Section 1V, the possibily of breaking
primitive is as follows: reaction chains is important to build robust coordinating be-

reaction(out(leased(T,LeaseTime)).(havpur, in part|c1_JIar wnh respect to possible bugs generating
new, trap(_.LeaseTime,expired(T) terminating reaction chains.
)). Nevertheless, it is worth mentioning here that other seman-
. .) . tics are possible and interesting. By giving higher priority
The reaction is triggered when a tuple matching, ye standard execution, one ensures that traps never in-
leased(T,LeaseTime) is inserted, and it installs aerfere with it. In exchange of the better isolation of code
new trap source which will generate a trap described Bypieved, in this case one can no longer guarantee the same
the tupleexpired(T) after LeaseTime units from then. yiming constraints: trap executions must wait for the standard
Primitive kill -~ trap is instead used to deinstall a sourcgyecytion to complete. Notice that such aspects are mostly
given its identifier: such a primitive fails if not installedqhogonal to the actual applicability of temporal coordination

sources has is characterised by the identifier provided. [aws as shown e.g. in next section. Moreover, a straightforward

Then, the language has been extended with the possibili o . o
to write reactions triggered by the occurrence of trap evengg_nerallsanon of our model can be realised by specifying the

The syntactical and semantic models of trap reactions adtgority level of a trap (higher, lower, or equal to the that

analogous to the reactions to communication events: of external communication events) at the time its source is
) installed.
reaction(trap(Tuple), Body)
Body specifies the set of actions to be executed when IIl. EXAMPLES
a trap with a description tuple matching the templatgple In this section we describe some simple examples of how
occurs. In the following simple example temporal coordination primitives and coordination laws can be
reaction(trap(expired(T)),(in_r(T))). modelled on top of extende®eSpecT. It's worth noting that

these examples — even if simple — appear in several research

whep a trap described by a tuplgl matf:hing the templgjg, in iterature as a core of timing features extending the
expired(T) occurs, the tuple specified This removed from

th_e tuple _Se"" Notice that if the tuPIe_iS not present ither _ SThis interesting feature which is subject of current research is not described
fails causing the whole reaction to fail — as the trap event iisthis paper for brevity.

baldoni
79

80

1 reaction(in(timed(Time,Tuple,Res)), (
pre, in _r(Tuple),
out _r(timed(Time, Tuple,yes)))).

2 reaction(in(timed(Time,Tuple,Res)), (
pre,no _r(Tuple),

new_trap(ID,Time,expired _in(Time, Tuple)),

out _r(trap .info(ID,Time,Tuple)))).

3 reaction(trap(expired _in(Time, Tuple)),(
in _r(trap _info(ID,Time, Tuple)),
out _r(timed(Time, Tuple,no)))).

4 reaction(out(Tuple),(

reaction(out(leased(Time,Tuple)), (
new_trap(ID,Time,lease _expired(Time, Tuple)),
in _r(leased(Time,Tuple)),
out _r(outl(ID,Time,Tuple)))).

reaction(rd(Tuple),(pre,
rd _r(outl(ID, - Tuple)),
out _r(Tuple))).

reaction(rd(Tuple),(post,
rd _r(outl(ID, _,Tuple)),
in _r(Tuple))).

reaction(in(Tuple),(pre,

in _r(trap info(ID,Time,Tuple)), in _r(outl(ID, _,Tuple)),
kil _trap(ID), out _r(Tuple),
out _r(timed(Time, Tuple,yes)))). kil _trap(ID))).
5 reaction(trap(lease _expired(Time,Tuple)), (
TABLE | in _r(outl(ID,Time,Tuple)))).

ReSpecT SPECIFICATION FOR MODELLING A TIMEDIN PRIMITIVE

TABLE I
ReSpecT SPECIFICATION FOR MODELLING TUPLES WITH A LEASE TIME

basic model; typically, in the literature there is a specific exten-

sion for each timing feature described here: on the contrary,

we remark the generality of our approach, which is meantAn agent insert a tuple with a lease time by issuing

to support these and several other time-based coordinatshout(leased(@Timg @Tuple)) . Table Il shows the

patterns on top of the same model. ReSpecT specification programming the tuple centre with
the desired leasing behaviour . When a tuple with a lease

A. Timed Requests time is inserted in the tuple centre, a trap source is installed

In this first example we model a timéd primitive, i.e. an for generating a trap when the tuple centre time reaches the

in request that keeps blocked only for a maximum amoulf@s€ due time (reaction 1). Also a tuglatl is inserted in
of time. An agent issues a timaéd by executing primitive the tuple set with the information on the trap source and the

in(timed(@Time ?Template , -Res). If a tuple match- leased tuple (note that the flat tuple with the lease time is not
ing Template is inserted withinTime units of time, the directly present in the set). Then, for eaah issued with a
requested tuple is removed and taken by the agent as udGgIPlate matching a leased tuple, a flat tuple satisfying the
with Res being bound to theyes atom. Conversely, if no "€quest is first inserted in the tuple set (reaction 2), and then
matching tuples are inserted within the specified tiRes is rémoved after thed has been satisfied (reaction 3). Am
bound tono atom. Table | reports thReSpecT specification €duest instead causes dlrectly the removal of the lease tuple
which makes it possible to realise the behaviour of this ned Of the trap source (reaction 4). Finally, if a trap event
primitive. When thein request is issued, if a tuple matchingccurs (meaning that the lease time of a tuple expired), the
the template is present a proper tuple satisfying the requesPil ~ tuple carrying information about the presence of the
created (reaction 1). Instead, if no tuple is found, a trap sour&@sed tuple is removed (reaction 5).

is installed for gengratlng qtrap at fche due time (reac_tpn 3. Dining Philosophers with Maximum Eating Time

Also, a tupletrap _info is inserted in the tuple set, reifying

information about the installed trap source, required for itsvllﬁit?r:m?r?e %2"3223222282 o?izzlr‘:dailLa?tirgr?Ig: Szegsfi?] rthe
possible removal. If a tuple matching a template of a pendir? 9 P guag

timedin is inserted on time, the related trap source is remové:gme)(t of concurrent systems. In spite of its formulation, it is

and a proper tuple matching the timed request is inserted generally used as an archetype for non-trivial resource access

(reaction 4). Finally, if the trap occurs — meaning that ngolicies. The solution of the problem ReSpecT consists in

tuples have been inserted on time matching a pending timeg"9d & tuple centre for encapsulating the coordination policy

in — then a tuple matching the timed request carrying required to decouple agent requests from single requests of

negative result is inserted in the tuple set (reaction 3). ::iso(:)irt(i:ceks s(gr Zﬂf;ﬂczzrtfo ?g]():apsulate the management of

B. Tuples in Leasing Each philosopher agelit) gets the two needed chopsticks

) i by retrieving a tuplechops(C1,C2) , (ii) eats for a certain
In this example we model the notionlease analogously ©0 maunt of time,(iii) then provides back the chopsticks by

the lease notion in mpdels su_ch as JavaSpaces [4] qnd TSp?r‘r@E‘rting the tuplechops(C1,C2) in the tuple centre, and
[16]. Tuples can be inserted in the tuple set specifying a Iea@@) finally starts thinking until next dining cycle.

time, i.e. the maximum amount of time for which they can A pseudo-code reflecting this interactive behaviour is the
reside in the tuple centre before automatic removal. following:

baldoni
80

1 reaction(in(all _timed(Time, Tuple,OutList)),(
new_trap(ID,Time,inat(Time, Tuple,OutList)),
out _r(current _in _all(ID,Time,Tuple,[])),
out _r(remove _in _all(ID)))).

2 reaction(out _r(remove _in _all(ID)),(
in _r(remove _in _all(ID)),

rd _r(current _in _all(ID,Time,Tuple,L)),)) -)
in _r(Tuple), % a request of the chopsticks is reified with a

in r(current _in _all(ID,Time, Tuple2,L)), % required tuple _
out r(current _in _all(ID,Time, Tuple2,[Tuple|L])), 1 reaction(in(chops(C1,C2)),(pre,out _r(required(C1,C2)))).
out _r(remove _in _all(ID)))). . . .
3 reaction(out _r(remove _in _all(ID)),(% if both the chopsticks are available, a chops
in _r(remove _in _all(ID)), % tuple is generated
rd _r(current _in _all(ID, _Tuple, .)), 2 reaction(out r(required(C1,C2)),(
no_r(Tuple))). in _r(chop(C1)),in _r(chop(C2)),out _r(chops(C1,C2)))).
4 reaction(out(Tuple),(. .
in _r(current _in _al(ID, _Tuple,L)), % with the rgtneval of thg chops tuple,
in _r(Tuple), % the chopsticks request is removed)
out _r(current _in _allD, _Tuple,[Tuple|L])))). 3 reaction(in(chops(C1,C2)), (post,in -r(required(C1,C2)))).
5 reaction(trap(inat(Time,Tuple,OutList)), (. . .
in _r(current _in _all(ID, Time, Tuple,L)), % the release of a chops tuple still valid (on time)
out r(all _timed(Time, Tuple,L)))). % causes the insertion of individual chopsticks,
% represented by the two chop tuples
4 reaction(out(chops(C1,C2)), (
TABLE Il current _agent(Agentld),
no_r(invalid _chops(Agentld,C1,C2)),
ReSpecT SPECIFICATION MIMICKING AN INALL WITH A DURATION TIME in _r(chops(C1,C2)),out _r(chop(C1)),out _r(chop(C2)))).
% a chops tuple is generated if there is
% a pending request, and both chop tuples
% are actually available
. 5 reaction(out _r(chop(C1)), (rd _r(required(C1,C)),
while (true){ in _r(chop(CL)),in -r(chop(C)),out _r(chops(CL,C))).
think(); 6 reaction(out _r(chop(C2)), (rd _r(required(C,C2)),
in(chops(Cl,CZ)); in _r(chop(C)),in _r(chop(C2)),out _r(chops(C,C2)))).
eat();
out(chops(C1,C2)); % a chopsticks request causes also creating a

% new trap generator, keeping track of its information
% in the chops _pending _trap tuple

The coordination specification iReSpecT (first 6 reac- ’ rear‘gior'zr(]‘q’;f;hzgfi(n%l'Ctizgq)éﬁ'mx))

tions of Table IV, bottom) mediates the representation of the new._trap(ID,Tmax, expired(C1,C2)),
H current _agent(Agentld),

e D o, Wples), and most imporanty G v paming sano rgentac1co)

Here we extend the basic problem by adding a furthef, sied 0% = felgased on tme. the (rap
constraint: the maximum time which philosophers can take reaction(out(chops(C1,C2)),(
to eat (i.e. to use the resources) is given, stored in a tuple Ellfr(fg‘;fjlt)jge”d'”g Arap(ID,C1,C2)),
max_eating _time(MaxEatingTime) in the tuple centre.
To keep the example simple, if this time is exceeded, the, (a7 Soheraion Saloes e oo et tple
chopsticks are regenerated in the tuple centre, avoiding th® keeping track of the invalid chops

. ; e 9 reaction(trap(expired(C1,C2)),(
starvation of the philosophers waiting for them, and the no_r(chop(C1)). no . H(chop(C2)),

chopsticks eventually inserted out of time are removed. current _agent(Agentid),
The solution to this problem using the extendeelSpecT o P g o g 1 D
model accounts for adding only tHeeSpecT specification out _r(chop(C1)), out _r(chop(C2)))).

(the agent code and related protocols are untouched) with thg .oocticks released that are invalid (due to
reactions 7-10 described in Table IV (bottom), and extendinge time expiration) are immediately removed
reaction 4 with the part in italics. Essentially, the new reactiong0 R i o

install a new trap source as soon as a philosopher retrieves in r(invalid _chops(Agentd,C1,C2)),
his chopsticks (reaction 7). If the philosopher provides the " -(EhopPs(C1.C2)).

chopsticks back in time (before the occurrence of the trapy,
then the trap source is removed (reaction 8). Otherwise, if
the trap event occurs, the triggered trap reaction recreates tﬁ?@SpecT SPECIFICATION FOR COORDINATING DINING PHILOSOPHERS
missing chopsticks tuples in the tuple centre and inserts a tuple WITH A MAXIMUM EATING TIME

invalid _chops which prevent chopsticks insertion out of

fime (reaction 9). This prevention is realised by checking

the existence of the tuplevalid _chops when the tuple

chops are released by a philosopher (reaction 10).

It is worth noting that keeping track of the maximum eating

TABLE IV

baldoni
81

baldoni

82

,tlme a§ a tuple r(\gxeatmg ftlme II"I- the example) mak.es tasks ? out(announcement(task(Taskld, Taskinfo,MaxExecTime)))
it possible to easily change it dynamically, while the activity tasks ? in(bids(Taskid,BidList))
is running; this can be very useful for instance in scenarios Bid < selectWinner(BidLis)
I " A . tasks ? out(awarded _bid(Taskld,Agentld))

where this time need to be adapted (at runtime) according tasks ? inttask _done(Taskid,Result,Duration))
to the workload and, more generally, environmental factors
affecting the system. tasks ? rd(announcement(task(Taskld, Taskinfo,MaxExecTime)))

i Y i H MyBid <« evaluate(TaskInfo)

Finally, it's worth remarking that the approach is not meant 7Y out(bid(Taskid Myld MyBid))

to alter the autonomy of the agent, for instance by means of tasks ? in(bid _result(Taskid,Myld,Answer))

some form of preemption in the case of timing violations; on [(Answer==awarded’)

X i X tasks ? out(confirm _bid(MyId))
the contrary — as a coordination model — all the constraints and Result « perform(Taskinfo)
(timed based) rule enforcing concerns the interaction space. tasks ? out(task result(Taskid,Myld,Resul)
D. An Artifact for Timed Contract Net Protocols
TABLE V

As a final example, we describe a coordination artifact
modelling and embodying the coordinating behaviour of a
time-aware Contract Net Protocol (CNP). CNP is a well-
known protocol in MAS, used as basic building block for
bulding more articulated protocols and coordination strategies
[13]. Following [6], we consider the CNP in a task allocation

scenario: a master announces a task (service) to be execujgdous stages: from bidding, to awarding, confirming, and
potential workers interested provide their bids, the announaggk execution A brief description of the artifact behaviour
collects the bid and selects one; after confirming his bid, th§llows: when a new announcement is done (reaction 1), the
awarded bidder becomes the contractor, taking in chargejgformation about the new CNP are created (tupk _todo
the execution of the task and finally providing task results. gng cnp _state) and a new trap source is installed, gener-
We extend the basic version with some timing constraints. Hling a trap when the bidding time is expired. At the trap
particular we suppose thaf) the bidding stage has a durationgeneration (reaction 2) — meaning that the bidding stage is
established at a “contract” leve(j) there is a maximum time cjosed — all the bids inserted are collected (reaction 3), the
for the announcer for communicating the awarded bid@®); information concerning the protocol state updated, and a new
there is a maximum time for the awarded bidder for confirmingap source is installed, generating a trap when the awarding
the bid and becoming the contract@r) there is a maximum time is expired. If the master provides information about the
time for the contractor for executing the task. awarded bidder before this trap generation, the trap source
According to our approach, a coordination artifact can hg killed, the tuples concerning awarded and non-awarded
used to embOdy the Coordinating behaviour of the time'aw%mders are generated (reactions 5, 8, 9)’ and a new trap
CNP, fully encapsulating the social/contractual rules definingyyrce for managing confirmation expire is installed (reaction
protocols steps and governing participant interaction, includi@_ If no awarded bidder is provided on time or a wrong
temporal constraints. The coordination artifact is realised @sknown) awared is communicated, the tuple reporting the
a tuple centre — calledasks —, programmed with the CNP state is updated accordingly, reporting the error (reactions
ReSpeCT SpeCification reported in Table VI. Table V ShOWSL 6, 7) If the awarded bidder confirms on time his bid
the pseudo-code representing the interactive behaviour of E‘?@action 10), the execution stage is entered, by updating the
master (top) and workers (bottom). CNP state properly and installing a new trap generator for
The usage protocol of the artifact for the master colkeeping track of task execution time expiration. Otherwise,
sists in: making the announcement (by inserting a tupiethe confirm is not provided on time, the related trap event
announcement), collecting the bids (by retrieving the tu-js generated and listened (reaction 11), aborting the activity
ple bids), selecting and informing the awarded bidder (b¥nd updating accordingly the CNP state tuple. Finally, if the
inserting the tuplewarded _bid) and, finally, collecting the contractor provides the task result on time (reaction 13), the
result (by retrieving the tupléask _done); for the workers, trap generator for task execution is killed, the tuples concening
the usage protocol accounts for reading the announcement (¥ terminating CNP are removed and the result information
reading the tuple@nnouncement), evaluating the proposal gre prepared for being retrieved by the master. Otherwise,
and providing a bid (by inserting a tuplgid), reading the if the contractor does not provide information on time, the

master decision (by retrieving the tudded _result), and — trap is generated and the artifact state is updated accordingly,
in the case Of aWarding - Conﬁrming the b|d (by inserting th%por“ng the error (reaction 12)

tuple confirming _bid), performing the task and, finally,
providing the results (by insering the tugiask _result). IV. DiscussioN

The artifact behaviour irReSpecT described in Table VI The approach aims to be general and expressive enough to
reflects the various stages of the CNP protocol, and tragiow the description of a large range of coordination patterns
are used for modelling the timing constraints related to thmsed on the notion of time. An alternative way to solve

SKETCH OF THE BEHAVIOUR OF THE AGENTS PARTICIPATING TO THE
TIMED CONTRACT NET PROTOCOL MASTERS(TOpP) AND WORKERS
(Bottom)

baldoni
82

83

8 reaction(out _r(refuse _others(Taskld)),(
% When an announcement is made, a trap generator is Igu{r(ﬁb(L%su]i\/Tﬂgztg%Tgﬁggd3?352\5\'/2}323?)')
% installed for generating a timeout for bidding time out 7r(refuse othérg(Taskld)))) !
1 reactlon(out(announcement(task(lt_!,Info,Maleme))),(9 reaction(out ,r(réfuse ,others(TéskId))(
out _r(task _todo(ld,Info,MaxTime)), in r(refuse _others(Taskid)))) !
out _r(cnp _state(collecting _bids(1d))), - - '
:]de\;\;(tt;;id(mg Tir;ltlenlla?cg-gli?e»’ expired(Id)))) % At the arrival of the confirm from the awarded
-rap(- ' 9 -Exp ' % bidder, a timeout trap is setup for checking the
. . . % execution time of the task
% When the bidding time has expired, the master can)) .
% collect the bids for choosing the winner. A trap 10 rea}ztlorrzégtrj]tf(i(r:r?]nflrmbid(TaS&ﬁ;dA(\'lg'z'zlalg),fgentld)),(
% generator is installed for defining the maximum in 7r(cnp stateiconfirming’ bidfTaskId Agentld)))
o ° - , - | ,)
2{0 Tg:(r:?i?ritrt;m(%iddin expired(Taskid)),(current _time(StartTime),
in r(an?]ouncer%ent(5) P ’ out _r(cnp _state(executing _task(Taskld,StartTime))),
LT D . in _r(confirm _timer(Taskld,IdT)),
in _r(cnp _state(collecting _bids(Taskld))), kil trap(idT)
out _r(collected ,bidg(TaskId,D)), rd ,r(t:ask ,todo(TaskId _,MaxTime))
(rjt;nriia(\(/:vr;l: diastate(ﬁr\;vz(rg:nmgé;;askld))), new_trap(ldT2, MaxTime, execution _expired),
- 9 . ' . out _r(execution _timer(Taskld,|dT2)))).
new_trap(_,Time,awarding _expired(Taskld)))).
8 reacitrl'lonr((?;ij:i(Tasil:I(g?A”e(e::‘letldd Bi d)’)b ids(Taskid,L)).(% The occurrence of the confirm expired trap means
ou{ r(bid evélugted(faskldA entld,Bid)) % that the confirm from the awarded bidder has not
. ricollectéd bids(TaskIa Lg)) ! ! % arrived on time, causing the protocol to be aborted
ou{ r(collected h bids(TaskI;:i ! 11 reaction(trap(confirm _expired(Taskld)),(
- [bid(AientId Bid)le))) in _r(cnp _state(confirming _bid(Taskld,Agentld))),
g ’ ' in _r(confirm _timer(Taskld,),
% When the awarding time has expired, the bidders are Ldut’r(?(\g:rdegta{:('gl()ziﬂg?.l’.’:gs&“d))’
% informed of the results. If no winner has been -renp confirm _ex ired(A e’ntld))))))
% selected the protocol enters in an error state, -eXp g .
Zf] gggegwizttzge ErOtZC?r:aimqusq |;1imﬂe1efocrori1tf|rm|ng % The occurrence of the execution expired trap means
° g€, g up a . % that the awarded bidder has not completed the
4 reac_tlon(trap(awardlng di ,expliedd(Taskld)),(% task on time, causing the protocol to be aborted
:Jnu{ r(rc(rgﬁ eéitatiﬁg,%reé?ggﬁd)l))))))' 12 reaction(trap(execution _expired(Taskld)),(
o ’ ; in _r(cnp _state(executing _task(Taskld,StartTime))),
5 reactlon((ot#) ,r(checdk dzawakrc:je;;i(Taskld)),(in _r(execution timer(Taskid)
in _r(check _awarded(Taskld)), " 2 ! -7
rd r(awarded _bid(Taskid,Agentid)), rc‘ir*rréﬁ‘t"’a”fiife(,;fg\?v()ms"'d'Age”“d))*
in _r(bid _evaluated(Taskld,Agentld,Bid)), Duration ’is Now - ’StartTime
out ,rgresult(Task(ld,A?entld,award%dé)(, i) out _r(cnp state(aborted(TasI;Id
out _r(cnp _state(confirming _bid(Taskld,Agentld))), - - , . ! .
rd _r(confirming _time(Time)), execution _expired(Agentld,Duration)))))).
girl?:?;ggfiljrglmevtcir?]rg:?rﬂlaskld lS;(plred(Taskld)), % The awarded bidder provided task result on time
out 7r(refuse athers(Taskldj))) ’ % terminating correctly the protocol
o - : 13 reaction(out(task _result(Taskld,Agentld,Result)),(
6 reacplon(out -(check .awarded(Taskld)).(in _r(task _result(Taskld,Agentld,Result))
in r(check _awarded(Taskld)), in r(awarded _bid(Taskld,Agentld)),
rd r(awarded bid(Taskld,Agentld)), in _r(execution timer(Taskld,d))
no_r(bid _evaluated(Agentld,Bid)), kiIIi wrap(Id) - Ede
O.Ut I(cnp _state(aborted(Taskid,wrong -awarded))))). in ,r(énp ,sta{te(executing _task(Taskld,StartTime)))
7 reaction(out _r(check _awarded(Taskld)),(in r(task _todo(Taskld,Info,MaxTime)) ’ ’
in _r(check _awarded(Taskld)), cu(rent tir}1e(Now) . !
no_r(awarded _bid(Taskld,Agentld)),) Duration ’is Now - ’StartTime
out _r(cnp _state(aborted(Taskld,award _expired))))). out r(task _done(Taskld Res’ult Duration))).
TABLE VI
BEHAVIOUR OF THE ARTIFACT REALISING A TIMED CNP,ENCODED IN THEReSpecT LANGUAGE
the problem consists in adopting helper agents (soffimier encapsulation. Among the problems that arise, we have:

agents) with the specific goal of generating traps by inserting less degree of control, more problematic reusability and
specific tuples in the tuple centre a certain time points. With extensibility, more complex formalisation.
respect to this approach and also to other approaches, the Timed-coordination— The approach is not meant to

solution described in this work has several advantages:

provide strict guarantees as required for real time sys-
tems: actually, this would be difficult to achieve given

« Incapsulation of coordinatior— Managing traps directly also the complexity oReSpecT behaviours, based on
inside the coordination medium makes it possible to first order logic. However, the model is expressive and
fully keep coordination encapsulated, embedding its full effective enough to be useful for several kind of timed
specification and enactment inReSpecT program and systems in general. Also, the management of time events
tuple centre behaviour. Conversely, using helper agents directly inside the medium makes it possible to have some
to realise part of the coordination policies which cannot guarantees on the timings related to trap generation and
be expressed directly in the medium causes a violation of

baldoni
83

84

trap reaction execution. These guarantees would not ipeiltiple tuple centres distributed over the network, collected
possible in general adopting external agents simulatimgd localised in infrastructure nodes. It is worth mentioning
traps by inserting tuples at (their) specific time. Théhat this problem is not caused by our framework, but is
reacting stage of a tuple centre has always priority withherent on any approach aiming at adding temporal aspects
respect to listening of communication events generated toya coordination model.
external agents; this means that in the case of complexHowever, according to our experience in agent based dis-
and articulated reaction chains, the listening of a tragibuted system design and development, the need to have a
event (i.e. reacting to tuples inserted by timer agentdjstributed implementation of individual coordination media is
could be substantially delayed, and possibly could natreal issue only for very specific application domains. For the
happen. On the contrary, this cannot happen in thgost part of applications, the bottleneck and single point of
extended model, where a trap event is ensured to falure arguments against the use of centralised coordination
listened and the related reactions to be executed — witfedia can be answered by a suitable design of the multi-agent
higher priority. system and an effective use of the coordination infrastructure.
» Well-founded semantics— The extension realised to At this level, it is fundamental that a software engineer would
the basic model allows for a well-defined operationanow the scale of the coordination artifacts he is going to use,
semantics extending the basic semantics of tuple centegsl the quality of service (robustness in particular) provided
and ReSpecT with few constructs and behaviours. Inby the infrastructure.
particular, the basic properties &eSpecT — in par-
ticular atomic reaction execution — are all preserved. V. RELATED WORKS AND CONCLUSION
This semantics has been fundamental for driving the
implementation of the model and will be important also The contribution provided by this work can be generalised
for the development of verification tools. from tuple centre to — more generally — the design and
« Compatibility, reuse and minimality— The extension development of general purpose time-aware coordination arti-
does not alter the basic set of (Linda) coordinatioffCts in multi-agent systems [10].
primitives, and then it does not require learning and Outside the specific context of coordination models and
adopting new interfaces for agents aiming to exploit itanguages, the issue of defining suitable languages for speci-
all the new features are at the level of the coordinatidiing the communication and coordination in (soft) real time
medium programming. This in particular implies thagystems have been studied for long time. Examples of such
the new model can be introduced in existing systemi@nguages are Esterel [1] and Lustre [2], both modelling
exploiting the new temporal features without the need gynchronous systems, the former with an imperative style,
change existing agents. and the latter based on dataflow. In coordination literature
« “The hills are alive” — Coordination artifacts with several approaches have been proposed for extending basic
temporal capabilities can be suitably exploited to modépordination languages with timing capabilities. [7] introduces
and engineeliving environmentsi.e. environments which two notions of time for Linda-style coordination models,
spontaneously change with some kind of transformatiorf§jative time and absolute time, providing different kind of
due to the passage of time. A well known exampléatures. Time-outs have been introduced in JavaSpaces [4]
is given by environments in the context of stigmerggnd in TSpaces [16].
coordination approaches with multi-agent systems [12]; The approach described in this work is quite different from
in this context, the pheromones (part of the agentsthese approaches, since it extends the basic model without
ants — environment) evaporate with the passing of tin@dtering the basic Linda model from the point of view of the
according to some laws which heavily condition th@rimitives, but acting directly on the expressiveness of the
emerging coordination patterns. Tuple centres can beordination media. Also, it does not provide specific time
exploited then to model and enact the living environmentapabilities, but — following the programmable coordination
tuples can represent pheromones (placed to and perceiuggtlia philosophy — aims at instrumenting the model with the
from the environment by mean of the basic coordinatioexpressiveness useful for specifying any time-based coordina-
primitives), and tuple centre behaviour can embed thign pattern.
rules describing how to transform pheromones with the The model has been implemented in the version 1.4.0 of
passage of time. TuCSoN coordination infrastructure, which is available for
downloading atTuCSoN web site [14]. Ongoing work is
Concerning the implementation of the model, the tuple centtencerned with defining a formal operational semantics of
centralisation vs. distribution issue arises. The basic tuple cehe extended model, consistent and compatible with the basic
tre model is not necessarily centralised: however, the extensare defined forReSpecT [9], [8]. The formal semantics is
provided in this work — devising out a notion of time forimportant in particular to frame the expressiveness of the
each medium — leads quite inevitably to realise tuple centre®del compared to existing models in literature concerned
with a specific spatial location. This is what already happemsth timed systems, and to explore the possibility of building
in TuCSoN coordination infrastructure, where there can beheories and tools for the verification of formal properties.

baldoni
84

Future work will stress the approach with the engineering
of real world application domain involving time in the coor-
dination activities.

(1]

(2]

(3]

(4]
(5]
(6]

(7]

(8]

(9]

[10]

(11]

[12]

(23]

[14]

(18]

[16]

REFERENCES

G. Berry and G. Gonthier. The esterel synchronous programming
language: Design, semantics, implementatioBcience of Computer
Programming 19(2):87-152, 1992.

P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. Lustre: a declarative
language for real-time programming. Rroceedings of the 14th ACM
SIGACT-SIGPLAN symposium on Principles of programming langyages
pages 178-188. ACM Press, 1987.

E. Denti, A. Natali, and A. Omicini. On the expressive power of a
language for programming coordination media. Rroc. of the 1998
ACM Symposium on Applied Computing (SAC/9Bxges 169-177.
ACM, February 27 - March 1 1998. Track on Coordination Models,
Languages and Applications.

E. Freeman, S. Hupfer, and K. ArnoldavaSpaces: Principles, Patterns,
and Practice The Jini Technology Series. Addison-Wesley, 1999.

D. Gelernter. Generative communication in LinddaCM Transactions

on Programming Languages and Syste(d):80-112, January 1985.

M. Huhns and L. M. Stephens. Multiagent systems and societies of
agents. In G. Weiss, editoklultiagent Systems — A Modern Approach
to Distributed Artificial Intelligencepages 79-118. MIT Press, 1999.
J.-M. Jacquet, K. De Bosschere, and A. Brogi. On timed coordination
languages. In D. Garlan and D. Leétayer, editorsProceedings of the
4th International Conference on Coordination Languages and Models
volume 1906 ofLNCS pages 81-98, Berlin (D), 2000. Springer-Verlag.
A. Omicini and E. Denti. FormaReSpecT. In A. Dovier, M. C. Meo,

and A. Omicini, editorsDeclarative Programming — Selected Papers
from AGP’0Q volume 48 ofElectronic Notes in Theoretical Computer
Science pages 179-196. Elsevier Science B. V., 2001.

A. Omicini and E. Denti. From tuple spaces to tuple centr®sience

of Computer Programmingd1(3):277—-294, Nov. 2001.

A. Omicini, A. Ricci, M. Viroli, C. Castelfranchi, and L. Tummolini.
Coordination artifacts: Environment-based coordination for intelligent
agents. In N. R. Jennings, C. Sierra, L. Sonenberg, and M. Tambe,
editors,3rd international Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2004plume 1, pages 286-293, New
York, USA, 19-23 July 2004. ACM.

A. Omicini and F. Zambonelli. Coordination for Internet application
development.Autonomous Agents and Multi-Agent Syste(8):251—
269, Sept. 1999. Special Issue: Coordination Mechanisms for Web
Agents.

V. D. Parunak. 'Go To The Ant: Engineering principles from natural
agent systemsAnnals of Operations Reseatch5:69-101, 1997.

R. G. Smith. The contract net protocol: High-level communication
and control in a distributed problem solver. roceedings of the 1st
International Conference on Distributed Computing Systerages 186—
192, Washington D.C., 1979. IEEE Computer Society.

TuCSoN home pagehttp://lia.deis.unibo.it/research/

TuCSoN/.

M. Viroli and A. Ricci. Instructions-based semantics of agent mediated
interaction. In N. R. Jennings, C. Sierra, L. Sonenberg, and M. Tambe,
editors,3rd international Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2004plume 1, pages 102-110, New
York, USA, 19-23 July 2004. ACM.

P. Wyckoff, S. W. McLaughry, T. J. Lehman, and D. A. Ford.
T Spaces. IBM Journal of Research and Developme#(3 - Java
Techonology):454—-474, 1998.

85

baldoni
85

Commutation as an Emergent Phenomenon
of Residential and Industrial Location

Decisions: from a Microeconomic to a
MMASS-based Model

Alexander Kaufmann(°),Sara Manzoni(*), Andreas Resetarits(°)

Abstract— In this paper we describe one of the results of the
research activities that have been conducted by an interdisciplinary
research group composed by computer scientists and economists
during the Exystence Thematic Institute on “Regional Innovation
Systems and Complexity” (Wien, September 2004). The main aim
of work is to apply the Multilayered Multi Agent Situated Systems
(MMASS) to model socio-economic processes in residential and
industrial development. Some of the group members have
previously experienced in modeling this type processes according to
a microeconomic agent-based approach (and they have already
developed a simulation system). The specific model we considered
in this work assumes that commuter traffic in urban regions can be
studied as an emergent phenomenon of the decisions of individual
heterogeneous agents (i.e. households decide on residence, firms on
location). We will show that the adoption of the MMASS approach
provides modelers with the necessary expressive power that the
problem requires and, at the same time, it allows to obtain a model
that is simpler both to be developed and to be used. The typical use
of this type of model is, as in the case we describe, to develop a
simulation system that implements it. Thus, a software tool (like the
one provided by MMASS) that allows to design and develop
simulations can be fruitfully exploited by domain experts that are
interested in model domain validation and domain analysis. In this
paper we report the first phase of one of the researches that will be
conducted during a research framework that involved the Austrian
Research Center Seibersdorf (ARCS) and the Department of
Computer Science, Systems and Communication (DISCo) of the
University of Milano-Bicocca.

Index Terms—MAS-based modeling of complex system,
complex system in economics and land use, MMASS modeling

I. INTRODUCTION

HIS paper reports a research activity that has been
conducted during the Thematic Institute “Regional

Manuscript received November 2, 2004.

S. Manzoni is with the Department of Computer Science, Systsems and
Communication (DISCo) at the University of Milano-Bicocca (e-mail:
manzoni@disco.unimib.it).

A. Kauffman and A. Reseitarits are with the Systems Research
(technology-economy-environment department) at the Austrian Research
Center Seibersdorf (ARCS).

M. Baldoni, F. De Paoli, A. Martelli, and A. Omicini (Eds.): WOA 2004 — Dagli Oggetti agli
Agenti, Sistemi Complessi e Agenti Razionali, Torino, Italy, November 29" — December 1%
2004. Pitagora Editrice Bologna. ISBN 88-371-1533-4. ht t p: / / woa04. uni to. it

Innovation Systems and Complexity” within the Exystence
framework (http://www.complexityscience.org). The working
group was composed by computer scientists and economists
and they collaborated in order to define a common framework
where to conduct a joint research on complex systems that
could be fruitful and interesting for both the involved research
disciplines.

The main objectives of this collaboration can be summed up
as follow:

- Investigation on the notion of agents in microeconomics
and its classification according to concepts and notions
that are traditionally considered by agent research in
computer science (i.e. agent architectures and behavioral
models, interaction models within Multi-Agent Systems,
relationship between agents and their surrounding
environment, ...).

- Investigation on the use of agent-based simulations in
economics. This part of the work concerns an overview of
the main motivations and goals that bring economists in
developing software simulation systems in their
researches and work (e.g. model validation, prevision,
analysis, and so on). Moreover, particular attention is paid
to the identification of the set of requirements and tools
from the viewpoint of system developers (e.g.
computational models, software platforms) and of
simulation users (e.g. analysis approaches and tools).

- Definition of a common framework starting from
analogies and differences emerged from the analysis of
the different use of the notion of agents and interactions
within computer science and economics. The common
framework aims at concerning the conceptual, modeling,
as well as computational point of views.

This working group aims to the definition of a set of
methodological and software tools to support researchers and
experts in landuse management in their research activities. In
order to reach this long-term research goal, the working group
has identified a set of activities to be conducted together or by
group members individually. On one hand, a set of activities

baldoni

will be conducted by the members of the working group
individually (even if a coordinated way). An example of these
individual activities consists in overviewing available
computational models (e.g. agent-based, based on Multi Agent
Systems and Cellular Automata or their composition, and so
on), focusing in previous experiences in adopting agent
approach in Economics. The main aim of this activity is to
formalize a set of fundamental simulation requirements that
are coming from Economics (in particular from new emerging
approaches to study complex systems from an economic
viewpoint).

On the other hand, this paper will describe one of the
activities that will be conducted by interdisciplinary working
groups (here we report the one that has been conducted during
the Wien Thematic Institute hosted by ARCS). The aim of this
activity was to experiment the application of the Multilayered
Multi-Agent Situated Systems [Bandini et al., 2002] to model
socio-economic processes in residential and industrial
development. Some of the group’s members have previously
experienced in modeling this type of processes according to
an agent-based approach and a microeconomic simulation tool
has already been developed. The specific model we
considered in this work assumed and demonstrated that
commuter traffic in urban regions can be studied as an
emergent phenomenon of the decisions of individual
heterogeneous agents (i.e. households decide on residence,
firms on location).

In this paper we will show that the adoption of the MMASS
approach provides modelers with the necessary expressive
power that the problem requires and, thus, allows representing
the commutation problem as an emergent phenomenon of the
residential-industrial complex systems composed by situated
interacting agents. At the same time, the MMASS allows to
obtain a model that is simpler to be developed, updated and,
thus, used. The typical use of this type of model is, as in the
case we describe, to develop a simulation system that
implements it. Thus, after having introduced field data about
the area that is object of the study (i.e. the Wien area in this
case), domain experts analyze the simulation runs in order to
reach the simulation aims (maybe, for instance, the validation
of the model itself, or the prevision or explanation of known
phenomena). During this process, very often, the originally
developed model may require to be updated. In fact, different
versions of a model are usually developed, enriching first
versions with previously not considered elements, additional
parameters that had previously been disregarded, ignored or
unknown, and so on.

The paper is organized as follow: first, we draw an
overview about the adoption of distributed approaches (based
on agents, MAS and CA) in economic theory (focusing in
land use and traffic simulation contexts). Then, we will briefly
overview the agent-based microeconomic model that has been
previously proposed to study commuting as an emergent
phenomenon, and we propose a model of the same problem
according to the MMASS approach, pointing out the
motivations of the adoption of MMASS among other MAS-

based modeling tools. Finally the paper will end with some
considerations on this proposal.

II. WHY AN AGENT-BASED MODEL?

Over much of its history economic theory has been
preoccupied with explaining the optimal allocation of scarce
resources. As a consequence of the notion of an optimal
solution equilibrium between supply and demand of goods has
become the central concept in economics. In order to be able
to analyze partial and total equilibrium models, they have to
be extremely simplified. It is especially the, usually necessary,
assumption of homogeneity (i.e. a single agent called
‘representative’) that misses important aspects of economic
reality. Traditional economics focuses primarily on the market
as a selection mechanism, but neglects the market as a cause
of variation and innovation. Of course, there have been many
theories (e.g. [Schumpeter, 1999]) dealing with the evolution
of economic systems, but they always lacked the rigor of
equilibrium economics. For evolutionary models new methods
were required, and agent-based modeling approach suggests
interesting research directions. This approach is certainly
adequate for analyzing economic models characterized by
heterogeneity of agents, bounded and contradicting
rationalities of agents, strategic behavior, imperfect
information, imperfect competition, and other factors leading
to out-of-equilibrium dynamics [Arthur et al., 1997]. Agent-
based modeling helps to understand the economy as a co-
evolutionary system, linking the economic macrostructure to
the microeconomic behavior of individual agents (Batten,
2000). However, for a really evolutionary model of the
economy, it is not sufficient to build agent-based models only
to explain the emergence and change of relations between
agents (e.g. as suggested by network models). Agent-based
modeling has also to contribute to the understanding of the
emergence and change of behavioral norms, organizations and
institutions, which, at present, seems to be a much more
difficult task [Tesfatsion, 2003].

Self-organization models, used to explain urban
development or traffic flows, are not new. Until now, most
models have focused on one of these issues only. So far there
have been only few attempts to deal with urban development
and traffic flows in a combined model in order to understand
their mutual interdependence. As far as urban development is
concerned, the limits of equilibrium-based approaches have
led to an increased interest in simulation which is better able
to capture the complex dynamics of interactions between
heterogeneous agents. Cellular Automata (CA) have been the
most frequently applied method [Portugali, 1999]. The fact
that already simple rules can lead to complex dynamics and
the direct applicability on spatial processes have made CA to a
widely used tool for analyzing patterns of urban development
that are characterized by self-organization. One of the first
CA-models in economic research analyzed the emergence of
social segregation caused by the preference of people to live
in the neighborhood of other people belonging to the same

87

baldoni
87

social class [Schelling, 1969]. Other CA-models concerned
land use patterns and their change over time (e.g. [Colonna et
al., 1998]). As far as traffic is concerned, simulation has been
used as a tool to improve traffic planning and management of
traffic flows. For this purpose CA as well as MAS-based
models have been proposed (e.g. [Raney et al., 2002];
[TRANSIMS]). Agent-based traffic simulation models are
especially useful, because they enable the identification of
each individual car, truck, bike or pedestrian. As a
consequence, it is possible to analyze individual objectives,
route plans, search and decision strategies [Batten, 2000] as
well as effects of learning and changes of strategies on the
traffic flows [Raney et al., 2002].

Within our interdisciplinary research, we claim that
economy researches requires dedicated and more specific
tools (both at the methodological and software levels) to be
applied to this growing and interesting direction. Moreover,
we claim that researches and studies on agents in computer
science are ready to provide these modeling and
computational tools in order to fruitfully support economy
theory.

III. THE MICROECONOMIC MODEL

The microeconomic model by which this work has been
inspired is based on the decisions of individual heterogeneous
agents: households decide on residence, firms on location.
Commuting is both a result of decisions of individual agents
(i.e. an emergent feature in the urban system), and a feedback
factor influencing the decisions of households and firms. The
here described model focuses on self-organization of
households and firms, while other agents (e.g., regulation of
land use by municipalities) are taken as given.

A. Residential and industrial choice of location and
commuter flows

The model consists of two classes of agents: households of

employed persons and firms. Both classes are heterogeneous

with respect to preferences on location. Specific types of

households prefer given residential locations as well as

specific firms prefer given sites. They regard different

location factors and they attribute different weights to certain

factors. In particular, on one hand households looking for

residence take the following factors into account:

- the residential density at their location and in the
surroundings;

- the availability of private services at their location and in
the surroundings;

- the green space at their location and in the surroundings;

- the distance to the city centre.

On the other hand, firms looking for their optimal location

focus on the following factors:

- the industrial density (as an indicator for the price of a
certain location) at their location and in the surroundings;

- the ratio between demand and competitors at their
location and in the surroundings;

- the proximity of related firms (suppliers, services,
customers) within a cluster at their location and in the
surroundings;

- the distance to the next transport node (highway exit,
railroad station).

In the model the notion of distance between two locations
does not indicate the topological distance, but it is given by an
estimate of the time needed to reach a location from the other
one taking into account the type of available connections (e.g.
roads, underground line, train line). In the model
experimentations these values have been computed according
to collected field data and considering the availability of the
different transportations in the experimentation territory (i.e.
Wien urban territory).

The behavior of households in trying to find out their
residential location is based on a location utility function and a
cost function which considers commuting and relocation in
case of changing residence. Commuting is a result of the
choice of residence and the randomly determined new job
opportunities or losses. Employed persons and jobs,
accordingly, are differentiated by levels of qualification, so
that not any job is accessible for every employed person. The
behavior of firms is based on their location utility and a cost
function of relocation in case of changing the site.

Householders

Figure 1: Influences and feedbacks between householdders, firms and
commuting

Combining the decisions on residential and industrial
locations, as well as the random job matching, leads to
commuter flows between the locations which, in turn, enter
the residential choice of households. Further feedback
(represented in Figure 1) concerns the change in residential
and industrial density, both being factors on which households
and firms base their respective decision-making processes.
Moreover, other factors that influence residential and
industrial development and commutation are determined
exogenously (for instance: location preferences of firms,
changes in residential preferences life cycle of households,
changes in job opportunities and employment, zoning and
restrictions of land use, provision of traffic infrastructure).

The chart in Figure 2 gives a short overview of the whole
microeconomic model. In the following sections we describe
its modules in more detail.

88

baldoni
88

‘ Change of employment ‘

I

‘ Industrial location decision of firms

l

‘ Job matching (allocation of jobs to households)

}

‘ Demographic change / migration ‘

!

‘ Transition of households ‘

!

‘ Residential location decision of households

l

Results of the decisions
(Commuter flows, Residential density, Industrial density,

‘

‘

Figure 2. Structure of the model

B. Endogenous processes

As previously introduced, there are two different types of
location decisions performed by the two types of agents that
the model considers: households decide on their residence,
while firms on the production site. Information needed for
both decisions can be either perfect or distance-dependent. In
a first model version, we supposed agents to have perfect
information all over the urban region; in a second one, a
distance discount parameter (i.e. o) has been introduced in
order to let agent sensitivity to information decreases with the
distance.

Using information regarding the relevant location factors
any household maximizes its residential utility and takes into
account commuting and relocation costs (Table 1 lists and
schematically describes all the involved parameters):

H: o R+BS+8G+yDi—(C3+Cl) - max

TABLE 1: RESIDENTIAL LOCATION FACTORS
Households H H
Residential R* R; = Hi/B;, R*| = R; + Z; Rj e"-0 Dy,
density normalized: % of R’
Private services S*/H S* = §; + % Sj e*-0 Djj, normalized: %
(relative supply) of H
Green space G* G*; = G; + Zj Gj e"-0 Dj;, normalized: %
of A
Distance between Dj
Iandj
Downtown Dy normalized: % of Dy
distance
Residential C1
relocation cost
Residential area B;

On the contrary, according to the information regarding the
relevant location factors (either in perfect or distance-
dependent information versions) any firm maximizes its
location utility considering relocation cost (see Table 2):

Fiol+AP+puX+mnD,—C2— max

TABLE 2: INDUSTRIAL LOCATION FACTORS

Firms F F
Industrial density I* L=F/M;, I* =1+ %] e’-c
Dy,
normalized: % of I’
Demand / competition ratio p* P* = (H; + % H; e"-c Dy) /

(Si+ 3 Sy et-0 Dy)

Cluster (relative supply) X*/F X* =X+ X Xje’o Dy,
normalized: % of F

Distance between I and j Dy

Transport node distance D, Normalized: % of Dyax

Industrial relocation cost C2

Industrial area M

Both types of agents, households as well as firms, are
heterogeneous regarding their location preferences
(households also with regard to their qualification). According
to their type (i.e. ‘household’ or ‘firm’), agents apply the
above utility function, but they differ with respect to the
weights associated to each location factor (see, respectively,
Table 3 and Table 4). Symbols in Tables 3 and Table 4
indicate the relevance of each parameter and the type of its
effects (i.e. either positive or negative).

TABLE 3: CLASSES OF HOUSEHOLDS AND PREFERENCES
Residential preferences

a R B S 5 G Y Dic
Highly qualified suburbanites (Q=1) -- 0 ++ -
Highly qualified urbanites Q=1 + + 0 ++
Less qualified suburbanites Q=2) - 0 + -

Less qualified urbanites 0 + 0 +

Q=2

TABLE 4: CLASSES OF FIRMS AND PREFERENCES
Location preferences
ol AP upuX =wDy
Private services (S) 0 ++ o+ 0
Cluster firms X) - 0 ++ -
Large scale manufacturing V) - 0 0 -
Utilities (U) 0 0 0 0

In order to solve conflicts in case of density constraints, in
the here presented model, “First come — first locate” strategy
with random order (i.e., reordering of agents after each step)
was applied. Alternative strategies such as comparison of the
added value (e.g. those with the highest value are allowed to
locate, the others either stay where they are), or have to
choose second-/third-best locations, are possible but have not
still been applied.

C. Exogenous processes

All the actual parameters and several parameters for the
model experimentation have been determined exogenously
(several sets of parameters are tested in the simulation runs).
This concerns residential preferences, industrial location
preferences, generation and loss of jobs, zoning and maximum
density and transport infrastructure.

Industrial location preferences are constant; they do not
change during the simulation period. On the other hand,
residential preference for suburban or urban locations changes

89

baldoni
89

probabilistically according to an assumed household life cycle
(see Table 6). When a household reaches age 60 we assume
that it retires, stops commuting and does not change location.
Transition probability is estimated according to the frequency
of households with and without children per age class (mean
value of all municipalities is more than one municipality is
considered). Moreover, the qualification level does not change
according to age.

TABLE 6: TRANSITION PROBABILITIES OF HOUSEHOLDS

Probability per age class

-30 31-45 45-60

Highly — Highly low very low Negligible
qualified qualified
suburbanites urbanites
Highly — Highly low very high High
qualified qualified
urbanites suburbanites
Less qualified — Less very low Negligible Negligible
suburbanites qualified

urbanites
Less qualified — Less Negligible low very low
urbanites qualified

suburbanites

The generation and loss of jobs is defined by the respective
national industrial activity. The latter changes randomly
within a specific industry the job opportunities offered by a
certain firm and, after matching with people looking for jobs,
it leads to the actual employment of any firm.

As far as spatial information is concerned, the regulation of
land use (zoning), the upper limits of density and the
provision of infrastructure (traffic capacity) are determined
exogenously and may change discretely over time

IV. THE MMASS-BASED MODEL

Among models based on Multi Agent Systems (MAS
[Ferber, 1999]), within our research framework we decided to
adopt the Multilayerd Multi Agent Situated Systems (MMASS
[Bandini et al., 2002]. The main motivations of this decision
are strictly related to problem features and peculiarities (i.e.
relevance of spatial features of agent environment, strong role
of agent situatedness in their behaviors and interactions ...)
that we will overview in the following section. Then our
proposal of applying the MMASS approach to model the
above described problem' will be described.

A. Why MMASS?

Some features that we identified as interesting in relation to
the considered problem are:
- It explicitly describes the spatial structure of agent
environment (i.e. space): a multilayered network of sites
where each node can host an agent, and represents a part

1 A detailed description of the MMASS approach is out the scopes of this
paper. Details on the model can be found in [Bandini et al., 2002]; for some
examples of its applications within the research context of modeling and
simulation of complex systems see [Bandini et al., 2004a] and [Bandini et al.,
2004b].

of the distributed medium for the diffusion of signal

emitted by agents to interact (e.g. to provide information

to other agents).

- MMASS agents can be characterized by heterogeneous
behaviors that are space-dependant: an action is
performed by an agent since it belongs to some given
type, it is currently characterized by some given state and
it is situated in a given spatial location.

- Interactions between MMASS agents are heterogenecous
and space-dependant (i.e. the distance between agents is
an element that determines its nature — e.g. synchronous
vs asynchronous, direct vs indirect, local vs at-a-
distance):

o MMASS agents interact according to direct
interaction mechanism (i.e. MMASS reaction) when
they are situated in adjacent positions and have
previously agreed to synchronously change their
states;

o not adjacent agents can interact according to an
indirect interaction mechanism based on emission-
diffusion-perception of signals (i.e. MMASS fields)
emitted by agents themselves

- Multilayered spatial structure (i.e. multiple situated MAS
can coexist and interact): MMASS allows the modeler to
exploit multiple layers in order to represent a high-
complexity system (like the one of the reference problem)
as composed by multiple interacting systems of lower
complexity. Heterogeneous aspects that contribute to the
behavior and dynamics of the whole system can be
described by distinct MAS situated in distinct (but
interconnected) layers of the spatial structure

B. The proposal

In order to apply the MMASS approach to represent the
above described problem model, we first distinguished
territorial elements (i.e. territory) from those entities that
populate the territory and behave according to their type, their
state and the state of the local environment they are currently
situated.

We describe a territory as a discrete set of locations where
either residential or industrial buildings are allowed (other
location types have not been considered). A suitable
representation of the territory set of locations in a graph-like
structure (see the top of Figure 3), where each node of the
graph represents a territory area (and its type), and graph
edges represent connections between territory areas. In this
representation, an edge exists between two locations only
when some transportation infrastructure (e.g. road, train line)
exists between them. Useful available information can be
associated to each graph node and edge. For instance, edges
can be labeled with information about the type of available
transportation, the average number of cars per hour when it
represent a road, mean delay time if it represents public
transportations, and so on.

In adopting this type of representation of the territory, we
have adopted a first feature of the MMASS model that is, the

90

baldoni
90

possibility to describe the structure of the environment that is
populated by a set of active entities (i.e. agents). MMASS
agents can represent thus those system entities that perform
some kind of decision-making process (according to their
features and state and the ones of the environment they are
situated in).

Residential
areas
s, i D P |
e @ g
p)\) 7 @ '.I‘ra_nsportatmns’
hegaiSes el e infrastructure
e
Industrial
areas

Figure 3. Multi-layered representation of the territory

The second feature of the MMASS approach that we
exploited concerns the possibility to represent the
environment where agents are situated according to a
multilayered structure. Thus, given a territory, we represent it
according to a structure composed by three layers. Two layers
(the ones on the top and bottom of Figure 3) are devoted to
represent those territorial areas in which, respectively,
residential and industrial buildings are allowed. Each layer
can be seen as a sort of “view on the territory graph
representation” where only subsets of the graph nodes are
considered.

The main motivation of this choice is related to the fact
that, in this way, at residential and industrial layers we can
represent two distinct complex sub-systems (i.e.
“Householders’ System” and “Firms’ System” respectively).
In fact the effect of householders’ decisions, first of all, occurs
within the system they are part of, but at the same time,
householders and firms belong to two different complex
systems. The third sub-system we considered is represented by
“Commuting”. We will not describe here into details the
behavior, architecture and interaction abilities of agents that
constitute each system since they are mainly based on the
firms’ and householders’ models that have been described in
Section 2.

According to system description (see Section 2 and Figure
1), we have identified three main influences that can occur
between these three sub-systems (Figure 4):

1. Householders’ and Firms’ systems 2> Commuting:
commuting is the result of decisions of householders and
firms;

2. Decisions in Firms’ System = Householders’ System:

decisions in the Firms’ System influences the Householders’
System since a firm may move to a location that may cause a
change in decisions of some householders. This influence is
not bidirectional since the availability of ‘manpower’ in the
surroundings has not been considered by domain experts as
a fundamental factor in firms’ decisions-making process.

3. Commuting 2 Householders’ System: the level of
commuting is one of the main elements in householders’
decisions (while it is not a factor influencing firms’
decisions on their location).

z

Householders’
System

3
Commuting
1
A
Firms’
System

Figure 4. Influences between Systems

C. Some observations on the proposal

From the MMASS-based model description, we can draw
some first observations and conclusions about the suitability
of the adoption of the MMASS approach for the considered
problem. In fact MMASS allows modelers to
- represent all the elements of the microeconomic reference
model (that already demonstrated to fruitfully allow to
represent the considered problem);

- better separate different elements involved in the complex
system dynamics (e.g. territorial and decisional ones);

- explicitly represent influences, feedbacks and interactions
between sub-systems;

- simpler update, and incrementally improve, the model.

Moreover, MMASS, despite other MAS-based modeling
approaches, allows domain experts to simpler develop
simulation software in order to experiment, validate, and
update the model according to the problem requirements. In
fact, a simulation platform for models based on MMASS is
already available [Bandini et al., 2004c].

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we have described a microeconomic agent-
based model of a complex system where commuting is
strongly involved in system dynamics (it is the result of
householders and firms decisions and, at the same time, it is
involved in their decisions). We have not included in this
paper a discussion on the quality of this model. For this work,
this model is the reference model and it is out of the scopes of
this paper to validate it and verify its suitability.

91

baldoni
91

Thus, we have proposed a MMASS-based model of the
same problem (Section 3). The aim of this work was not to
propose a modeling approach that improves the suitability or
validity of the microeconomic model. On the contrary, we
have proposed this modeling approach since it provides
interesting features related to the reference scenario and to the
goals of the microeconomic model. The main features of
MMASS approach that can be useful in this work have been
listed and some of them have been exploited in its application.

The here presented work is still ongoing and next activities
will concern:

- specification of agent behavioral models: this work will
be performed according to the behaviors of agents
described by the microeconomic model (see households’
and firms’ utility functions);

- detailed specification of interactions and influences
between sub-systems;

- development of a simulation system based the MMASS-
based model: in performing this activity, we will exploit
the tools provided by the MMASS platform [Bandini et
al., 2004c] that will allow us to produce a simulation tool
in the short time.

REFERENCES

[Arthur et al., 1997] Arthur, W.B., Durlauf, S.N., Lane, D.A. (eds.), The
economy as an evolving complex system II, Perseus Books, 1997

[Bandini et al., 2002] Bandini, S., S. Manzoni, C. Simone, Heterogeneous
Agents Situated in Heterogeneous Spaces, Applied Artificial
Intelligence, Vol. 16, n. 9-10, 2002, pp. 831-852.

[Bandini et al., 2004a] Bandini, S., S. Manzoni, G. Vizzari, Multi-Agent
Approach to localization Problems: the Case of Multilayered Multi-
Agent Situated System, Web Intelligence and Agent Systems
International Journal, IOS PRESS, 2004. (in press).

[Bandini et al., 2004b] Bandini, S., S. Manzoni, G. Vizzari, Situated Cellular
Agents: A Model to Simulate Crowding Dynamics, IEICE
TRANSACTIONS on Information and Systems, Vol.E§7-D(3), march
2004, pp.669-676.

[Bandini et al., 2004c] Bandini, S., S. Manzoni, G. Vizzari, Towards a
platform for MMASS based simulations: focusing on field diffusion, To
appear in Applied Artificial Intelligence, Taylor & Francis, 2004.

[Batten, 2000] Batten, D.F., Discovering artificial economics. How agents
learn and economies evolve, Westview Press, 2000.

[Colonna et al., 1998] Colonna, A., di Stefano, V., Lombardo, S.T., Papini, L.,
Rabino, G.A., L.A.U.D.E.: Learning automata for urban development
exploration. The case study of Rome urban system, ERSA-conference
1998, Vienna, 1998.

[Ferber, 1999] Ferber, J., Multi-Agent Systems: An Introduction to distributed
artificial intelligence, Addison-Wesley, Harlow (UK), 1999.

[Portugali, 1999] Portugali, J., Self-organization and the city, Springer, 1999.
[Raney et al., 2002] Raney, B., Cetin, N., Vollmy, A., Nagel, K., Large scale
multi-agent transportation simulations, ERS A-conference 2002,

Dortmund, 2002.

[Schelling, 1969] Schelling, T.S., Models of segregation, American Economic
Review, 59(2), 488-493, 1969.

[Schumpeter, 1939] Schumpeter, J.A., Business cycles. A theoretical,
historical, and statistical analysis of the capitalist process, McGraw-
Hill, 1939.

[Tesfatsion, 2003] Tesfatsion, L., Agent-based computational economics. ISU
Economics Working Paper no. 1, 2003.

[TRAweb] Transportation analysis simulation system (TRANSIMS),
http://transims.tsasa.lanl.gov/, http://www.transims.net/.

92

baldoni
92

Structuring Organizations by Means of Roles
Using the Agent Metaphor

Guido Boella Leendert van der Torre
Dipartimento di Informatica - Universitdi Torino - Italy CWI - Amsterdam - The Netherlands

Abstract— In this paper we propose to define the organizational Decomposition: the most basic technique for tackling any
structure of multiagent systems using the agent metaphor. The |arge problem is to divide it into smaller, more manageable
agent metaphor is not only used to model software agents, oy nks each of which can then be dealt with in relative
but also social entities like organizations, groups and normative . :
systems. We argue that mental attitudes can be attributed to isolation. 2) Abstraction: the proce_ss of defining a S'”m“f_'
them - beliefs, desires and goals - and also an autonomous andnodel of the system that emphasises some of the details or
proactive behavior in order to explain their behavior. We show properties. 3) Organisation: the process of identifyingl an
how the metaphor can be applied also to structure organizations managing interrelationships between various problemirsglv
in functional areas and roles, which are described as agents too. components.”

Thus, the agent metaphor can play a role similar to the object In the agent oriented approach, however, decomposition
oriented metaphor which allows structuring objects in component . - ’ ’) '
objects. Finally, we discuss how the agent metaphor addressesabstraction and organization are not yet addressed with the
the problems of control and communication in such structured same efficacy as in the object oriented approach, where an
organizations. object can be composed of other objects, which can be ignored
in the analysis at a certain level of abstraction. The agent
metaphor is sometimes proposed as a specialization of the
Software engineering is used to provide models and teabbject metaphor [4]: agents do not only have - like objects
nigues to develop complex software system. It is necessana behavior which can be invoked by the other agents,
to make it easier to handle the complexity arising from thieut they also autonomously act and react to changes in the
large number of interactions in a software system [1]. Medegnvironment following their own goals and beliefs. In cast;
and techniques allow expressing knowledge and to supp®rt the component view of objects in the object metaphor could
analysis and reasoning about a system to be developed. Astthée lost. The property of agents, i.e., sociality, clogest
context and needs of software change, advances are needetldoproperty allowing the aggregation of objects to form
respond to changes. For example, today’s systems and theéire complex objects is not enough to overcome the gap. In
environments are more varied and dynamic, and accommodgégticular, multiagent systems offer as aggregation nukttioe
more local freedom and initiative [2]. notion of group or of organization. According to Zambonelli
For these reasons, agent orientation emerged as a reval. [5] “a multiagent system can be conceived in terms of
paradigm for designing and constructing software systeran organized society of individuals in which each agent play
[1], [2]. The agent oriented approach advocates decomgosgpecific roles and interacts with other agents”. At the same
problems in terms of autonomous agents that can engagsiine, they claim that “an organization is more than simply
flexible, high-level interactions. In particular, this isnatural a collection of roles (as most methodologies assume) [...]
representation for complex systems that are - as many réather organization-oriented abstractions need to besddv
systems are - invariably distributed [1]. Compared to tlilé stand placed in the context of a methodology [...] As soon as the
dominant software paradigm, namely object orientatioenag complexity increases, modularity and encapsulation les
orientation offers a higher level of abstraction for thimi suggest dividing the system into different suborganizegtio
about the characteristics and behaviors of software sygstericcording to Jennings [1], however, most current approache
It can be seen as part of an ongoing trend towards gredteossess insufficient mechanisms for dealing with organisa
interactivity in conceptions of programming and softwaréonal structure”. Moreover, what is the semantic prineipl
system design and construction. Much like the concepts which allows decomposing organizations into suborgaiumnat
activity and object that have played pivotal roles in earliemust be still made precise.
modelling paradigms - Yu [2] argues - the agent concept canThe research question of this paper, thus, is: how can the
be instrumental in bringing about a shift to a much richeagent oriented paradigm be extended with a decomposition
socially-oriented ontology that is needed to charactesizd structure isomorphic to the one proposed by the object taikn
analyze today’s systems and environments. paradigm? How can a multiagent system be designed and
The shift from the object oriented perspective to the ageobnstructed as an organization using this structure?
oriented one is not, however, without losses. Booch [3]4iden The methodology we use in this paper is a normative
tifies three tools which allow coping with complexity: “1)multiagent framework we proposed in [6], [7], [8], [9]. The

I. INTRODUCTION

M. Baldoni, F. De Paoli, A. Martelli, and A. Omicini (Eds.): WOA 2004 — Dagli Oggetti agli
Agenti, Sistemi Complessi e Agenti Razionali, Torino, Italy, November 29" — December 1
2004. Pitagora Editrice Bologna. ISBN 88-371-1533-4. ht t p: / / woa04. uni to. it

baldoni

94

basic idea of this framework is: agents attribute mental atfurther decomposition seems possible. To overcome this flat
tudes, like beliefs, desires and goals, to the other aghets tness limitation, the organization metaphor has been pesjos
interact with and also to social entities like groups, ndivea e.g., by [10], [5]. Organizations are modelled as collawio
systems, and organizations. Thus these social entitiedeanof agents, gathered in groups [10], playing roles [1], [11]
described as agents too, and at the same time, the componentsegulated by organizational rules [5]. What is lacking is
of organizations, namely, functional areas and roles, ean & notion of organization as a first class abstraction which
described as agents, as in the ontology we present in [7]. \Allows decomposing into subproblems the problem which a
call themsocially constructed agents system wants to solve, using a recursive mechanism (as the
This paper is organized as follows. In Section Il we discusgject decomposition is) until autonomous agents compgosin
the progress from object orientation to agents and socialymultiagent system are reached.
constructed agents. In Section Ill we present the formal The desired solution is required to model at least simple
model and in Section IV we discuss the issue of contrekamples taken from organizational theory in Economics as
and communication in an multiagent system structured as tlve following one. Consider a simple enterprise which is
organization. A summary closes the paper. composed by a direction area and a production area. The
direction area is composed by the CEO and the board. The
Il. FROM OBJECTS TO SOCIALLY CONSTRUCTED AGENTS pard js composed by a set of administrators. The production
The trend in software and requirements engineering andarea is composed by two production units; each production
programming languages paradigms has been from elemeamg by a set of workers. The direction area, the board, the
that represent abstract computations towards elements faduction area and the production units finectional areas
represent the real world: from procedural to structured prtn particular, the direction area and the production aredsny
gramming, from objects to agents. Agent systems have tmthe organization, the board to the direction areta, The
central control authority, instead each agent is an indégren CEO, the administrators and the members of the production
locus of control, and the agent’s task drives the control- Daunits areroles each one belonging to a functional area, e.g.,
egating control to autonomous components can be considetieel CEO is part of the direction area.
as an additional dimension of modularity and encapsulation This recursive decomposition terminates with roles: roles
Intentional concepts such as goals, beliefs, abilitiesyrod- unlike organizations and functional areas, are not congpose
ments.etc, provide a higher-level characterization of behaviohy further social entities. Rather, roles are played by rothe
One can characterize an agent in terms of its intentioredents, real agents (human or software) who have to act as
properties without having to know its specific actions inmer expected by their role.
of processes and steps. Explicit representation of golalwsl The object metaphor is not adequate to deal with such
motivations and rationales to be expressed. The agent gbnge structure, because each entity can be better described in
provides a local scope, for reconciling and making tradeofferms of belief, desires and goals, and of its autonomous
among competing intentionality, such as conflicting goald abehavior. We talk, e.g., about the decisions of the CEO, or
inconsistent beliefs. By adopting intentional modellinge about the organization’s goal to propose a deal, about the
networks of dependencies among the agents can be modelietief of the production area that the inventory is finished,
and reasoned about at a high level of abstraction. Moreovetg. Hence, at first sight, these entities can be described as
cooperation among agents cannot be taken for granted. Bgtonomous agents. But this is not sufficient, since thetagen
cause agents are autonomous, the likelihood of successf@taphor does not account for the decomposition structure
cooperation is contingent upon many factors. However, &f an organization relating it with its functional areas and
agent that exists within a social network of expectationd amoles. Moreover, organizations, functional areas andsroie
obligations has behaviors that are confined by them. Thet exist in the same sense as (human or software) agents do.
agent can still violate them, but will suffer the consequenc Thus, if we want to follow this intuition, the agent metaphor
The behavior of a socially situated agent is therefore Igirgemust be extended. Inspired by Searle [12]'s analysis ofa$oci
predictable, although not in a precise way. reality we define organizations, functional areas and rakes
Given that agents are nowadays conceived as useful abstgmsially constructed agent3hese agents do not exist in the
tions for modelling and engineering large complex systemgsual sense of the term, but they are abstractions which othe
the need for a disciplined organizational principle for retge agents describe as if they were agents, with their own Isglief
systems emerges clearly in the same way as the formalizatd@isires and goals, and with their own autonomous behavior.
of the object decomposition principle does in the case aéaibj The argument goes as follows:
oriented systems. 1) agents can attribute to other (human or software) agents
One of the main features of the object perspective is that mental attitudes and an autonomous behavior to explain
objects are composed by other objects and that objects can be how they work, regardless of the fact that they really
replaced by other objects with the same properties (e.g., th have any mental attitudes (thatentional stanceof
same interface). This is not entirely true for agents. Adoay Dennett [13]);
to Jennings [1], “the agent oriented approach advocates de2) according to Searle [12], agents create new social enti-
composing problems in terms of autonomous agents”, but no ties like institutions - e.g., money and private property -

baldoni
94

95

by means of collectively attributing to existing entities only as long as its (essential) parts exist. In contrast,nn a
e.g., paper bills - a new functional status - e.g., moneyganization the perspective is reversed: the “compohents
- and new qualities. of the organization exist only as long as the organization
3) if the new functional status is composed by mentaists, while the organization itself can exist even withou
attitudes and autonomous behavior, the new entities at® components. The role of CEO does not have sense if the
described as agentsocially constructed agents organization which the role belongs to does not exist angmor
4) hence, socially constructed agergsa agents, can cre- The reason is that an organization as a social entity has no
ate new socially constructed agents by attributing mentahysical realization. The organization exists becausehef t
attitudes to them, in turn. attribution of mental attitudes by the agents of a society.
Agents create organizations by collectively attributihngrh In turn, functional areas and roles exist only as long as the
mental attitudes; organizations, as socially construagghts, organization attributes mental attitudes to them. An irtgoulr
can create new social entities like functional areas anelsrolconsequence of this view is that an organization can resieic
which are the components of the organization. Functioniéelf while continuing to exist.
areas, as agents, can in turn apply the agent metaphor te creaAs [16], [10] claim, a multiagent system should not make
subareas and further roles, and so on. Roles are descsptiany assumption about the implementation of the agents. As
of the behavior which is expected by agents who, with the¥u [2] notices, the agent perspective does not mean negessar
own mental attitudes, play these roles: the role’s expecttiht entities should be implemented with mental attitudes:

behavior is described in terms of mental attitudes, sintesro Agent intentionality is externally attributed by
are considered socially constructed agents. Modellingsrol the modeller. From a modelling point of view, inten-
by attributing them mental attitudes allows a more expvessi tionality may be attributed to some entity if the mod-

way to describe the expected behavior with respect, e.g., th eller feels that the intentional characterization offers

scripts proposed by Activity Theory [14]. In this manner, a useful way for describing and analyzing that entity.

we have a way to structure an organization in components For example, some entity that is treated as an agent
with an homogeneous character - since they are all agents - during modelling may end up being implemented

in the same way as the object orientation allows structuring in software that has no explicit representation and

objects by means of objects. An advantage of this way of manipulation of goalsetc

structuring an organization is that its components can begocially constructed agents defined in terms of beliefs,
described as agents with beliefs, desires and goals. Hergssires and goals are only an abstraction for designing the
the same decomposition approach advocated by [1] is usg§@tem. Moreover, the behavior of roles is described by atent
for StrUCtUring an Organization: it is decompOSEd in a set gftitudesy but this does not require that the agents p|amm
autonomous agents: not only real ones, but socially cartstiiu jn the organizations are endowed with beliefs and motivatio
agents like functional areas and roles; socially constdictit js sufficient that their behavior conforms to that of théero
agents do not exist, but they are only used as abstractighgy are playing.
in the design analysis to structure an organization. At it € |n Figure 1, we summarize the approach: the multiagent
of the process there are only human or software agents whigfistem in the oval is composed of three real agents (boxes)
to coordinate their behavior, behave as if they all atteliie \yho collectively attribute beliefsK), desires D) and goals
same beliefs, desires and goals to the Organization. Thas |§G) to the Organiza‘[ion (para||e|ogram)_ The Organization,
subjective approach to coordination [14]. in turn, attributes mental attitudes to two functional area
Another reason why organizations, functional areas ag@d functional areas to three roles. The organization and
roles should be all considered as agents - and not simphg functional areas are attributed also nori, (facts (f),

groups - is that they have private properties and agefystitutional facts {) and decisions (the triangld.
who are employed in them; so a department can possess a

building and machines, employ peopletc. Moreover they Il. THE CONCEPTUAL MODEL

are the addressees of obligations (e.g., to pay the emgpyee We introduce the conceptual model necessary to cope with

permissions (e.g., a role can use a certain machine) andpoveocially constructed agents: first the multiagent systeti wi

(e.g., the role of CEO can take decisions). This is what is althe attribution of mental attitudes to agents, then the ativa

meant by the law when such social entities are defined sstem.

“legal persons”: they are considered persons with obligati First of all, the structural concepts and their relation® W

and rights [15]. Finally, organizations and functional ame describe the different aspects of the world and the relakiips

as legal institutions, are normative agents themselvesy tramong them by introducing a set of propositional variabfes

are agents who can pose obligations on the roles and on #mel extending it to consider also negative states of affairs

employees, e.g., by giving orders to them, or endow them witH X) = X U {—x | « € X}. The relations between the

permissions and powers. propositional variables are given by means of conditionkds
There is a difference with the decompositional view of theritten as R(X) = 25(X) x L(X): the set of pairs of a set

object oriented perspective which must be noticed. Thespadf literals built from X and a literal built fromX, written as

of an object exist by themselves and the object itself exidtsA...Al, — [or, whenn =0, T — [. The rules are used to

baldoni
95

96

social
collective @ @ i reality
attribution o
= > ® d > organization

/ @@ m @® m 4\ functional
@ @ areas

:

=

\ @ -» @ [j J & [j roles
\ OO /OO0

&

B — 1)

OICAEE

reality

Fig. 1. The attribution of mental attitudes.

represent the relations among propositional variablestiagi not create further socially constructed agents; rathégsrare
in beliefs, desires and goal of the agents. associated with agents playing the. : RO — RA.

Then there are the different sorts of agedtsve consider. We introduce now concepts concerning informational as-
Besides real agentBA (either human or software) we con-pects. First of all, the set of variables whose truth value
sider as agents in the model also socially constructed ageist determined by an agent (decision variables) [17] are dis-
like organizationsO A, functional areag’A, and rolesRO. tinguished from thoseP which are not (the parameters).
The different sorts of agents are disjoint and are all sghskt Besides, we need to represent also the so called “institaitio
the set of agentd: RAUOAUF AURO C A. All these agents facts” I. They are states of affairs which exist only inside
have mental attitudes; by mental attitudes we mean beliefs normative systems and organizations: as Searle [12] stgyges
desiresD and goalsG. money, private property, marriagesic. exist only as part of

Mental attitudes are represented by rules, even if they tlo s@cial reality; since we model social reality by means of the
coincide with them/ D : BUDUG — R(X). When there is attribution of mental attitudes to social entities, inginal
no risk of confusion we abuse the notation by identifyingesul facts can be modelled as the beliefs attributed to thesetagen
and mental states. To resolve conflicts among motivations @@ done by [8]. Similarly, we need to represent the fact that
introduce a priority relation by means of: A — 2M x 2M g social entities like normative systems and organizatiors a
function from agents to a transitive and reflexive relation oable to change their mental attitudes. The actions detémgin
the powerset of the motivatiods = DUG containing at least the changes are called creation actiaris Finally, inspired
the subset relation. We write, for > (a). Moreover, different by Lee [18] we introduce the notion of documer#s’": “we
mental attitudes are attributed to all the different sofgents Use the term ‘document’ since most information parcels in
by the agent description relatiohD : A — 28YPUGUA e business practice are mapped on paper documents”.
write B, = AD(a) N B, A, = AD(a) N A for a € A, etc. As concerns the relations among these concepts, we have

Also agents are in the target of the agent descriptidn that parameters’ are a subset of the propositional variables
relation for the following reason: organizations, funo@b X.The complement o and P represents the decision vari-
areas and roles exist only as profiles attributed by othemtage ables controlled by the different agents. Hence we asociat
So they exist only as they are described as agents by othéih each agent a subset of \ P by extending again the
agents, according to the agent description relation. fitiz agent description relatiodD : A — 280PUCGUAVAE) e
relation specifies that an agebte OA U FA U RO exists Write X, = AD(a) N X.
only as far as some other agedis€ A | b € A,} attribute Moreover, the institutional factd are a subset of the
to it mental attitudes. The séF" AU RO) N A, represents the parameterd’: I C P. When a belief rul& Ac — p € B, has
immediate “components” of the organization or functiomalea an institutional factp € I as consequent, we say that X
o € OAUF A. The decomposition structure of an organizatiooounts asp in contextY - using Searle [12]'s terminology -
ends with roles. Roles are described as agents, but theyfdoagenta € OAU FAU RO.

baldoni
96

baldoni

97

The creation actiong” are a subset of the institutional IV. CONTROL AND COMMUNICATION IN ORGANIZATIONS
facts C' C I. Since agents are attributed mental attitudes, we

represent their modification by adding new mental attitudes!nstéad of having a single global collection of beliefs and
expressed as rules. So the creation action relaGom : motivations, modelling organizations as socially constd

{b,d,g} x A x R(X) — C is a mapping from rules (for agents allows allocating different beliefs,, desiresD, and
beliefs, desires and goals) to propositional variablesereh 902IS G, t0 separate agents € A, composing the organi-
CR(b,a,r) stands for the creation ofe € B,, CR(d,a,r) Z3lON0 € OA. Agents can be thought of as a locality for
stands for the creation of. € D,, andCR(g, a,r) stands for intentionality. In this way it is possible to distribute gidals

the creation ofm € G,, such that the mental attitude is ©Of Go among the different functional areas and rales A,
described by the rule € R(X): r = MD(m). to decompose problems in a hierarchical way and to avoid to

overburden them with too much goals. In particular, the goal

Finally, the document creation relatignh : DC' — X is & .G, attributed to roler € RO represent the responsibilities

mapping from documents to decision variables representing. . -
their creation. We writeCD(d) € X, for the creation of }Aﬁf:ﬁh agentb € A playing that roles RL(r) = b) has to

documentd € pO.) The beliefs attributed to the organizatiaB) and attributed

We define a multiagent system 8%y the organization to its component®,{ and m € A,)
MAS = (RA,0A,FA, RO, X,P,B,D,G, AD, gnresent their know how and the procedures used to achieve
MD,>,1,C,DC). the goals of the organization; these beliefs are repreddate

We introduce obligations posed by organizations and fungxample by statutes and manuals of organizations. As in case

tional areas by means of a normative multiagent systeﬂ{ goals, different beliefd3, can be distributed to functional
Let the norms{n, nm} = N be a set. Let the norm areas and rolea € A,. In this way the organization can
syreesltm - .

descriptionV’ : OAUFA — (N x A — X) be a function from respect the incapsulation principle and preserve secanity

agents to complete functions from the norms and agentsR@vacy of information, as requested by [10].
the decision variables: we wrif, for the functionV (o) and ~ The beliefs, desires and goals of the components of an
V,,(n, a) for the decision variable of agente RAUOAUF A organization play also another role. They express thetuinsti

representing that it considers a violation of nomby agent tional relations among the different components: in pataig
ac A the control and communication relations among the funation

NMAS = (RA,0A, FA, RO, X, P,D,G, AD, MD, PL, > areas and roles. Both issues will be ac_idresseo_l using th@nnoti
) : ; of documentDocuments are the way information parcels are
,I,C,DC,N,V) is a normative multiagent system .

i o : i represented in organizations and represent also the seobrd
Following [6], obligations are defined in terms of goals Ofacisions and information flow.

the addressee of the normand of the agend. The definition The institutional relations of control and communication

of Qbhgauon contains several clauses. Th_e first one dEf'ngﬁlong the components of an organization are defined in terms
obligations of agents as goals of the normative agentMiilo o 1o «counts as” relation. For Jones and Sergot [19], the
the "Your wish is my command’ strategy, the remaining oneg, ;nis as” relation expresses the fact that a state ofraffai
are instrumental to the respect of the obligation. or an action of an agent “is a sufficient condition to guarante
Agenta € A is obligedby normative agendb € OAU F'A that the institution creates some (usually normative)estt
to decide to dar € L(X, U P) with sanctions € L(Xo, U affairs”. As [19] suggest this relation can be considered as
P)if Y C L(XaU P) in NMAS, written asNMAS | “constraints of (operative in) [an] institution”. In Sewti Il|
Oao(7,5]Y), if and only if there is a» € N such that: we propose to model “counts as” relations by means of belief
rules of the socially constructed agents. They express how a
organization, a functional area or a role provide an instinal
classification of reality.
In an organization it is fundamental to specify how agents
can control other agents by giving orders to them [10], [5];
3) Y U{Vy(n,a)} — s € Dy N Go: if agento believesy the cpntr_ol is achieved b_y the command structure_ of an
and decided/, (n, a), then it desires and has as a goaqrgamz_atmn. In fact, organizations can pe seen as buiesa
that it sanctions ageret accordmg to [20].. Control_ has two dimensions: hqw t_he
4) T —~s € D,: agenta desires~s, which expresses organization and its functional areas can pose obligations
that it does not like to be sanctioned. (co'mm.ands) fto roles, and \{vho. has the power t'o cre_ate these
obligations (since, as organizations and their units acéafy
Since obligations are defined in terms of mental states, thegnstructed agents, they do not act). For example, a prioduct
can be created by means of the creation act@nstroducing unit can decide to give a production order to its members
new desires and goals, as shown by [8]. In this paper, we walhd the decision of the production unit can be taken by a
use the shorthan@ R(o, O.0(z, s|Y)) to represent the set of director of that unit. The basic block of control is the creat
creation actions necessary to create an obligatigs(x, s|Y"). of obligations. As described in the conceptual model, an

1) Y — x € DoNG,: if agento believesY then it desires
and has as a goal that

2) YU{~z} — Vo(n,a) € D, N G,: if agento believes
Y and~z, then it has the goal and the deslfg(n, a):
to recognize it as a violation by ageat

baldoni
97

98

agent can change its own mental attitudes. In particular, anCommunication among socially constructed agents is based
organizationo can change its desires and goals so to creat@ma the same principle as control. It relies on the fact that

new obligationO,.(z, s | Y) by means of the creation actionthe beliefs of a functional area or of a role are attributed

CR(0,040(x,s|Y)). It is possible to create sanction-basetb them by the higher level socially constructed agent which

obligations addressed to agent A since the agents involvedthey are attributed mental attitudes by. In this way we can

in organizations are depended on them, for example, for tegpress the fact that a document created by a role RO

fact that organizations pay them salaries and decide bgneftommunicates some beligfto an organization or functional

The creation action§’ of an organizatior are parameters, aream € OAUF A it belongs tor € A,,: CD(d) — p € By,
hence they are not directly controlled by it: the organaati whereC D(d) € X, is an action creating a documeht DC.
does not act directly, but only by means of the actions dhis is read as the fact the action of role€‘counts as” the
the agents composing it. Creation actions achieve theiceff official belief p of agentm. The documentl represents the
to introduce new obligations if some other action “countsecord of the communication betweerand m.
as” a creation action for the organization: this relation is Analogously, we can specify official communication among
expressed by a belief rule of the organizatiene.g.,c — roles. Aroler € RO communicates to a role € RO thatp €
CR(0,040(z,s|Y)) € B,. Since there is no other way for P if there is some actiol D(d) € X, creating a document
making true the creation action, only the organizationlfitsed € DC such thatCD(d) — p € B,. Note thatB, are
can specify who create new obligations. In particutag, X,, not the beliefs of the agerit € RA playing rolea (b =
can be an actioCD(d) of a roler € RO of producing a PL(a)). Rather they are the beliefs attributed to the role by
documentd € DC: in this way the organizatiol specifies the functional arean € F A: since the roles is created by
that the roler has control over some other rote € RO the functional arean, those beliefs are attributed toby the
such thata € A,. The document! represents the record offunctional aream. When an agenb € RA which plays the
the exercise of the power of agent Also functional areas role a € RO knows that documend has been created, it has
are modelled as agents in an organization: hence, the samect as if it had the beliep, while it is not requested to
mechanism can be used to specify that an agédrds control be psychologically convinced thatis true. Otherwise agent
over rolea € RO, wherer and a can belong to the sameb does not stick to its role anymore and it becomes liable to
functional arean € FA ({r,a} C A,, N RO). having violated its duties.

Since the “counts as” relation can be iterated, it is possibl
to specify how a role- € RO belonging to a functional area
m € FA (r € A,,) of an organizatioro € OA can create In this paper we propose a way to model the organizational
an obligationO,(z,s | Y) directed to a functional area orstructure of multiagent systems. Organizations are costpos
role a € FFA U RO directly belonging to the organization:by functional areas and roles; functional areas, in ture, ar
a € Ao. This is possible since an actierce X, of roler can composed by functional areas and roles. Roles are played
count as an institutional fagt € I for the functional arean: by agents. Using the methodology of attributing mental at-
¢ — p € By,. In turn, the institutional fach can count as the titudes to social entities, we show that organizations &edt t
creation of an obligatiorO,,(z,s | Y) by the organization components can be described as agents: socially constructe
o: p — CR(b,0,0.0(z,s | Y) € B,; this obligation is agents. Since socially constructed agents are agents, they
directed towards agemtwhich belongs to the organizatian can construct, in turn, other agents which constitute their
These relations are only possible since the beligfs of the components. This strategy allows creating a decomposition
functional arean are attributed to agemt by the organization structure as rich as the one in object orientation. Moreaver
o itself, sincem € A,. For example, a decision of the CEQallows progressively decomposing an organization in sempl
counts as an obligation of the entire organization since thgents described by beliefs and motivations to manage the
direction functional area to which the CEO belongs considecomplexity of a multiagent system. Finally, since agents ca
the CEOQO's decision as made by itself and the organizatidme subject to obligations and endowed with permissions and
in turn, considers the decision of the direction as havirg tipowers, all the social entities composing an organizatam c
obligation as a consequence. In this way, the organizatidie the addressees of norms and powers; at the same time,
when it creates its components by attributing mental altisu socially constructed agents can be normative systems ingpos
to them, at the same time, constructs its control structure. obligations on their components, i.e., organizations can b

The second issue is communication among roles. It msodelled as burocracies [20].
often claimed [10] that the organizational structure sfiesi This paper is part of a wider project modelling normative
the communication possibilities of agents. Agents can comultiagent systems. In [8] we model normative systems by
municate almost by definition and standard communicationeans of the agent metaphor: we attribute them beliefs,
languages have been defined for this aim [21]. What tliesires and goals: beliefs represent the constitutives rofe
organization can specify is their possibility to commutéce the organization while regulative rules, like obligatiprase
each other in an institutional way by means of documents; a®delled in terms of goals of the system. In [6] we extend the
Wooldridgeet al.[22] claim, organizations specify “systematicmodel to virtual communities and we use the agent metaphor
institutionalized patterns of interactions”. to describe local and global policies. In [9], constitutivides

V. SUMMARY

baldoni
98

99

are used to define contracts and games among agents [ZeM. Wooldridge, N. Jennings, and D. Kinny, “The Gaia methtmgy

extended to allow an agent to change the obligations erdorce
by the normative system. Roles have been introduced in [2@}3]

This paper constitutes a step forward in this project in that

agent metaphor is used to explain how organizations catecrea
other social entities like functional areas and roles anhthe
same time, specify their behavior. In this way we account for

their definitional dependency characteristic of socialitiest
[24]. Our ontology of social reality is presented in [7].

Future work concerns defining the relation between roles
described as agents and the agents playing those roles: More

over, contracts, described in [9] can be introduced to edgul

the possibility to create new obligations, new roles and new

social entities inside an organization [10].

(1]
(2]
(3]
(4]

(5]

(6]

REFERENCES

N. R. Jennings, “On agent-based software engineeriagificial Intel-
ligence vol. 117(2), pp. 277-296, 2000.

E. Yu, “Agent orientation as a modelling paradignWirtschaftsinfor-
matik vol. 43(2), pp. 123-132, 2001.

G. Booch, Object-Oriented Analysis and Design with Applications
Reading (MA): Addison-Wesley, 1988.

B. Bauer, J. Muller, and J. Odell, “Agent UML: A formalisroif specify-
ing multiagent software systemdyit. Journal of Software Engineering
and Knowledge Engineeringol. 11(3), pp. 207-230, 2001.

F. Zambonelli, N. Jennings, and M. Wooldridge, “Developimultia-
gent systems: The Gaia methodologfZEE Transactions of Software
Engineering and Methodologyol. 12(3), pp. 317-370, 2003.

G. Boella and L. van der Torre, “Local policies for the ¢anh of virtual
communities,” inProcs. of IEEE/WIC WI'03 |EEE Press, 2003, pp.
161-167.

[71 ——, “An agent oriented ontology of social reality,” ifProcs. of

FOIS’04, Torino, 2004.

[8] ——, “Regulative and constitutive norms in normative mujgéat sys-

tems,” in Procs. of KR'04 2004, pp. 255-265.

[9] ——, “Contracts as legal institutions in organizations autonomous

[10]

[11]

[12]
[13]
[14]

[15]

[16]

[17]

(18]

[29]

[20]

[21]

agents,” inProcs. of AAMAS’'042004, pp. 948-955.

J. Ferber, O. Gutknecht, and F. Michel, “From agentsrganizations:
an organizational view of multiagent systems,"LiNCS n. 2935: Procs.
of AOSE’03 Springer Verlag, 2003, pp. 214-230.

M. McCallum, T. Norman, and W. Vasconcelos, “A formal modél o
organisations for engineering multi-agent systems,Pincs. of CEAS
Workshop at ECAI'042004.

J. Searle,The Construction of Social Reality New York: The Free
Press, 1995.

D. Dennett, The intentional stance
Books/MIT Press, 1987.

A. Ricci, A. Omicini, and E. Denti, “Activity theory as admework for
mas coordination,” irProcs. of ESAW'022002, pp. 96-110.

0. Pacheco and J. Carmo, “A role based model of normativefaion
of organized collective agency and agents interactigkytonomous
Agents and Multiagent Systemel. 6, pp. 145-184, 2003.

V. Dignum, J.-J. Meyer, and H. Weigand, “Towards an oigational-
oriented model for agent societies using contracts,Pincs. of AA-
MAS'02 ACM Press, 2002, pp. 694-695.

J. Lang, L. van der Torre, and E. Weydert, “Utilitariaesites,” Au-
tonomous Agents and Multiagent Systepps 329-363, 2002.

R. Lee, “Documentary Petri nets: A modeling represeatafor elec-
tronic trade procedures,” iBusiness Process Management, LNCS 1806
Berlin: Springer Verlag, 2000, pp. 359-375.

A. Jones and M. Sergot, “A formal characterisation oftitn§onalised
power,” Journal of IGPL, vol. 3, pp. 427-443, 1996.

W. Ouchi, “A conceptual framework for the design of orgational
control mechanisms,Management Scienceol. 25(9), pp. 833-848,
1979.

T. W. Finin, Y. Labrou, and J. Mayfield, “KQML as an agerdgnomu-
nication language,” irsoftware Agentsl. Bradshaw, Ed. Cambridge:
MIT Press, 1995.

Cambridge (MA): Bradford

[24

for agent-oriented analysis and desigAiitonomous Agents and Multi-
Agent Systemwol. 3(3), pp. 285-312, 2000.

G. Boella and L. van der Torre, “Attributing mental attites to roles: The
agent metaphor applied to organizational designPriocs. of ICEC'04
IEEE Press, 2004.

C. Masolo, L. Vieu, E. Bottazzi, C. Catenacci, R. FeoaA. Gangemi,
and N. Guarino, “Social roles and their descriptionsPiocs. of KR'04
2004.

baldoni
99

A Conceptual Framework for Self-Organising MAS

Andrea Omicini*, Alessandro Ricci*, Mirko Viroli*, Cristiano Castelfranchif, Luca Tummolini'
*DEIS, Alma Mater Studiorum, Universita di Bologna
via Venezia 52, 47023 Cesena, Italy
Email: andrea.omicini @unibo.it, mirko.viroli@unibo.it, aricci @deis.unibo.it
Fnstitute of Cognitive Sciences and Technologies, CNR
viale Marx 15, 00137 Roma, Italy
Email: c.castelfranchi @istc.cnr.it, tummoli @ip.rm.cnr.it

Abstract—1In this seminal paper, we sketch a general concep-
tual framework for self-organising systems (SOSs) that encom-
passes both stigmergy and MAS coordination, and potentially
promotes models of self-organisation for MASs where interaction
between cognitive agents is mediated by the environment, by
means of artifacts provided by the agent infrastructure. Along
this line, we first introduce the notions of Behavioural Implicit
Communication (BIC) as a generalisation of stigmergy, and of
shared environment (s-env) as a MAS environment promoting
forms of observation-based coordination (such as BIC-based
ones) that exploit cognitive capabilities of intelligent agents to
achieve MAS self-organisation.

I. INTRODUCTION

Self-organisation is typically associated to natural systems,
where global coherent behaviour emerges from a multiplicity
of local interactions between non-intelligent system compo-
nents, in absence of global centralised control. For instance,
physical systems like molecules of magnetic materials, bio-
logical systems like cytoskeletal filaments in cytoplasm of
eukaryotic cells [1], social systems like insect societies [2], all
exhibit forms of local interaction between very simple system
components that result in higher-level forms of organisation,
which can be reduced neither to the individual component’s
behaviour, nor to explicit external control or constraints over
system’s evolution. Self-organisation is also found in (human)
social systems, where it emerges from non-directed local
interactions between humans [3]. Robustness, fault-tolerance
and adaptability to changes are typical features of those sorts
of self-organising systems (SOSs henceforth) that computer
scientists and engineers are nowadays trying to capture and
bring to computational systems.

By definition, SOSs are those systems that exhibit some
forms of global order (organisation, structure, architecture,
...), or direction, that emerge as the result of apparently non-
ordered, non-directed local behaviour. Correspondingly, funda-
mental definitory features of SOSs are the lack of centralised
control, and locality of interaction between components.

The very fact that natural SOSs often exhibit global “in-
telligent” (in a very broad sense) behaviours in spite of their
non-intelligent individual components (magnetic particles, cy-
toskeletal filaments, ants) has led a good deal of the SOS
research in computer science to focus on SOSs based of very
simple software components. This is the case, for instance, of
most of the literature on ant-based systems, trying to capture

M. Baldoni, F. De Paoli, A. Martelli, and A. Omicini (Eds.): WOA 2004 — Dagli Oggetti agli
Agenti, Sistemi Complessi e Agenti Razionali, Torino, Italy, November 29" — December 1%
2004. Pitagora Editrice Bologna. ISBN 88-371-1533-4. ht t p: / / woa04. uni to. it

the principle of self-organisation by mostly focusing on the
patterns of interaction between ant-like components, rather
than on their inner structure and functioning, as in the case of
stigmergy coordination [4].

This has changed in the last few years, with Multi-Agent
Systems (MASs henceforth) taking momentum in the SOS
field [5]. There, the most typical model for local interaction be-
tween components (agents) is based on direct communication:
according to [6], self-organising MASs are typically driven by
social interaction (communication, negotiation, coordination)
among autonomous entities. This is the case, for instance, of
the AMAS theory [7], where self-organisation depends on the
ability of the agents to be locally “cooperative” — based on
their ability to subjectively interpret interactions with other
agents and the environment. Also, this corresponds to well-
known patterns of self-organisation in human organisations
(31

On the other hand, when interaction among agents is
mediated (so indirect, as opposed to direct interaction) by
the environment, it typically happens that cognitive abilities
of agents are not adequately exploited to the aim of self-
organisation. According to [8, page 316], there is

“a fundamental flaw in many studies of self-
organisation: the assumption that the subunits of a
self-organised system are dumb”
This is the case, for instance, of stigmergy [9] and swarm
intelligence [10] applied to MAS coordination, where no use
of agent cognitive capabilities is assumed to achieve self-
organisation.

Given such premises, in this seminal paper we assume as
our conceptual target those forms of self-organisation which
are based on mediated interaction through the environment (4
la stigmergy), but where intelligence of components plays a
relevant role. So, we first demystify the apparent dichotomy
between stigmergy coordination and social communication,
showing a larger range of options: interaction between cogni-
tive agents is not always reducible to communication, commu-
nication is not always explicit, and stigmergy (once properly
defined [11]) does not exhaust the whole range of interaction
through the environment. This is achieved by adopting the
theory of Behavioural Implicit Communication (BIC), which
models a wide range of social behaviours, and works as a
critical decentralised coordination mechanism which is mainly

baldoni

responsible for social order in human societies [11]. Such a
mechanism is shared with animal societies, where it takes
the form of stigmergy (which can then be thought as a BIC
sub-category), and in the context of MAS provides a more
comprehensive theory for self-organisation based on local
interactions mediated by the environment that also covers
cognitive agents.

Then, we focus on the environmental properties that enable
BIC, and devise out the notion of shared environment (s-
env) as a MAS environment promoting forms of observation-
based coordination (such as BIC-based ones) that exploit
cognitive capabilities of intelligent agents to achieve MAS
self-organisation. In particular, the environment should support
observability of agent’s behaviour, and enable awareness of
observation, through suitably-designed MAS infrastructures.
Along this line, a formal model for MAS encompassing both
BIC and s-env is introduced, that works as a model for MAS
infrastructures enabling and promoting advanced forms of
self-organisation for MAS based on cognitive agents, where
agents interact through suitable abstractions provided by the
infrastructure.

Some meaningful examples are finally discussed, that show
how forms of self-organisation can emerge in MASs based
on cognitive agents by exploiting the observability features
provided by shared environments, focusing in particular on
the BIC approach.

II. SELF-ORGANISATION THROUGH BEHAVIOURAL
IMPLICIT COMMUNICATION

A. Interaction, Communication, Observation

In this section we briefly introduce various kind of inter-
action which can be found in complex systems, remarking
in particular the relevance of indirect interaction and implicit
communication — based on observation and awareness — as far
as coordination and self-organisation activities are concerned.

Forms of indirect interaction are pervasive in complex
systems, in particular in systemic contexts where systems take
the form of structured societies with an explicit organisa-
tion, with some cooperative activities enacted for achieving
systemic goals. In such contexts, in order to scale with
activity complexity, sorts of mediating artifacts are shared and
exploited to enable and ease interaction among the compo-
nents. Mediating artifacts of different kind can be identified
easily in human society, designed and exploited to support
coordination in social activities, and in particular in the context
of cooperative work: examples are blackboards, form sheets,
but also protocols and norms. Mediation is well focused by
some theories such as Activity Theory [12] and Distributed
Cognition, [13] adopted in the context of CSCW and HCI,
exploring how to shape the environment in terms of mediating
artifacts in order to better support cooperative work among
individuals. Stigmergy is another well-known form of indirect
interaction, exploiting directly the environment as mediating
artifact: individuals interact by exploiting shared environmen-
tal structures and mechanisms to store and sense kind of signs
(such as pheromones in the case of ant-based systems), and

processes transforming them (such as evaporation/aggregation
of pheromones) [2].

With respect to interaction, communication adds intentional-
ity. A famous claim of the Palo Alto psychotherapy school says
that “any behaviour is communication” [14]: more generally,
we consider communication as any process involving an
intentional transfer of information from an agent X (sender) to
an agent Y (receiver), where X is aimed at informing Y. Agent
X’s behaviour has the goal or the function of informing agent
Y. Agent X is executing a certain action “in order” to have
other agents receiving a message and updating their beliefs or
epistemic state. Communication is an intentional or functional
notion in the sense that it is always goal oriented such that a
behaviour is selected also for its communicative effect'. In the
context of cognitive MAS — composed by intelligent agents
— explicit types of (high level) communication are typically
adopted for supporting coordination and self-organisation,
mainly exploiting common semantics and ontologies.

However, in complex societies explicit communication is
only part of the story: not all kinds of communication exploit
codified (and hence rigid) actions. Humans and animals are
for instance able to communicate also without a predefined
conventional language, by observing their normal behaviour
and practical actions. More generally, also forms of implicit
communication play a key role as kind of interaction. Looking
to societies of individuals provided with cognitive capabilities
(humans, agents, ...), observation and awareness can be
counted among the main basic mechanisms that enable forms
of implicit communication, which allows for coordination
and autonomous organisation activities. An agent’s behaviour
could be observed by another agent, and interpreted / used as
information by the observing agent; but also, being aware to
be observed, an agent could use its behaviour as a means to
communicate.

So, our claim here is that implicit communication — based
on observation and awareness — can be very effective as basic
brick to build flexible coordination and self-organisation in the
context of artificial societies, composed by cognitive agents.
While we agree with [15] that coordination is a causal process
of correlation between agents’ actions typically involving an
information flow between an agent and its environment, we do
not consider always this flow as a process of communication.
Consider a case where an hostile agent, whose actions are “ob-
servable”, is entering a MAS. If another agent becomes aware
of his presence, can observe him, should we say that the hostile
agent is communicating his position? Or, differently, is the
escaping prey communicating to the predator her movements?
Also, even if an agent’s perception of the action of another

'An agent’s behaviour can be goal oriented for different reasons. An
intentional agent (i.e. a BDI agent) is a goal governed agent (the goal is
internally represented) which instantiates a communicative plan to reach the
goal that another agent is informed about something. However, also simple
reactive agents (i.e. insect-like) can act purposively (hence can communicate)
if their behaviour has been shaped by natural or artificial selection, by
reinforcement learning or by design (in the interest of the agent itself). In
these latter cases the behaviour has the function of communicating in the
sense that it has been selected because of a certain communicative effect.

101

baldoni
101

agent is necessary implemented as information transition from
a sender to a receiver, this implementation of interaction
should not be necessarily considered as “communication” and
the passed information should not be always labelled as a
“message”. From the external viewpoint of the designer a
message passing of this sort is designed in order to inform the
agent who is observing. However from the viewpoint of the
agent a simple perception is not necessarily communication.
With respect to existing approaches on self-organisation
using intelligent agents (such the AMAS approach [7]), we
do not adopt direct communication as the main form of
interaction, instead we aim at exploring implicit communi-
cation as a form of indirect interaction, based on observation
and awareness as its basic bricks. With respect to existing
approaches based on indirect interaction — such as stigmergy
or computational fields [16] — we aim at considering societies
composed by individuals with high level cognitive capabilities
able to observe and reason about observations and actions.

B. Behavioural Implicit Communication

In cognitive MAS, communication is normally conceived
as implemented through specialised actions such as speech
acts defined in the FIPA ACL protocol [17]. Such protocols
are inspired by natural language or expressive signals where
meaning is associated to a specific action by convention.

Here we are interested in the case where the agent is aware
of being observed (other agents believe that he is performing
a given practical action) and he “intends that” [18] the other
are interpreting his action. This sort of communication without
a codified action but with a communicative intention is what
we intend for behavioural Implicit Communication [11]. What
is relevant here is that the agent’s execution plan is aimed to
achieve a pragmatic goal as usual: i.e. an agent A is collecting
trash to put it in a bin (as in [19]).

A general definition for BIC is: the agent (source) is per-
forming a usual practical action «, but he also knows and lets
or makes the other agent (addressee) to observe and understand
such a behaviour, i.e. to capture some meaning p from that
“message”, because this is part of his (motivating or non
motivating) goals in performing «. To implicitly communicate,
the agent should be able to contextually “use” (or learn to use
or evolve to use) the observed executed plan also as a sign,
the plan is used as a message but it is not shaped, selected,
designed to be a message.

An agent B has the same goal but observing the other’s
action he decides to clean another side of the road. Since the
agent A knows that an agent B is observing him, the practical
action he is executing can be used also as a message to B such
as “I am cleaning here”. Such a possibility can lead agents to
avoid a specific negotiation process for task allocation and can
finally evolve in an implicit agreement in what to do.

Three different conditions are necessary to support such a
form of communication.

o The first is relative to environmental properties. The

“observability” of the practical actions and of their traces
is a property of the environment where agents live, one

environment can “enable” the visibility of the others
while another can “constrain” it, like sunny or foggy days
affect our perception. An environment could also enable
an agent to make himself observable or on the contrary
to hide his presence on purpose.

o The second is related to the capacity of agents to under-
stand and interpret (or to learn an appropriate reaction
to) a practical action. A usual practical action can be
a message when an agent knows the way others will
understand his behaviour. The most basic message will
be that the agent is doing the action . More sophisti-
cated form would imply the ability to derive pragmatic
inference from it (what is the goal of doing? What can
be implied?).

o The third condition is that the agent should be able
to understand (and observe) the effect that his actions
has on the others so that he can begin acting in the
usual way also because the other understand it and react
appropriately.

behavioural Implicit Communication is in this sense a para-
sitical form of communication that exploits a given level of
visibility and the capacity of the others to categorise or react
to his behaviour.

So, BIC can be considered a generalisation of stigmergy.
The need for an environment for a MAS is often associated
with the goal of implementing stigmergy as decentralised
coordination mechanism. Besides, being the production of a
certain behaviour as a consequence of the effects produced
in the local environment by previous behaviour or indirect
communication through the environment [4], stigmergy seems
very similar to the form of communication we are arguing for.

However these general accepted definitions make the phe-
nomenon too broad. It is too broad because it is unable to
distinguish between the communication and the signification
processes. As we have seen in 2.1 we do not want to
consider the hostile agent’s actions or the escaping prey as
communicative actions notwithstanding that the effects of their
actions elicit and influence the actions of other agents. Besides,
every form of communication is mediated by the environment
exploiting some environmental channel (i.e. air).

As in BIC, real stigmergic communication does not exploit
any specialised communicative action but just usual practical
actions (i.e. the nest building actions). In fact we consider
stigmergy as a subcategory of BIC, being communication
via long term traces, physical practical outcomes, useful
environment modifications which preserve their practical end
but acquire a communicative function. We restrict stigmergy to
a special form of BIC where the addressee does not perceive
the behaviour (during its performance) but perceives other
post-hoc traces and outcomes of it.

Usually stigmergy is advocated as a coordination mecha-
nisms that can achieve very sophisticated forms of organisation
without the need for intelligent behaviour. However there also
exist interesting forms of stigmergic communication at the
intentional level. Consider a sergeant that — while crossing
a mined ground — says to his soldiers: “walk on my prints!”.

10z

baldoni
102

From that very moment any print is a mere consequence of a
step, plus a stigmergic (descriptive “here I put my foot” and
prescriptive “put your foot here!”) message to the followers.

C. Forms of Observation-based Coordination

Coordination is that additional part or aspect of the activ-
ity of an agent specifically devoted to deal and cope with
the dynamic environmental interferences, either positive or
negative, i.e. with opportunities and dangers/obstacles [20].
Coordination can either be non social as when an agent
coordinate with a moving object. The conceptual framework
introduced so far makes it possible to frame some basic forms
of coordination in terms of observation and awareness, which
will be the key for enabling self-organisation of systems:

e Unilateral — X intends to coordinate with Y by observing
Y’s actions.

e Bilateral — In this case we have the unilateral form of
coordination for both agents, so: X intends to coordinate
with Y by observingY’s actions, and viceversa: Y intends
to coordinate with X by observing X’s actions.

o Unilateral-AW — In this case we have a unilateral form
of coordination, but with a first form of awareness: X
intends to coordinate with Y by observing Y’s actions,
and Y is aware of it (i.e. knows to be observed).

e Reciprocal — In this case the we have both a bilateral
form of observation based coordination and awareness
by both the agents: X intends to coordinate with Y by
observing Y’s actions, Y is aware of it, Y intends to
coordinate with X by observing X’s actions and X is aware
of it.

e Mutual — This case extends the reciprocal form by intro-
ducing the explicit awareness of each other intention to
coordinate: X intends to coordinate with ¥ by observing
Y’s actions, Y is aware of it, Y intends to coordinate with
X by observing X’s actions, X is aware of it, and X is
aware of Y intention to coordinate and Y is aware of X
intention to coordinate.

behavioural implicit communication is necessary for mutual
coordination while it is possible and useful in the other kinds
of observation-based self-organisation.

D. The Role of behavioural Implicit Communication in Dy-
namic Social Order

Global social order cannot be mainly created and maintained
by explicit and formal norms, supported only by a centralised
control, formal monitoring, reporting and surveillance proto-
cols. Social order needs to be self-organising, spontaneous
and informal, with spontaneous and decentralised forms of
control and of sanction [21]. In this respect, BIC plays a
crucial role. Sanctions like the act of excluding or avoiding
cheaters are messages; the same for the act of exiting (quitting
commitments). The act of monitoring the others’ behaviour
is a message for social order; the act of fulfilling commit-
ments, obeying to norms, are all implicitly communication
acts. Behavioural Implicit Communication has a privileged
role also for establishing commitments, locally negotiating

OBSERVATION A AWARENESS AWARENESS 2
UNILATERAL UNILATERAL
AW
o
S

.\

BILATERAL T

RECIPI;m\.
MUTUAL

Fig. 1. Forms of coordination in relation to observation capability and
awareness. Squared awareness means awareness of awareness. BIC appears
with awareness, but is fully exploited when considering mutual coordination.

rules, monitoring correct behaviours, enforcing laws, letting
spontaneously emerge conventions and rules of behaviours.

Accordingly, a self-organising society of artificial agents
should be able to let emerge a sort of ‘social contract’
analogous to the one we find in human societies. Such a
social contract will first be established mainly by implicit
communication, then tacitly signed and renewed.

In what follows, we give some examples of this crucial role.

o Imitation for rule propagation — One of the main func-
tions of imitation (i.e., repeating the observed behaviour
of Y —the model) is for achieving a basic form of implicit
communication. The condition is that Y (the model) can
observe (be informed about) the imitative behaviour of
X. By simply imitating the peer, the agent can propagate
a tacit message like “I use the same behaviour as you,
I accept (and spread) it as convention; I conform to it”.
This BIC use of imitation is probably the first form of
mimetic propagation through communication and plays
a key role in convention establishment. X interprets the
fact that Y repeats its innovation as a confirmation of its
validity (good solution) and as an agreement about doing
so. Then, X will expect that Y will understand again its
behaviour next time, and that Y will use again and again
it, at least in the same context and interaction.

o The fulfilment of social commitments — Differently from
the acts of conforming to already existing norms, agents
(when observable) can implicitly communicate the ful-
filment of their social commitments. A conforming be-
haviour is a form of demonstrative act primarily intended
to show that one have done the expected action. Thus, the
performance of the act is also aimed at informing that it
has been performed.

This is especially important when the expectation of X’s
act is based on obligations impinging on X, and Y is

10z

baldoni
103

monitoring X’s non-violation of his duty. Either X is
respecting a prohibition, or executing an order, or keeping
a promise. A social-commitment of X to Y of doing
the act, in order to be really (socially) fulfilled, requires
not only that agent X performs the promised action,
but also that the agent Y knows this. Thus, when X is
performing the act in order to keep his promise and fulfil
his commitment to Y, he also intends that Y knows this.
Even in absence of explicit and specific messages, any
act of social commitment fulfilment can be an implicit
communication act about that fulfilment.

A second order meaning of the conforming act can also
be: “I’'m a respectful guy; I'm obedient; I’'m trustworthy”,
but this inferential meaning is reached trough the first
meaning “I’'m respecting, obeying, keeping promises”.
This second order meanings can circulate and boost the
reputation process that is a key informal sanction system
for dynamic social order [22].

o Local reissuing of norms — Moreover, one of the func-

tions of norm obedience is the confirmation of the norm
itself, of the normative authority of the group, and of con-
formity in general. Consequently, one of the functions of
norm obeying behaviours is that of informing the others
about norm obedience. At least at the functional level,
X’s behaviour is implicit behavioural communication.
Frequently, X either is aware of this function and col-
laborates on this, thus he intends to inform the others
about his respect of norms, or he is worrying about social
monitoring and sanctions or seeking for social approval,
and he wants the others see and realise that he is obeying
the norms. In both cases, his conforming behaviour is also
an intentional behavioural/implicit communication to the
others.
At the collective level, when an agent respects a norm,
he pays some costs for the commons and immediately
moves from the mental attitude of norm addressee (which
recognised and acknowledge the norm and its authority,
and decided to conform to it) to the mental set of the
norm issuer and controller [23]: he wants the others to
respect the norm, pay their own costs and contribution to
the commons.

III. A BIC-ORIENTED SHARED ENVIRONMENT FOR
SELF-ORGANISATION

So, to promote advanced forms of self-organisation in
MAS featuring cognitive agents, MAS environment should be
shaped so as to allow for observability and awareness of agents
behaviour.

Generally speaking, agents that live in a common environ-
ment (c-env) are agents whose actions and goals interfere
(positively or negatively). In a pure c-env, agent actions and
their traces are state transitions which can ease or hamper
the individual agents’ goals. An example is a ground that is
common for different insect species but where no interspecies
communication is possible. Agents can observe just the state
of the environment, and then act on that basis, achieving a

given self-organisation, still with no access to the actions of
their peers. Even a trace is seen as part of the environment
and not as a product of other agents. So, a generic property
of a c-env is that it provides agents with the means to keep
track of its state and possibly affect it.

As far as observation-based self-organisation is concerned,
we here propose a stronger notion of environment, called
shared environment (s-env). This is a particular case of a c-
env that enables (i) different forms of observability of each
other action executions, as well as (ii) awareness of such
observability, thus supporting unilateral, bilateral, reciprocal,
and mutual coordination.

A. Observability in Shared Environments

Each s-env is defined by the level of observability that it
can afford. The level of observability is the possibility for
each agent to observe another agent behaviour, namely, to
be informed when another agent executes a given action. For
instance, the most general kind of s-env can be defined by
the fact that each agent can observe the execution of all the
actions of all others agents. A prototypical model of this sort of
environment is the central ‘square’ of a town. Other levels of
observability may limit the ability of agents to observe given
actions of other agents — e.g. considering sort of invisible
actions — or to observe only given agents and not others —
e.g. considering obstacles preventing observation.

The level of observability of an s-env is easily understood
by a power relation Pow : A x A x Act, where A is the set of
agents — ranged over by meta-variables z, y, and z — and Act
is the set of usual practical actions which may be subject of
observation through the s-env — ranged over by meta-variables
a and 5. When (z,y,a) € Pow, also written Pow(z,y, o), it
means that action o € Act executed by agent y is observable
by agent x through the s-env.”? This means that in that s-
env, it is structurally possible for = to observe the executions
of action o by y. We naturally say that x has the role of
observer agent, y that of observed agent, « that of observed
action. We extend the notation for power relation using sets
of agents or actions, e.g. writing Pow(x, B,«) with B C A
for Pow(z,y, «) holding for all y € B, or Pow(x,y, Act) in
place of Pow(z,y,«) for all o € Act.

Pow relation can be then conceived as specifying the rules
defining the set of ‘opportunities and constraints’ that afford
and shape agents’ observability within the environment. A
specific rule is an opportunity or a constraint for a specific
agent and in particular it is only relative to the agent’s active
goals while interacting with that environment.

Whereas relation Pow is introduced to statically describe
the set of opportunities and constraints related to agents’
observability, an observation relation Obs (a subset of Pow)
has to be introduced to characterise the state of the s-env at
a given time. When Obs(z,y, «) holds, it means that agent x

2Observability of an action should be intended here in its most general
acceptation, that is, accounting for all the properties that need to be observed
— 5o, not only the executing agent, but also time of execution, information
possibly carried along, and so on.

104

baldoni
104

is actually observing executions of action « by agent y. That
is, Obs(x,y,) means that an execution of action « by agent
y will be perceived by x. Hence, notice that we differentiate
between the potential ability to observe, which is a typical
property of the environment where the agents live in, and the
actual observability, which might be driven by the explicit
motivation of agents. Indeed, since Obs C Pow, observation
is constrained by the level of observability featured by the
s-env.

The meaning of the observation relation can be understood
by taking into account the agent’s viewpoint over observation.
We first introduce the concept of agent epistemic state (ES),
representing the beliefs the agent has because of his obser-
vation role. The ES of an agent x includes its environmental
knowledge about observation, which is then given by informa-
tion (i) on the agents he is observing, (ii) on the agents that
are observing him, and (iii) on the action executions that he
is observing.

The first two kinds of knowledge can be addressed by sup-
posing the agent may, at a given time, have some knowledge
about the current state of relation Obs. In particular, write
B,obs(x,y, «) for agent z believing that = is observing, from
that time on, executions of action o performed by z. On the
other hand, to represent the third kind of knowledge, we write
B.(done(y,«)), meaning that agent z believes that y has
executed action o

B. Epistemic Actions

The epistemic state of an agent evolves through epistemic
actions, which are actions aimed at acquiring knowledge
from the environment [25]. Such an aim is expressed as an
agent intention: accordingly, we also define the concept of
motivational state (MS) of an agent, which includes all the
intentions an agent has at a given time. Then, an epistemic
action is fired by an agent intention, by which the s-env reacts
updating its state as well as the epistemic state of the agent.
So, we have different kinds of epistemic actions, each fired
by a different motivation: they are used e.g. to know who is
observing who, to have an agent observing another, to avoid
an agent observing another, and so on.

A first case of epistemic action is used by the agent which
is willing to know whether he is observing another agent,
whether another agent is observing him, or generally, whether
an agent x is observing actions « of an agent y. So, suppose
the MS of z includes intention I,check(z,y,), which means
that agent z intends to know whether x observes executions of
a by y. Then, eventually an epistemic action is executed by
which the ES of agent z will include the belief about whether
Obs(z,y, «) holds or not.

Similarly, an agent may have the intention I,0bs(z,y, @)
in exploiting the observability power of the environment to

3The syntax we introduced clearly reminds standard modal logics for beliefs
as in [24], however, it is not our goal here to introduce any logics for agent
reasoning. This is why we still refer to the weaker notion of epistemic state
instead of beliefs state — and motivational state instead of intentional state as
described below.

observe y’s actions . When such an intention appears in the
MS of agent z, the s-env conceptually intercepts it and enacts
the corresponding observations. This means that (i) the s-env
adds B,obs(z,y,«) to the agent’s epistemic state (agent x
knows that he is observing actions by agent y), and (ii) relation
Obs is added the rule Obs(x,y, @) (the s-env makes agent x
observing actions « by agent y). In other words, we can think
that the appearance of an intention in the motivation state of
the agent causes the execution of an epistemic action toward
the environment, enabling agent observations.

Similarly, an agent may want to stop observing actions.
When the intention I,.drop(z,y,«) appears in the agent
motivational state, the effects of obs(z,y,) are reversed.

Now we are ready to link the MS state of the agent, Obs
rules and the ES state of the agent. According to the semantics
of the actions, the execution of an action « by agent y (written
done(y,) causes the creation of a new belief B,done(y, «)
in the epistemic state of all the agents x of the environment
such that Obs(x,y, a) holds.

C. Formal Model

To make our arguments more precise we introduce a formal
framework to describe the notions of ES, MS, epistemic
actions, and observation in a precise way, which is meant
to serve as an actual design for an infrastructure providing a
s-env. In particular, we provide a syntax and an operational
semantics for modelling MAS according to the conceptual
framework defined in previous sections.

Throughout this model, composition operator || is assumed
to be commutative, associative, to absorb the empty configu-
ration 0, and to consume multiple copies of the same element
— that is, z ||z = z. Accordingly, any grammar definition of
the kind

Xo=0]a| ... |z | X||X

defines elements of the syntactic category X as compositions
(without repetitions) of terms zi,...,z,. Given one such
composition X, we write z; € X and z; ¢ X with
the obvious meaning. The syntax of MAS configurations is
reported in Figure 2.

Metavariable S ranges over configurations of the MAS,
which at our abstraction level are simple compositions of agent
configurations (ES and MS) and environment configurations
(Pow and Obs). Environment configurations are composition
of terms, each denoting either the power of agent x to observe
action « executed by agent y (Pow(x,y,)), or the fact that
the environment is making x observe actions « executed by
agent y (Obs(z,y, «)). Agent configurations are compositions
of mental properties, namely beliefs (B) and intentions (/)
qualified by the agent z, and about a formula ¢. As described
above, these properties are used to represent the ES and MS
of agent x, namely its knowledge and motivations. Notice that
we model a MAS configuration as a composition of both agent
and environment properties without a neat separation: in fact,
at our level of abstraction such a distinction is not necessary,
for epistemic actions involving both kinds of properties in a
uniform way.

10t

baldoni
105

S == 0|A|E|S|S MAS configuration
E =0 environment configuration
| Pow(z,y,) x has the power to observe y’s «
| Obs(x,y,) x is observing y’s a
| E|FE composition
A == 0 agent configuration
| B¢ belief of =
| I.¢ intention of
| AllA composition
@ = formulas
obs(x,y,) x is observing y’s a

| coord(z,y,a)
| check(z,y,)
| drop(z,y,a)

| done(z,a)

|

Fig. 2.

Elements ¢ are formulas which can be believed and/or
intended by an agent. Atomic formulas are: (i) obs(x,y, @),
used to express that = is observing executions of « by y, (ii)
coord(x,y, «), used to express that x coordinates its behaviour
with y by observing executions of «, (iii) check(x,y,),
used to check if = is observing executions of o by y, (iv)
drop(x,y,), used to prevent x from observing executions
of a by y, and (v) done(z,«), used to express that z
executes/has executed «v. Moreover, formulas can be structured
ones: —¢ expresses negation of ¢, I,,¢ and B, ¢ that agent x
intends/believe ¢. A number of assumptions on such formulas
are clearly to be made as usual, e.g. that =——¢ = ¢ or
B,¢ = B,B,;¢. This amounts to define a logics for beliefs
and intentions: however, this aspect can be treated in a fairly
standard way, therefore its details are not reported for they play
no significant role in this paper — they are more about agent
internal architecture rather than agent interaction through the
environment.

On top of this syntax for MAS configurations, we introduce
an operational semantics, describing what are the allowed
evolutions of such configurations. This describes the dynamic
aspects of our model, providing details on preconditions and
effects to epistemic actions and observation in general. As
usual [26], operational semantics is defined by a set of
rewrite rules, reported in Figure 3. Each rule defines a MAS
configuration to be rewritten as interaction of the agent with
the s-env occurs: the left-hand side reports preconditions, the
right-hand effects, and the above part (when present) further
preconditions for the applicability of the rule.

Rule [CHECK] says that if agent z intends to check/know
if is observing ¥’s action «, and this is the case, then such
an intention will be turned into a positive belief. Dually, rule
[N-CHECK] deals with the case where this is not the case
(Obs(z,y,a) does not occur in the system configuration), so

x coordinates with y through «
check whether x is observing y’s «
prevent x from observing y’s «

T executes actions o

structured formulas

Syntax of MAS configurations.

that z will believe that obs(z,y, «) does not hold.

Rule [DROP-Y] says that if agent z knows that x is
observing y’s action « (which is the case) and wants to stop
him, term Obs(x,y, «) is dropped from the environment and
z’s belief is updated correspondingly. By rule [DROP-N] we
deal with the similar case, but supposing the agent had a wrong
belief (z was not actually observing y’s actions «), which is
dealt with trivially.

Rule [ASK] is about agent z willing that x observes y’s
actions a: if this is allowed (Pow(z, y, @), ’s beliefs will be
updated along with the environment state.

Rule [OBS-R] and [OBS-F] recursively define how the
environment broadcasts information about an action to all
the observers. When agent x wants to execute «, each ob-
server y (rule [OBS-R]) will be recursively added the belief
B,done(x, a): when none needs to be managed, x intention
can simply become a fact, that is, he will believe the action
to be executed ([OBS-F)).

The final, trivial rule [AGENT] is used to represent the fact
that at any given time some agent configuration can change
autonomously, thus modelling any belief revision or intention
scheduling.

Notice that formulas B,coord(x,y,«) or I,coord(z,y, a)
never appear in this semantics. This is because the fact that
an agent coordinates its behaviour with another is not an
aspect influencing/influenced by the environment: it is rather
a mental property characterising the forms of observation-
based coordination an agent participates to thanks to the s-env
support.

D. Formalising Observation-based Coordination

We put to test our formal framework showing how the forms
of coordination devised in Subsection II-C can be represented
through our syntax.

10€

baldoni
106

Obs(z,y,a) € S

Icheck(x,y,a) || S — B.obs(z,y,a)[[S [CHECK]
Icheck(x, y,gﬁ(g’ iogﬁj)s(x, v,)] S [N-CHECK]
Ldrop(z,y,a) || B.obs(z,y, a) || Ob;(% y,a)|| S — B.—obs(x,y,)| S [DROP-Y]
Ldrop(z, 5,0) | Bzogsb(sx(jr o] |)\ = Bo=obs(z 5. a)][S [DROP-N]
Lobs(x,y,a) || Pow(z,y,a) || S — Bzob;(x,y,a) TPow(z,y,a)]| Obs(z,y,a) | 8 [ASK]
I.done(z,a)|| S — Idone(x,a)|| S’ (OBS-R]
Iydone(z, a) || Obs(y, x, o) || S — Lydone(z, a) || Obs(y, z, o) || Bydone(z, o) || S’
I.done(z, o?)bﬁ(g?i’ %lfoie(x, NE [OBS-F]
ATS = A9 [AGENT]

Fig. 3.

Given two agents = and y, an action «, and the system
configuration S we introduce the following predicates:

o Unilateral

Uni(z,y, a, S) =
Obs(z,y,a) € S A Iycoord(z,y, o)
Agent x is in unilateral coordination with y (in system
S, through action «), if he is observing y’s actions « and

he intends to coordinate with y through such actions.
o Unilateral with Awareness

UniAW (z,y, a, S) £
Uni(z,y,,S) A Byobs(z,y,a) € S
The form of coordination is unilateral with awareness if
x is in unilateral coordination with y and if y knows to

be observed by z.
« Bilateral

Bi(xa%awg) = Um'(x,y,a,S) N Uni(y,m,a,S)

x and y are in bilateral coordination if they are both in
unilateral coordination with each other.
« Reciprocal

Rec(m7 y7 a’ S) é
UniAW (z,y,«,S) N UniAW (y,x, «, S)

Operational Semantics of Agent Configurations.

2 and y are in reciprocal coordination if they are both in
unilateral coordination with awareness.
e Mutual

Mut(x,y,a,S) = Rec(z,y, a, S)
N Bilycoord(y,x,a) N Bylycoord(x,y, o)

Finally, z and y are in mutual coordination if they are in
reciprocal coordination and, moreover, they both know
that the other agent intends to coordinate through the
observed action .

IV. CONCLUSIONS

In this paper we focused on some properties of MAS
infrastructures for cognitive agents supporting forms of self-
organisation, based on the BIC theory. Even though not
dealing with internal aspects of agents, we consider agents
provided with some cognitive capabilities, differently from
current environment-based approach in self-organisation, typ-
ically based on reactive agents (e.g. ants).

MASs built on top of a BIC-oriented infrastructure exhibit
the basic enabling principles which typically characterise self-
organisation:

e Local interaction — In the framework there is an explicit
notion of locality of interaction: agent observability and
awareness are related to a notion of locality that is
dynamic, depending on the adopted topology, which is
defined by the infrastructure and can be changed over

baldoni
107

time. The enacting of Pow(z,y,a) rules by MAS in-
frastructure implicitly defines such a topology in terms
of what actions can be observed by whom at any time.

e Decentralised control — Control is decentralised and
encapsulated in cognitive agents, which exhibits an au-
tonomous behaviour with respect to the environment.

o Emergent patterns — Patterns of MAS self-organisation
emerge from agent interacting through a suitably shaped
environment, by exploiting observation capabilities pro-
vided by the infrastructure.

Besides these basic principles, other interesting aspects that are
often considered when dealing with self-organising systems
can be re-casted in our framework:

e Individual-based models — Individual-based models are
currently considered the right approach for the quanti-
tative and qualitative study of SOS [26], tracking each
individual state and behaviour. The model presented in
the paper is indeed individual-based, since a MAS is
composed by individual agents with their own cognitive
state and behaviour, eventually playing different kinds of
roles inside the system.

e Openness (in the thermodynamic acceptation) — In order
to keep thermodynamic systems self-organised there must
be a continuous flow of energy from the environment:
our MASs are characterised by an analogous form of
openness, since agents are meant to exchange information
within the environment — which is outside the system —
by means of perceptions and actions.

e Non-linearity and feedbacks — Non-linearity and (pos-
itive) feedback that typically characterise SOS can be
obtained with forms of mutual coordination, realising
kind of non-linear chains of observation and awareness.

o Dissipative structures — In our framework, infrastructure
structure / services exploited by agents for enhancing
their observation / awareness capability can play the role
of dissipative structures, typically considered in SOS [27]
as a key to export entropy out of the system.

Most of complex system scenarios calls for systems with self-
organising capabilities but immersed in an environment that
can have (social) norms and constraints, typically specified at
design time and that enforced at runtime. We think that in
order to cope with such (apparently conflicting) aspects, MAS
infrastructure can play a key role [28]. On the one side, it
can provide mechanisms and abstractions enabling forms of
interaction enabling MAS self-organisation — thus promoting
system’s unpredictability. On the other side, such mechanisms
and abstractions can play a regulatory role, by enforcing laws
and norms constraining and ruling agent interaction space —
thus promoting system’s predictability. We believe that our
approach will support MAS engineers in finding the most
suitable balance between such a dilemma of “global vs. local
control” in MASs.

REFERENCES

[1] F. Nedelec, T. Surrey, and E. Karsenti, “Self-organisation and forces in
the microtubule cytoskeleton,” Current Opinion in Cell Biology, vol. 15,

[2]

[3]

[4]
[5]

[6]

[7]

[8]
[9]

[10]

[11]
[12]
[13]

[14]

[15]

[16]

[17]
(18]

[19]

[20]

[21]

no. 2, pp. 118-124, Feb. 2003.

P.-P. Grassé, “La reconstruction du nid et les coordinations inter-
individuelles chez bellicositermes natalensis et cubitermes sp. la theorie
de la stigmergie: essai d’interpretation des termites constructeurs,”
Insectes Sociaux, vol. 6, pp. 41-83, 1959.

H. Haken, Synergetics: An Introduction. Nonequilibrium Phase Tran-
sition and Self-Organization in Physics, Chemistry, and Biology.
Springer-Verlag, 1977.

O. Holland and C. Melhuis, “Stigmergy, self-organization, and sorting
in collective robotics,” Artificial Life, vol. 5, no. 2, pp. 173-202, 1999.
G. Di Marzo Serugendo, A. Karageorgos, O. F. Rana,
and F. Zambonelli, Eds., Engineering Self-Organising Systems:
Nature-Inspired Approaches to Software Engineering, ser. LNAI,
vol. 2977. Springer-Verlag, May 2004. [Online]. Available:
http://www.springer.de/cgi/svcat/search_book.pl?isbn=3-540-21201-9

G. Di Marzo Serugendo, N. Foukia, S. Hassas, A. Karageorgos,
S. Kouadri Mostéfaoui, O. F. Rana, M. Ulieru, P. Valckenaers,
and C. Van Aart, “Self-organisation: Paradigms and applications,” in
Engineering Self-Organising Systems, ser. LNAI, G. Di Marzo Seru-
gendo, A. Karageorgos, O. F. Rana, and F. Zambonelli, Eds.
Springer-Verlag, May 2004, vol. 2977, pp. 1-19. [Online]. Available:
http://www.springer.de/cgi/svcat/search_book.pl?isbn=3-540-21201-9

D. Capera, M.-P. Gleizes, and P. Glize, “Self-organizing agents for
mechanical design,” in Engineering Self-Organising Systems, ser. LNAI,
G. Di Marzo Serugendo, A. Karageorgos, O. F. Rana, and F. Zambonelli,
Eds. Springer-Verlag, May 2004, vol. 2977, pp. 169-185. [Online].
Available: http://www.springer.de/cgi/svcat/search_book.pl?isbn=3-540-
21201-9

T. D. Seeley, “When is self-organization used in biological systems?”
Biological Bulletin, vol. 202, pp. 314-318, 2002.

Hadeli, P. Valckenaers, C. Zamfirescu, H. Van Brussel, B. Saint Germain,
T. Hoelvoet, and E. Steegmans, “Self-organising in multi-
agent coordination and control using stigmergy,” in Engineering
Self-Organising Systems, ser. LNAIL, G. Di Marzo Serugendo,
A. Karageorgos, O. F. Rana, and F. Zambonelli, Eds. Springer-
Verlag, May 2004, vol. 2977, pp. 105-123. [Online]. Available:
http://www.springer.de/cgi/svcat/search_book.pl?isbn=3-540-21201-9

R. Tolksdorf and R. Menezes, “Using swarm intelligence in Linda,” in
Engineering Societies in the Agents World IV, ser. LNAI, A. Omicini,
P. Petta, and J. Pitt, Eds. Springer-Verlag, June 2004, vol. 3071, pp.
49-65, 4th International Workshop (ESAW 2003), London, UK, 29-31
Oct. 2003. Revised Selected and Invited Papers. [Online]. Available:
http://www.springer.de/cgi/svcat/search_book.pl?isbn=3-540-22231-6

C. Castelfranchi, “When doing is saying - the theory of
behavioral implicit communication,” 2003, draft. [Online]. Available:
http://www.istc.cnr.it/doc/62a_716p-WhenDoinglsSaying.rtf

B. Nardi, Ed., Context and Consciousness: Activity Theory and Human
Computer Interaction. Cambridge, MA: MIT Press, 1996.

E. Hutchins, Cognition in the Wild. Cambridge, MA: MIT Press, 1995.
P. Watzlavich, J. Beavin Bavelas, and D. D. Jackson, Pragmatics of
Human Communication: A Study of Interactional Patterns, Pathologies,
and Paradoxes. New York: W.W. Norton & Co., 1967.

H. V. D. Parunak, S. Brueckner, M. Fleischer, and J. Odell, “A de-
sign taxonomy of multi-agent interactions,” in Agent-Oriented Software
Engineering 1V, ser. LNCS, P. Giorgini, J. Miiller, and J. Odell, Eds.
Springer-Verlag, 2004, pp. 123—137, 4th International Workshop (AOSE
2003), Melbourne, Australia, 15 July 2003, Revised Papers.

M. Mamei and F. Zambonelli, “Self-organization in multi-
agents systems: A middelware approach,” in Engineering Self-
Organising Systems, ser. LNAI, G. Di Marzo Serugendo,
A. Karageorgos, O. F. Rana, and F. Zambonelli, Eds. Springer-
Verlag, May 2004, vol. 2977, pp. 233-248. [Online]. Available:
http://www.springer.de/cgi/svcat/search_book.pl?isbn=3-540-21201-9
FIPA, FIPA Communicative Act Library Specification, 2000,
http://www.fipa.org.

B. J. Grosz and S. Kraus, “Collaborative plans for complex group
action,” Artificial Intelligence, vol. 86, pp. 269-357, 1996.

A. S. Rao, “A unified view of plans as recipes,” in Contemporary
Action Theory, G. Holmstrom-Hintikka and R. Tuomela, Eds. Kluwer
Academic Publishers, 1997, vol. 2: Social Action.

C. Castelfranchi, “Modelling social action for Al agents,” Artificial
Intelligence, vol. 103, pp. 157-182, 1998.

——, “Engineering social order,” in Engineering Societies in the Agents
World, ser. LNAI vol. 1972. Springer-Verlag, Dec. 2000, pp. 1-18, 1st

10¢€

baldoni
108

[22]
[23]

[24]

[25]

[26]

[27]
[28]

International Workshop (ESAW’00), Berlin (Germany), 21 Aug. 2000,
Revised Papers.

R. Conte and M. Paolucci, Reputation in Artificial Societies. Social
Beliefs for Social Order. Boston: Kluwer Academic Publisher, 2002.
R. Conte and C. Castelfranchi, Cognitive and Social Action. London:
University College of London Press, 1995.

M. D. Sadek, “A study in the logic of intention,” in 3rd Conference
on Principles of Knowledge Representation and Reasoning, Cambridge,
MA, USA, 1992, pp. 462-473.

C. Castelfranchi and E. Lorini, “Cognitive anatomy and functions
of expectations,” in Cognitive Modeling of Agents and Multi-Agent
Interactions, 2003, workshop at IJCAI 2003. Proceedings.

G. Plotkin, “A structural approach to operational semantics,” Department
of Computer Science, AArhus University, Denmark, Tech. Rep. DAIMI
FN-19, 1991.

G. Nicolis and I. Prigogine, Exploring Complexity: An Introduction.
W.H. Freeman & Co., 1989.

A. Omicini, A. Ricci, M. Viroli, C. Castelfranchi, and L. Tummolini,
“Coordination artifacts: Environment-based coordination for intelligent
agents,” in 3rd international Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2004), N. R. Jennings,
C. Sierra, L. Sonenberg, and M. Tambe, Eds., vol. 1. New York,
USA: ACM, 19-23 July 2004, pp. 286-293. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1018409.1018752

10¢

baldoni
109

Engineering Trust in Complex System
through Mediating Infrastructures

Alessandro Ricci Andrea Omicini
DEIS DEIS
Universita di Bologna — Sede di Cesena Universita di Bologna — Sede di Cesena
via Venezia 52, 47023 Cesena (FC), Italy via Venezia 52, 47023 Cesena (FC), Italy
Email: aricci@deis.unibo.it Email: aomicini@deis.unibo.it

Abstract— Starting from the many research results on trust in for current web-based systems. So, trust is one of the most
state-of-the-art literature, we first point out some open problems jmportant social issues for human as well as for artificial
related to trust in multiagent systems (MAS), focussing in gystems: this is evident if we consider scenarios such as e-
particular on the issue of the engineering of agent societies,
and on the role of agent infrastructures. Then, we discuss two commerce or e'g_OYemme”t- where the edge between humf';\n
infrastructural abstractions — coordination artifacts, and agent and artificial societies tends to blur: these contexts make it
coordination contexts —, and show how they can be exploited for clear that all the social issues involved in human societies, trust
modelling and engineering trust within MAS. in primis, must be faced also in the construction of complex
artificial systems.

Accordingly, the applicability (reuse) of models for human

One of the most relevant problems of our contemporagpcieties in the context of artificial systems is a primary
society is its dependency on information technologies systeissue, exploiting, for instance, the explaination and prediction
which are getting more and more complex and difficult toapabilities of theories both as a scientific and engineering
control. Accordingly, the problem ofrust between humans tool to validate engineering constraints of systems [22]. This
and information technology comes out from the inabilitys especially important if we aim at considering trust beyond
to provide simple and accessible models to make systegmnhceptually simple applications such as digital signature or e-
behaviour somehow understandable and predictable for t®@mmerce transactions, facing contexts where trust matters not
users themselves. This does not affect only end-users, but alaty for a human actor (users or engineers) w.r.t. the system,
(and, in some sense, mostly) the engineers and developers bhatfor every human and artificial actor that constitute system
are responsible of system design and construction. In partociety.
ular, the difficulty of conceiving trustworthy models for the Trust is then recognised as a fundamental aspect of engi-
engineering of complex and complex systems emphasises tleering systems with MAS: however, trust characterisation and
fact that the impetuous technological progress chararcterisimgdels as found in state-of-the-art literature do not cover some
our society is a necessary but not sufficient condition for thiesues which we consider fundamental for the engineering of
widespread generation and adoption of innovative processegent societies. First, a well-defined notion of social trust is

As a simple example, the possibility of checking systemmissing: few approaches deal with an infrastructure (and then
behaviour and functioning by inspecting its source code onsecial, objective) support to trust, being mostly focussed on
it is made available (the myth of Open Source wave) is simptiie subjective perception and modelling of trust by individuals.
not feasible, according to current state-of-the-art models aBden the approaches considering forms of social trust (referred
tools. Turning from the notion of "program” to the notion ofas system-level trust in literature) fail to provide a compre-
"system” involves a paradigm shift: the behaviour of a prograimensive model of the trust phenomenon at the social level
(as a sequence of instructions of certain (virtual) maching@cluding the notion of observation, traceability of actions,
is, in principle, inspectable, understandable and predictabé¢c), limiting their approach to provide some specific mech-
Instead, it is typically not possible to formalise nor to have anisms. Then, trust frameworks (models and mechanisms)
complete understanding of the behaviour of a software systame focussed essentially on the behaviour of a individual
(as a collection of heterogeneous and independent componeatsiponent (agent), and no account is given for characterising
interacting in a distributed environment) [23]. trust at a systemic level, i.e. trust in a group or society of

According to the current major research lines, the comagents in being able to achieve their social tasks. Linked to this
plexity of modern and forthcoming systems can be managpdint, current models and mechanisms are developed mostly in
only by introducing models that account faocietiesof competitive contexts, where agents are totally self-interested;
heterogeneous actors (objects, components, agents, procegsstead we are interested in modelling trust in systems where
humans..) which interact and communicate in dynamic amgent cooperatively work for a global (system) outcome. In
unpredictable environments: at least, this is a suitable modeis case we have several points of view concerning trust: trust

I. TRUST INCOMPLEX SYSTEM ENGINEERING

M. Baldoni, F. De Paoli, A. Martelli, and A. Omicini (Eds.): WOA 2004 — Dagli Oggetti agli
Agenti, Sistemi Complessi e Agenti Razionali, Torino, Italy, November 29" — December 1%
2004. Pitagora Editrice Bologna. ISBN 88-371-1533-4. ht t p: / / woa04. uni to. it

baldoni

111

of the users relying on a systems of cooperating agents, trustrafividual-level can be classified in this case eitlesrning
the engineers in the system he designed, trust of the collectiigwolution) basedreputation basecr socio-cognitive based
of the components (agents) with respect to a specific one, trirsthe first, trust is viewed as an emergent property of direct
of an individual components (agent) of the system with respénteraction between self-interested agents, who are endowed
to the collectivity. with strategies that can cope with lying and non-reciprocative
In this paper, then, first we extend the notion of trust tagents. Reputation models [19] instead enable agents to gather
consider also these issues, more related to an engineeiiffgrmation in richer forms from their environment and make
point of view on systems and based on infrastructural suppaational inferences from the information obtained and their
to trust. The extension will relate trust to coordination andounterparts. The models then specify strategiegydther
organisation issues, as fundamental engineering dimensionsatings that define the trustworthiness of an agent, using
systems. Then, we show how some infrastructural abstractioetationships existing between member of the community;
recently introduced for engineering of MAS coordinatiomeasoning methods to gather information fraggregation
and organisation — namely coordination artifacts and agesftratingsretrieved from the community (borrowing the con-
coordination contexts — can play an effective role in definingept of social network from sociology); and mechanisms to
trust according to our wider vision. promote ratings thatruly describe the trustworthiness of an
The remainder of the paper is organised as follows: first, &gent. Finally, the socio-cognitive models adopt a higher level
Section Il a brief account of state-of-the-art models for trusiew, modelling the subjective perception of trust in terms of
in MAS is provided; then, Section Il remarks some pointsognitive constructs [3], in contrast to the quantitative view of
missing from such models, discussing a wider characterisatimnst which characterises previous approaches. While the first
of trust including engineering issues. Accordingly, Section IYvo models are all based on an assessment of the outcome
and Section V discuss how coordination and organisatiof interactions between agents, the basic context for socio-
infrastructural abstraction can play a fundamental role fapgnitive approaches is that te#fsk delegationwhere an agent
characterising this enhanced notion of trust. Finally, concl¥-wishes to delegate a task to agemtin doing so agenk
sions are reported in Section VI. needs to evaluate the trust it can place imy considering the
different beliefsit has about motivations of agemt
i i o _Inthe overall, trust at the individual level concerns strategies
Trust has been defined in several ways in distinct domaignt over multiple interactions, the reputation of potential
(see [15] for a comprehensive survey, and [4] for a genelgteraction partners, and believed motivations and abilities
description). A definition that is frequently adopted in truslegarding the interaction. Some problems affecting these ap-
models is: proaches have been remarked in the literature: it can be
“Trust is a belief an agent has that the other party computationally expensive for an agent to reason about all the
will do what it says it will (being honest and reliable) different factors affecting trust in its opponents; then, agents
or reciprocate (being reciprocative for the common are limited in gathering information from various sources
good of both), given an opportunity to defect to get that populate its (open) environment. Given these limitations,
higher payoff” system-level trust approaches shift the focus on the rules of
(adapted from [1]) encounter so as to ensure that interaction partnergoaced
The various approaches to trust in MAS have been recenttybe trustworthy. The mechanisms that dictate these rules of
classified in two main classes, for some extend in count&Rcounter (auctions, voting, contract-nets, market mechanisms,
position and complimentaryndividual-level trustandsystem- etc) enable agent to trust each other by virtue of the different
level trust[15]. constraintsimposed by the systemilways following [15],
Roughly speaking, in individual-level trust all the burdemhese system-level mechanisms can be classifiedrust-
about trust is in charge of individual agents, and depends®rthy interaction mechanismseputation mechanismand
on their ability to model and reason about the reciprocativistributed security mechanismdechanisms of the first class
nature, reliability or honesty of their counter-parts. In systenare adopted to prevent agents from lying or speculating while
level trust instead the actors in the systems are forced to ib&eracting (auctions are an example, see [20] for an overview);
trustworthy by therules of the encount€frl8] (i.e. protocols, reputation mechanisms [24] make it possible to model the
mechanisms) that regulate the systems. So the burden abyepttation of agents at system level, i.e. it is the system that
trust is shifted from agents to some system support, whichrignage the aggregation and retrieval of ratings (as opposed
realised by designing specific protocols and mechanismstofreputation models which leave the task to the agents them-
interaction (i.e. the rules of the encounter). A typical exampgelves). Finally, the latter class includes security mechanisms
are auctions. and infrastructures which are considered essential for agents
So the point of view of individual-level trust accounts foto trust each other and each other communication (examples
an agent situated in an open environment trying to chooaee public key encryption and certificate infrastructures)[14],
the most reliable interaction partner from a pool of potenti§b].
agents and deliberating which strategy to adopt on it. Fol-According to [15], complex systems require both types
lowing the classification described in [15], trust models foof trust approach, individual- and system-level. While the

Il. MODELLING TRUST INAGENT SOCIETIES

baldoni
111

individual-level trustmodelsenable agent to reason about its
level of trust and of its opponents, the system-levacha-
nismsaim to ensure that opponents’ actions can be trusted.
It's worth noting that this dichotomy have been remarked also
for another dimension focussing on interaction, i.e. coordina-
tion, where approaches have been classified as subjective (all
the coordination burden on agent and their capabilities) and
objective (the coordination burden in charge of abstractions
provided by suitable infrastructures)[10].

IIl. EXTENDING TRUST FORENGINEERING SOCIETIES

The characterisation of trust in state-of-the-art literature as
described in previous section do not give emphasis enough to

112

(services) for creating and managing trust. However,
differently from system-level approaches, we characterise
these abstractions not only karriers, basically creating
trust by enforcingnormsconstraining agent actions and
interactions. We are interested also in framing trust from
aconstructivepoint of view: | can have trust in an system
because of the availability of services which provide some
(objective) guarantees that not only certain interaction
cannot happen, but also that some social tasks can be
effectively executed, specifying for instance the work-
flow or plan useful for achieving the global objective.
Considering system-level approaches, it is like modelling
trust on the rules of encounters which make it possible

some issues that we consider as fundamental in the engineering to achieve some social goal.
of agent societies. These aspects can be summed up in thg Trust and Organisatior- As mentioned in the context of

following points:

« Social Trust— We need to consider in a more general
and systematic way the support that infrastructures can
provide as a service for societies engineered on their top,
beyond specific mechanisms or protocols. This accounts
for generalising system-level trust approaches, devising
basic abstractions and services on top of which to build
trust strategies. Among such basic services, a support for
observationand traceability of both agent action, and
interaction among agents and agent-environment. These
basic services can be suitably exploited and composed
to keep track — for instance — of action history of a
specific agent, making it available to some other agents,
with the permissions to inspect such information. This in-
frastructural support is extremely effective when dealing
with opensystems, with heterogeneous agents dynami-
cally participating to the activities of different societies

system-level trust, security support has a certain impact
on trust in a system [14]. However, when engineering
complex systems, some important aspects concerning
security — such as access control — cannot be dealt
without considering the organisation and coordination
model adopted [11]. As an important example, Role-
Based Access Control (RBAC) models and architectures
—well-known in the research literature concening security
in complex information systems, and recently introduced
also in MAS [21] — make it possible to model security
(access control) policies in the context of role-based
organisational models. Accordingly, the presence of such
an organisational model can have a significant impact on
trust models and services, which can be characterised also
considering the notions of roles and related organisational
policies.

and organisations: infrastructures can provide serviceslfpthe overall, the social and engineering acceptation of trust
agent organisations to keep track and make informatiégt emerges from the above points aims to be wider than
available about agent performance in its interaction liféhe one usually found in the literature, and can be framed in
acting in different contexts, as a kind of “criminal record'the idea of agent societies used as metaphors to model trust in
publicly available; thus, respecting privacy of the agenilr)formation technology in the most general way. This includes

i.e., making available only what is needed to be observ8gth trust between humans and systems — i.e. trust between
according the type of activities the agent is going t4S€rs and systems and trust between designers/engineers and

participate. systems — and trust between systems and systems — i.e. trust
Trust in Societies— individual-level and system-level @MONg system components and trust among components of
approaches share a focus on (trust on) the behaviémfe_re_”t systems. The interpretation of systems in terms_of
of an individual agent. However, in the engineering ofocieties, promoted by MAS approaches, makes it possible
complex systems it emerges the need of modelling tife face these issues within the same conceptual framework,
notion of trust also related tgroups or societiesof ~@dopting a uniform approach to explore general models and
agents, delegated of the execution of some social ta§pg.|utlonsf, relevant in computer science as well as in the other
More generally we are looking to a systemic acceptatidglated fields.

of trust: how much a system (as a structured society A possible way to bring to practice such generalised accep-
of agents) can be trusted in its behaviour, in its abilittation of trust is to relate them to the coordination and organi-
to achieve the global objectives as outcomes of trgation dimensions (and the related models) which characterise
cooperative work of its agents? So we are interestéioe engineering of agent societies. In next sections we follow
in characterising trust also in cooperative scenarios, rbis line, by presenting two infrastructural abstractions which
only in competitive ones as it typically happens in theve have recently introduced in MAS engineering, namely
literature. coordination artifactsand agent coordination contextsand
Constructive Trust- As in the system-level (objective)discussing their role in modelling and engineering such a
case, we are interested in infrastructural abstractionstion of trust in MAS.

baldoni
112

IV. ARTIFACTS FORTRUST

11z

Then, taking the agent viewpoint, to exploit a coordination

From the research studies carried on in human (cooperatif&§fact simply means to follow its operating instructions, on

activity — mainly with Activity Theory [2], [6] — it clearly
emerges the fundamental role of tools artifacts in the

a Step-by-step basis.
Among the main properties which exhibit coordination arti-

development of (social) activities in complex systems framddacts (and which differentiate them from the agent abstraction)
as societies [7], [16]. According to these studies, every nd/¢ have:

trivial human activities ignediatedby some kind of artifacts.
An artifact acts as the glue among two or multiple actors,
as the tool that enables and mediates their interaction, rul-
ing / governing the resulting global and "social” behaviour;
consequently, an artifact can be considetbd conceptual
place encapsulating all the complexity of the social behaviour
that it enables, allowing its factorisation, explicit modeling
and engineering, and so freeing the actors of all #usial
burden [16]. Artifacts are widespread in human society: the
language can be considered an artifact, as well as the writing,

blackboards, maps, post-its, traffic signs such as semaphores,

electoral cards or the signature on a document.
Based on this background, recentipordination artifacts

have been introduced as a conceptual and engineering frame-

work for MAS and agent societies [16], [12]. So the idea
here is that coordination artifacts can play a primary role for
engineering trust in MAS, providing an answer to the points
remarked in Section llI.

A. Coordination Artifact Model and Framework

Coordination artifacts have been defined as embddied
entities specialised to provide a coordination service in a
MAS [12]. As infrastructure abstractions, they are meant
to improve coordination activities automation; they can be ,
considered then as basic building blocks for creating effective
shared collaborative working environments, alleviating the
coordination burden for the involved agents.

As remarked for artifacts in general, human society is full
of entities like coordination artifacts, engineered by humans
in order to support and automate coordination activities: well-

« Specialisation— Coordination artifacts are specialised

in automating coordination activities. For this purpose,
they typically adopt a computational model suitable for
effective and efficient interaction management, whose
semantics can be easily expressed with concurrency
frameworks such as process algebras, Petri nets, or Event-
Condition-Reaction rules.

Encapsulation: Abstraction and Reuse Coordination
artifacts encapsulate a coordination service, allowing user
agents to abstract from how the service is implemented.
As such, a coordination artifact is perceived as an in-
dividual entity, but actually it can be distributed on
several nodes of the MAS infrastructure, depending on
its specific model and implementation.

Malleability — Coordination artifacts are meant to support
coordination in open agent systems, characterised by
unpredictable events and dynamism. For this purpsose,
their coordination behaviour can be adapted and changed
dynamically, either(i) by engineers (humans) willing to
sustain the MAS behaviour, @ii) by agents responsible

of managing the coordination artifact, with the goal
of flexibly facing possible coordination breakdowns or
evolving/improving the coordination service provided.
Inspectability and controllability- A coordination artifact
typically supports different levels of inspectabilityi)
inspectability of its operating instructions and coordina-
tion behaviour specification, in order to let user agents
to be aware of how to use it or what coordination
service it provides(ii) inspectability of its dynamic state
and coordination behaviour, in order to support testing

known examples are street semaphores, blackboards, queuing ang diagnosing (debugging) stages for the engineers and

tools at the super-markets, maps, synchronisers and so on.
Basically, a coordination artifaqi) entails a form of me-

diation among the agents using it, afid embeds and enact

effectively some coordination policy. Accordingly, two basic

aims can be identifiedi) constructive as an abstraction es-

sential for creating/composing social activiti€i§), normative

as an abstraction essential for ruling social activities.

agents responsible of its management.

Predictability and formalisability— The coordinating
behaviour of an artifact strictly follows the specifica-
tion/service for which it has been forged: given that spec-
ification and the agent interaction history, the dynamic
behaviour of the artifact can be fully predicted.

From a constitutive point of view, a coordination artifact ig UCSON [13] is an example of agent coordination infras-

tructure supporting this frameworkfuCSoN coordination
artifacts are calleduple centre49], spread over the network,
; . : collected in the infrastructure nodes. Tuple centres technically
which agents can execute in order to use the artifacts. .
S . . . are programmabletuple spaces, i.e. tuple spaces [9] whose
« a set ofoperating instructionswhich formally describe . . : S . X
behaviour in reaction to communicating event — the insertion,

how to use the artifact in order to exploit its coordination)
service removal, read of tuples from the spaces — can be suitably

L . . . programmed so as to realise coordination laws managing in-
« a coordinating behavioyrwhich formally describe the : .
S . teractions ReSpecT is the language adopted for the purpose).
coordination enacted by the artifact. L
Tuple centres can be framed as general purpose coordination

1The term embodied is used here to remark their independent existeﬁtféifaCtS_v whose coordinating behgviour can _b_e dynamica_lly
from the agents using them. customised and adapted to provide a specific coordination

characterised by:
« ausage interfacedefined in terms of a set @iperations

baldoni
113

114

service. Finally, from an engineering point of view, inspectability
and controllability properties of artifacts could impact signif-
B. Trust through Coordination Artifacts icantly on the trust toward a system engineered in terms of

coordination artifacts, both for a designer and for a user of
The notion of coordination artifacts can be useful to modghe system. In particulagontrollability — which includes also
trust issues as discussed in Section IIl. the possibility of making online tests and diagnosis of artifact
As far as social trust is concerned, coordination artifackghaviour and then of the social core of the system, despite of
can play the role of the abstractions provided by the ifts openness — is an aspect that heavily contributes to determine
frastructure with suitable expressiveness and effectivenessrigst in the system.
construct trust articulated strategies. For instance, coordination
artifacts can be used as embodiment of the rules of encounter, V. CONTEXTS FORTRUST
being concrete shared tools which are used by the agents to) _
interact according a specified protocol. Operating instructions € notion ofagent coordintation contextACC) has been
in this case describe what agents are meant to do in orded5oduced in [8] as infrastructural abstraction modelling the
participate to the protocols (according to their role), artifa@’eSence of an agent inside its (organisational) environment.
state keeps track of the state of the interactions, and artif&t fOr coordination artifacts, ACCs have been brought into

behaviour is concerned with the management of the interactigfctice within theTuCSoN infrastructure [17]. Here we show
according to the coordinating behaviour described by tfiaeir relevance for modelling and engineering the last aspects
protocol. of trust mentioned in previous chapter, i.e. trust related to

More generally, as mediating abstractions, coordinatio%ganlsatlon and security.
artifacts can be used for supporting tldservation and
traceability of agent actions and interactions. They can bAe'
designed so as to log / trace all the interactions of interestThe ACC abstraction can be framed as the conceptual
and related events occuring during its usage, in order to plce where to set the boundary between the agent and the
inspected / observed as interaction history concerning restvironment, so as to encapsulate theerfacethat enables
only a specific agent but also the agent society itself. Actioagent actions and perceptions inside the environment. A useful
and interactions history can be useful then to build trustetaphor for understanding ACCs is tkentrol room [8].
models concerning both the overall society, and the individuAtcording to this metaphor, an agent entering a new envi-
participating agents. Such trust models could be created bathment is assigned its own control room, which is the only
by humans and agents by inspecting and reasoning aboutway in which it can perceive the environment, as well as the
information reified in the artifact interaction history, madenly way in which it can interact. The control room offers the
available by suitable infrastructure services. From this point afient a set of admissible inputs (lights, screens,. . .), admissible
view then, coordination artifacts can provide a useful suppartitputs (buttons, cameras,...). How many input and output
for constructing trust model for individual-level approachedevices are available to agents, of what sort, and for how
based both on socio-cognitive capabilities and on quantitativeuch time is what defines the control ro@onfiguration that
formulations: heterogeneous agents could exploit the samdhe specific ACC. So, the ACC abstraction can be fruitfully
information to build different kind of models. exploited to model th@resenceor position of an agent within

Then, the basic properties characterising coordination a@R organisation, in terms of its admissible actions with respect
facts impact on modelling both trust in societies and construi@®- organisation resources and its admissible communications
tive trust. In this case modelling trust toward a system ortaward the other agents belonging to the organisation.
society in charge of a specific social task exploiting a specific ACCs are meant to be inspectable: it must be possible for
coordination artifact accounts for two aspec(d: trusting an agent to know what kind of ACC it can obtain from an
the effectiveness of the coordination artifact for achievingrganisation — and so what roles and related actions it is
the objective of the social taskii) trusting agents in being allowed to do.
able to use effectively the coordination artifact. Artifact basic Two basic stages characterise the ACC dynamiSC
properties — concerning inspectability, predictability, etc. regotiationand ACC use An ACC is meant to be negotiated
along with the fact that the correctness of artifact behavioby the agents with the MAS infrastructure, in order to start a
could be formally verifiable and then “certifiable”, with theworking sessiornnside an organisation. The agent requests an
availability of operating instructions and of a clear interfacACC specifying which roles to activate inside the organisation.
— could impact effectively in both previous points. It is worthThe request can fail for instance if an agent requests to play a
remarking that this introduces a relatively new ontologicable for which he is not allowed, or which is not compatible
framework on which formulating trust, introducing new nowith the other roles currently actively played by the agent
tions such assability of the artifact, thecomplexityof their inside the organisation. If the agent request is compatible with
operating instructions, and so on. This could change and enr{clirrent) organisation rules, a new ACC is created, configured
the cognitive model adopted by socio-cognitive approach &mcording to the characteristics of the specified roles, and then
model trust of agents towards the environment. released to the agent for active playing. The agent then can

The Agent Coordination Context Abstraction

baldoni
114

use the ACC to interact with the organisation environment, bys]
exploiting the actions/perceptions enabled by the ACC.

The ACC framework has been used to model and implement
Role-Based Access Control architecture on topTafCSoN [6]
infrastructure [17]. 7]

B. Trust through Agent Coordination Contexts

ACCs — supported by suitable infrastructures — guarantee
the enforcement of organisational rules and related securif
policy inside a social environment: they can act as a barriers
for agents, filtering only the patterns of actions and perceptiorigl
allowed according to their roles. This clearly impacts on ttﬁo
trust that we can have on the systems, providing a gener-
alisation of the security mechanism mentioned for system-
level trust. In particular ACC abstraction makes it possible to
link trust with the organisational model adopted: agents can;
participate to activities only by playing some roles through
dynamically requested ACC enabling and ruling their action
In the overall, we can frame an ACC as the embodiment orﬁa
contract established between a specific agent and the system
(organisation) where he is actively playing.

Each organisation can define (and change dynamically) the
set of available roles and rules, and then the set of ACCs which
can be released to agents. This information can be then made
available — by means of suitable infrastructure services — fag)
creating trust in agents and users aiming at participating at or
using the systems.

VI. CONCLUSION]

The notion of trust has a deep impact on the future &l
artificial systems. How trust is modelled, how it is engineered
— that is, how it is actually built into artificial systems — are
then crucial issues that are already discussed in literature, ‘Ff‘PI?
in particular in MAS literature. In this paper, we first shortly
summarised the many different acceptations of the trust notion,
then we pointed out some fundamental open issues that seem
to be of particular relevance to the modelling and engineeripg;
of trust in the context of complex artificial systems, in general,
and of MAS, in particular. [

As the main contribution of this seminal paper, we adopted
the viewpoint of MAS infrastructures (as the most natlmal
where to embed trust in MAS) and showed how two differeft®!
infrastructural abstractions recently introduced (coordination
artifacts and agent coordination contexts) can be exploited fat]

modelling and engineering trust within MAS. 22]

REFERENCES

[1] P. Dasgupta. Trust as a commodity. In D. Gambetta, edfarst:
Making and Breaking Cooperative Relatiormages 49-72. Blackwell,
1998.

[2] Y. Engestdm, R. Miettinen, and R.-L. Punamaki, editoRerspectives
on Activity Theory Cambridge University Press, 1999.

[3] R. Falcone and C. Castelfranchi. Social trust: a cognitive approach.

R. Falcone, M. P. Singh, and Y. Tan, editofsust in Cyber-Societies,

Integrating the Human and Artificial Perspectivegolume 2246 of

LNCS Springer-Verlag, 2001.

R. Falcone, M. P. Singh, and Y. Tan, editoffust in Cyber-Societies,

Integrating the Human and Artificial Perspectivegolume 2246 of

LNCS Springer-Verlag, 2001.

(23]

[24]

(4]

2] A. Omicini, A. Ricci, M. Viroli, and C. Castelfranchi.

11t

Y. Mass and O. Shehory. Distributed trust in open multi-agent systems.
In R. Falcone, M. P. Singh, and Y. Tan, editofsyst in Cyber-Societies,
Integrating the Human and Artificial Perspectiyegolume 2246 of
LNCS Springer-Verlag, 2001.

B. Nardi, editor. Context and Consciousness: Activity Theory and
Human-Computer InteractionMIT Press, 1996.

B. Nardi. Studying contexts: A comparison of activity theory, situated
action models and distributed cognition. In B. Nardi, edi@Ggntext
and Consciousness: Activity Theory and Human-Computer Interaction
MIT Press, 1996.

A. Omicini. Towards a notion of agent coordination context. In
D. Marinescu and C. Lee, editoBfocess Coordination and Ubiquitous
Computing pages 187-200. CRC Press, 2002.

A. Omicini and E. Denti. From tuple spaces to tuple centr8sience

of Computer Programmingd1(3):277—-294, Nov. 2001.

] A. Omicini and S. Ossowski. Objective versus subjective coordination

in the engineering of agent systems. In M. Klusch, S. Bergamaschi,
P. Edwards, and P. Petta, editotstelligent Information Agents: An
AgentLink Perspectiverolume 2586 ofLNAI: State-of-the-Art Survey
pages 179-202. Springer-Verlag, Mar. 2003.

A. Omicini, A. Ricci, and M. Viroli. Formal specification and enactment
of security policies through Agent Coordination Contextslectronic
Notes in Theoretical Computer Scien&s(3), Aug. 2003.

Coordination
artifacts: Environment-based coordination for intelligent agents. In
Proceedings of the 3rd International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 208w York, USA, 2004.
ACM Press.

A. Omicini and F. Zambonelli. Coordination for Internet application
development.Autonomous Agents and Multi-Agent Systed{8):251—
269, Sept. 1999. Special Issue: Coordination Mechanisms for Web
Agents.

S. Poslad, M. Calisti, and P. Charlton. Specifying standard security
mechanisms in multi-agent systems. Workshop on Deception, Fraud
and Trust in Agent Societiepages 122-127, Bologna, lItaly, 2002.
AAMAS 2002, Proceedings.

S. D. Ramchurn, D. Hunyh, and N. R. Jennings. Trust in multi-agent
systems.Knowledge Engineering Revie®004. to appear.

A. Ricci, A. Omicini, and E. Denti. Activity Theory as a framework for
MAS coordination. In P. Petta, R. Tolksdorf, and F. Zambonelli, editors,
Engineering Societies in the Agents World Nblume 2577 ofLNCS
pages 96-110. Springer-Verlag, Apr. 2003. 3rd International Workshop
(ESAW 2002), Madrid, Spain, 16-17 Sept. 2002. Revised Papers.

A. Ricci, M. Viroli, and A. Omicini. Agent coordination contexts: From
theory to practice. In R. Trappl, editaGybernetics and Systems 2004
Vienna, Austria, 2004. Austrian Society for Cybernetic Studies. 17th
European Meeting on Cybernetics and System Research (EMCSR 2004),
Vienna, Austria, 2004. Proceedings.

J. Rosenschein and G. ZlotkiRules of Encounter: Designing Conven-
tions for Automated Negotiation among Computev8T Press, 1994.

19] J. Sabater and C. Sierra. REGRET: A reputational model for gregarious

societies. Inlst International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 20023ges 475-482, Bologna, Italy,
2002. ACM Press. Proceedings.

T. Sandholm. Distributed rational decision making. In G. Weiss and
S. Sen, editordylulti-Agent Systems: A Modern Approach to Distributed
Artificial Intelligence pages 299-330. AAAI/MIT Press, 1999.

R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-
based access control modelEEE Computer29(2):38-47, 1996.

M. Viroli and A. Omicini. Coordination as a service: Ontological
and formal foundation. Electronic Notes in Theoretical Computer
Science 68(3), Mar. 2003. 1st International Workshop “Foundations of
Coordination Languages and Software Architecture” (FOCLASA 2002),
Brno, Czech Republic, 24 Aug. 2002. Proceedings.

P. Wegner. Why interaction is more powerful than algorith@emmu-
nication of ACM 40(5):80-91, May 1997.

G. Zacharia and P. Maes. Trust through reputation mechanispmdied
Artificial Intelligence (14):881-907, 2000.

baldoni
115

OWLBeans

From ontologie

s to Java classes

Michele Tomaiuolo, Federico Bergenti, Agostino Fip§gola Turci

Abstract — The Semantic Web is an effort to build a global
network of machine-understandable information. Sofiare
agents should be enhanced with tools and mechanisnis
autonomously access this information. The objectivef this
paper is to present a toolkit for extracting a subst of the
relations expressed in an OWL document. It generate data
structures and artifacts that can be handy for autaomous
software agents to access semantically annotatedfarmation
provided on the web.

Index Terms — Semantic web, ontology, object-oriented
systems, autonomous agents, multi-agent systems.

Semantic web promises to build a network of machin
understandable information [4],[5],[9]. But to bewe a
widespread reality, this vision has to demonstratevative
applications, and so it is fundamental for its gsgscto have
software libraries and toolkits, enabling autonomseaftware
agents to interface this huge source of information

The OWLBeans toolkit, which is going to be presdrite
this paper, does not deal with the whole complegitya
semantically annotated web. Instead, its purpoggésisely
to cut off this complexity, and provide simple datgs to
access structured information.

INTRODUCTION

domain is enough to complete their tasks.

The software artefacts produced by the toolkit, neainly
JavaBeans [12] and simple metadata representaiset by
JADE [10], are not able to express all the relatiops that
are present in the source. But in some context ithisot
required. Conversely, especially if software anddheare
resources are very limited, it is often preferatiolaleal only
with common Java interfaces, classes, propertidobjects.

The main functionality of the presented toolkitasextract
a subset of the relations expressed in an OWL dentirfor
generating a hierarchy of JavaBeans reflecting thand
possibly an associated JADE ontology to represestadata.
But, given its modular architecture, it also allosther kinds
of conversions, for example to save a JADE ontoiogy an

WL file, or to generate a package of JavaBeans ftioe

escription provided by a JADE ontology.

Il. INTERMEDIATE MODEL

The main objective of the OWLBeans toolkit is tdrext
JavaBeans from an OWL ontology. But to keep theecod
maintainable and modular, we decided to creatd fus
internal, intermediate representation of the ompldn fact
our tool, translating OWL ontologies to JavaBeansvioe-
versa, can be viewed as a sort of compiler, artdally every
compiler builds its own intermediate model beforeducing

In general, interfacing agents with the Semanticbwehe desired output. In compilers, this helps toasafe the

implies the deployment of an inference engine dheorem
prover. In fact, this is the approach we're curkefallowing

problems of the parser from those of the lexicallyaer and
moreover, the same internal representation caressséd to

to implement an agent-based server to manage owproduce different outputs. In the case of the OWArge

ontologies [15].

Instead, in many cases, autonomous software age
cannot, or don’t need to, face the computationaipexity of
performing inferences on large, distributed infotioa
sources. The OWLBeans toolkit is mainly thought threse
agents, for which an object-oriented view of th@laation

Manuscript received September 27, 2004.

M. Tomaiuolo is with DII, University of Parma, Parérea delle Scienze
181A, 43100, Parma, Italy (phone: +39 0521 90571&mail:
tomamic@ ce.unipr)it

F. Bergenti is with DII, University of Parma, Par&cea delle Scienze 181A,
43100, Parma, Italy (phone: +39 0521 905708; e:haibenti@ce.unipr)i

A. Poggi is with DII, University of Parma, Parcoedr delle Scienze 181A,
43100, Parma, Italy (phone: +39 0521 905728; exmpadgi@ce.unipr.)t

P. Turci is with DI, University of Parma, Parcoear delle Scienze 181A,
43100, Parma, Italy (phone: +39 0521 905708; e:raiti@ce.unipr.i.

M. Baldoni, F. De Paoli, A. Martelli, and A. Omicini (Eds.): WOA 2004 — Dagli Oggetti agli
Agenti, Sistemi Complessi e Agenti Razionali, Torino, Italy, November 29" — December 1
2004. Pitagora Editrice Bologna. ISBN 88-371-1533-4. ht t p: / / woa04. uni to. it

toolkit, the intermediate model can be used to geeethe
gaurces of some Java classes, a JADE ontologyn @Vl
file. And the intermediate model itself can beefillwith data
coming from different sources, obtained, for exampby
reading an OWL file or by inspecting a JADE ontglog

A. Requirements

The main features we wanted for the internal omplo
representation were:
Simplicity it had to include only few simple classes, to
allow a fast and easy traversal of the ontologye Th
model had to be simple enough to be managed in
scripts and templates; in fact, one of the maingtes
goals was to have a model to be passed to a tesmplat
engine, for generating the code directly from it.

baldoni

* Richnessit had to include the information needed tdt cannot easily manage external entities; thougtologies
generate JavaBeans and all other wanted artefdots. can be organized in hierarchies, it is not possibldefine the
main guideline in the whole design was to avoithamespace of classes. Another issue is that tissedeaof a
limiting the translation process. The intermediatd ADE ontology are distinguished as predicates orcepts,
model had to be as simple as possible, though nand predicates for example cannot be used as rahge
creating ametadata bottlenecia the translation of an properties; this matches the semantics of the FHA
OWL ontology to JavaBeans. All metadata needed ilanguage [6], but could be a problem for the regméstion of
the following steps of the translation pipeline hadbe generic OWL ontologies, as such distinction doesendst in
represented in the intermediate model. Moreovethe language. The third, and perhaps most impaorisgue is
though it had to be used mainly by template engiaes it does not allow exploring the tree of classes prmperties
generate JavaBeans, it had to be general enoughfr@am the outside.
allow other uses, too. The internal field to store classes defined in @rdology
« Primitive data-typesit had to handle not only classes,class, for example, is marked private; obviousiis ts a good
but even primitive data-types, as both Java and Owdhoice to encapsulate data, but no accessor methass
classes can have properties with primitive datagyp provided to get the names of all classes. Otheblents
as their range. regard theDbjectSchemalass that does not provide a way to
« External references often ontologies are built get all directly extended super-classes and adlipciefined
extending more general classifications an taxonsmieslots. Finally, theCardinalityFacet class does not expose
for example to detail the description of some poeslu Minimum and maximum allowed values.
in the context of a more general trade ontology. We In fact, the JADE ontology model was designed toval
wanted our model not to be limited to singleautomatic marshalling and un-marshalling of objefoten
ontologies, but to allow the representation of maé FIPA ACL messages [8], and not to reason aboutlagyo
entities, too: classes had to extend other class&ements.
defined locally or in other ontologies, and propert Obviously, these limitations of the JADE ontologypael,
ranges had to allow not only primitive data-typesla proved to be a serious problem when trying to save an
internal classes, but even classes defined in readter OWL file, too. This facet will be discussed in matetail in
ontologies. the following sections.
One of th(_a main issues_ regard_ed_ prope_rties_, as _ahtey C. Core classes
handled in different ways in description logics dndobject
oriented systems. While they are first level eastiin
Semantic Web languages, they are more strictlytaeldo
their “owner” class in the latter model. In parteoy property
names must be unique only in the scope of their dass in
object-oriented systems, while the have global scap OWLResource
description logics. Our choice was to have propsrtowned”
by classes. This allows an easier manipulationhefmeta- /\

The intermediate model designed for the OWLBeans
toolkit is made of just few, very simple classeseTsimple
UML class diagram shown in figure 1 describes tHele
intermediate model package.

objects while generating the code for the JavaBeand a T
more immediate mapping of internal descriptionlatses to ‘
the desired output artefacts. OwLClass | *PaM | owi Reference
B. Other models 1 T L A

o o . 1. +range/ \+domain

Before deciding to create a specific internal repneation /
of the ontology, we evaluated two existing mod¢he one
provided by Jena [13], which of course is very elts the \
: _ J .

Semantic Web model, and the one used internall JANE, OWLOntology OWLProperty

which instead is quite close to the object-orientetiel. minCardinality : int
The first one had the obvious advantage to be thst m maxCardinality : int
complete model of the ontology. According to Brgokhe
world is its own best model” [22]. Neverthelesswias too
complex for our scopes. For example, we wanted ib¢
handled by template engines, to generate Java diogletly The root class here ®wlResourcewhich is extended by
from it. all the others. It has just two fields: a loczme and a
The other one, used by JADE, had most of the featwe namespacewhich are intended to store the same data as
desired. But it had some major disadvantagesFiost of all, resources defined in OWL files. All the resourcdstlte

Fig. 1 - Class diagram of the intermediate model

baldoni
117

11€

intermediate model — refernces, ontologies, classed OWL files and JADE ontologies, and writers to geter
properties — are implicitipwiResourcebjects. OWL files, source files of JavaBeans and JADE agials.
OwlReferenceis used as a simple reference, to point to A very simple, yet handy application is providedhieh
super-classes and range types, and don’t add agythithe can be customized with pluggable readers and wsritirus
OwlResourceclass definition. It is defined to underline theperforming all the possible translations. While patggable
fact that classes cannot be used directly as raorgesrents. into the main application, other components ardémented
OwlOntologyis nothing more than a container for classego provide additional features. For example, onethwm
In fact it owns a list ofOwIClass objects. It inherits from allows to instantiate at runtime a JADE ontologyd sadd
OwlResourcghe name and namespace fields. In this case thlasses to it from an intermediate ontology repred®n.
namespace is mandatory and is supposed to be thespace Another component allows to load the generated dode
of all local resources, for which in fact it is mptal. JavaBeans directly into the Java Virtual Machingng an
OwlClass represents OWL classes. It points to a list ofmbedded Java scripting engine. These componentdbea
parents, or super-classes, and owns a list of piepeEach exploited, for example, by agent-based applicatibesigned
parent in the list is ®wlReferencebject, i.e. a name and ato be ontology agnostic, like some of those demloyethe
namespace, and not &@wlIClassobject. Its name must be Agentcities network [1],[2].
searched in the owner ontology to get the r@aliClass fil
object. Properties instead are owned by @wdClassobject, A. OWL files))
Two classes are provided to manage OWL files.

and are stored in theroperties list as instances of the))) X
OwlPropertyclass. OwlFileReademallows reading an intermediate model from an
OwlPropertyis the class representing OWL properties. AQWL file, while OwlFileWriter allows saving an intermediate
in UML, their name is supposed to be unique oniythie model to an OWL file. These two classes respegtivel

implement theOwlReaderand OwlWriter interfaces and are

scope of their “owner” class. Each property poitadsa x ; -~ X
domain class and to a range class or data-typéh Baise defined in the_ package confining all the dependenéiom
the Jena toolkit.

fields are simple OwlReferenceobjects: while the first _ _)

contains the name of the owner class, the latterindicate _ 'he lattér process is quite straightforward, as tag
an OwiClass or an XML data-type, according to theinformation stored in the intermediate model casilgéit
namespace. Two more fields are present in thissclad’t0 @an OWL ontology, in particular into a Je@mtModel
minCardinality and maxCardinality They are used to store object. But one p_arncular point deserves attentWh_lle th_e
respectively the minimum and maximum allowed caatify ~ ProPerty names in the OWLBeans model are definethén

for the property values. Moreover,nsinCardinality = Ohas SCOP€ Of their owner class, all OWL properties east are

the implicit meaning of an optional property, whilef'rSt level elements and share the same namesphiseposes

maxCardinality = 1has the implicit meaning of a functional S€fi0us problems if two or more classes own pregemwith
property the same name, and above all if these propertie® ha

Probably you have already noticed the design chtice different ranges or cardinality restrictions.
have indirect references fowlClassobjects in some places, In the first versn.)r? of the OWLBeans_ toolkit, th&sue is
in particular to point to super-classes and tovab ranges. [@ced in two ways: if a property is defined by taomore

This decision has two main advantages over diresaJ Classes then a complex domain is created in the OWL
references to final objects: parsing an OWL fileaishit ONtology for ity in particular the domain is defthas the

simpler, as references can point to classes treamat yet union of all the classes that share the propersjngian -
defined, and above all in this way super-classes ranges owl:UnionClasselement. Cardinality restrictions are specific

are not forced to be local classes, but can beemtes to © classes in both models, and are not an issueefly, the
resources defined somewhere else ’ range is instead assigned to the property by teediass that

defines it, and is kept constant for the other sdasin the
. PLUGGABLE READERS AND WRITERS domain. But this obviously could be incorrect inmgocases.
Using some class-scopedwl:allValuesFrom restrictions
could solve most of the problems, but neverthel@isulties
would arise in the case of a property defined imeelasses
as a data-type property, and somewhere else asbjent o
sproperty.
’ Another mechanism allows to optionally use the slas
name as a prefix for the names of all its propsrtleence
automatically enforcing different names for prog=rdefined
in different classes. Obviously this solution ispegpriate
only for ontologies where names can be decidedrarby;

In our toolkit, the intermediate model is usedlas glue to
put together the various components needed to rperfbe
desired, customizable task. These components assed
implementing one of the two interface®©wlReaderand
OwlWriter) representing ontology readers and writer
respectively. Not very surprisingly, readers canldowan
intermediate representation of the ontology, acggir
metadata from different kinds of sources, whiletews can
use this model to produce the desired artefacts.

The current version the toolkit provides readeringpect

baldoni
118

11¢

moreover it is appropriate when resulting OWL oogi¢s the application code.

will be used only to generate JavaBeans and JAR&ayies, The chosen template engine was Velocity [19], itisted
as in this case the leading class name would lweresically under LGPL licence from the Apache Group. It's grero
stripped off by th®©wlFileReaderclass. source project enjoying widespread use. While #mé

The inverse process, i.e. converting an OWL ontolatp mainly comes from being integrated into the Turbimeb
the intermediate representation, is instead passitlly under framework, where it is often preferred to other iknde
very restrictive limitations, mainly caused by tia¢her strong technologies, as JSP pages, it can be effortl@sslgrated in
differences between Semantic Web and object odenteustom applications, too.
languages. In fact, only few, basic features of @w/L Velocity template engine integration is performbadotigh
language are currently supported. the VelocityFormatter class. This class hides all the

Basically, the OWL file is first read into a Je@mtModel implementation details of applying desired temate an
object and then altlassesare analyzed. In this step allintermediate ontology and encapsulates all the ribgecies
anonymous classeare just discarded. For each one of th&om the Velocity engine. Two different types ofjelates are
remaining classes, a correspondidglClassobject is created allowed, ontology templatesnd class templateswWhile the
in the internal representation. Then ibpertieslisting the first ones only need a®wlOntologyas parameter, the other
class directly in their domain are considered aded to the ones also need adwiClass Ontology templates are used to
intermediate model asOwlProperty objects. Here, each generate as output the source code of JADE ontspdor
defined property points to a single class as domaaith to a example. Class templates are instead applied td eac
single class or data-type as range. Set of clagsesnot OwiClassof the ontology to generate a Java interface and a
actually supported. Data-type properties are disiished in corresponding implementation class, for example.
our model by the namespace of their range, which isCurrently, the OWLBeans toolkit provides templates
http://imww.w3.0rg/2001/XMLSchema#The only handled generate the source file for JavaBeans and JAD&lami¢s.
restrictions are owl:cardinality, owl:minCardinality and JavaBeans are organized in a common package vinstef
owl:maxCardinality which are used to set th@nCardinality all, some interfaces mapping the classes definedha
and maxCardinality fields of the newOwlProperty object. ontology are written. Then, for each interfaceaealclass is
The rdfs:subClassOfelement is handled in a similar way:generated, implementing the interface and all &cres
only parents being simple classes are taken intnethods needed to get or set properties.

consideration, and added to the model. Creating an interface and then a separate implengent
All the rest of the information eventually beingthe file is Java class for each ontology class is necessaoyeome
lost in the translation. the single-inheritance limitation that applies &va classes.

Inverse conversions are applied when writing aiach interface, instead, can extend an arbitramben of
intermediate ontology model into an OWL file. Takle parent interfaces. The corresponding class is aadpt

provides a synthetic view of these mappings. obliged to provide an implementation for all the thosls
defined by one of the directly or indirectly implented

OWL OWLBeans interfaces.

owl:Class OwlIClass The generated JADE ontology file can be compiled an

mfgsiftpﬂrﬁ”ﬁt OwlProperty used to import an OWL ontology into the JADE franoeky

rdfé:ranggp Bery OwiProperty.range thus allowing agents to communicate about the qusce

rdfs:domain OwlProperty.domain defined in the ontology. The JavaBeans will be iuattically

owl:FunctionalProperty OwlProperty.maxCardinality marshalled and un-marshalled from ACL messages in a

owI:minCardihalit.y OWIProperty.minCardirlali'Fy completely transparent way.

gx:;giﬁzrlﬁ;namy m:g:gg::gmig:;:ﬂ:]n;'t';y Translating an intermediate ontology to Java clssas

owlProperty.maxCardinality off some details of the metadata level. In particuho checks

are imposed on the cardinality of property valueg, only a
rough distinction is made to associate non-funetion
properties (wherenaxCardinalityis >1) with a Javd.ist, to
hold the sequence of values. Moreover, the clagseoitems

of the list is not enforced, so the@ngeinformation associated
with the OwlProperty object is effectively lost. Instead,
generating the JADE ontology does not impose theeslass

of range and cardinality metadata. But nonetheless, the
available set of primitive data-types is poor conegato the
one of XML Schema, used in the intermediate model.

Tab. 1 — Mappings between OWL/OWLBeans elements

B. Template engine

Rather than generating the source files of therekgsi
JavaBeans directly from the application code, wedsdel to
integrate a template engine in our project. Thisnévally
helped to keep the templates out of the applicatmie, and
centralized in specific files, where they can balgred and
debugged much more easily. Moreover, new temptzede
added and existing ones can be customized withodtfying

baldoni
119

XSD Java JADE
xsd:Boolean boolean BOOLEAN
xsd:decimal, xsd:float, xsd:double double FLOAT
xsd:integer, xsd:nonNegativelnteger, int INTEGER

xsd:positivelnteger, xsd:nonPositivelnteger,
xsd:negativelnteger, xsd:long, xsd:int, xsd:shart,
xsd:byte, xsd:unsignedLong, xsd:unsignedint,
xsd:unsignedShort, xsd:unsignedByte

xsd:base64Binary, xsd:hexBinary Object

UENCE
xsd:dateTime, xsd:time, xsd:date, Date DATE
xsd:gYearMonth, xsd:gYear, xsd:gMonthDay,
xsd:gDay, xsd:gMonth, xsd:duration
xsd:string, xsd:normalizedString, xsd:anyURI,| String STRING

xsd:token, xsd:language, xsd:NMTOKEN,
xsd:Name, xsd:NCName

Tab. 2 — Mappings between XSD/Java types

12C

While other similar engines were not able to cdityeead
the source files produced by the template engar@nd made
its work promptly. For example, Beanshell was nioieao
parse source files of interfaces with multiple intasce,
which instead is an important feature required bg t
OWLBeans toolkit. Thanks to its features, and ®dlean

BYTE_sgqdesign, Janino is gaining popularity. Drools, a edul rule

engine for Java, uses Janino to interpret rulgsrand even
Ant and Tomcat can be configure to use Janino ag th
default compiler.

The possibilities open by embedding a scriptingrmnto
an agent system are numerous. For example, sof@gpmets
for e-commerce often need to trade goods and sarvic
described by a number of different, custom ont@sgiThis
happens in the Agentcities network, where differbasic

The XML data-types supported by the OWL syntax argervices can be composed dynamically to create new

listed in [16]. For each of them a correspondingmtive
Java or JADE type must be provided. Both these exmions
are not zero-cost transformations, as the targestyglo not
express the precise meaning of their corresponcii-
Schema types. Table 2 shows these conversionfiegsate
defined in the default templates; th&a/d column indicates
the Java data types, while in thRADE’ column indicates the
name of the corresponding constants defined inJhiBE
BasicOntologyclass.

C. Scripting engine

An additional template is provided to put the seuot all
interfaces, classes and JADE ontologies togeth&y,a single
stream or file, where thgackageandimports statements are
listed only once, at the beginning of the whole.filThis
proves useful to load generated classes directtytime Java
Virtual Machine.

In fact, if a Java scripting engine likéanino [11] is
embedded into the toolkit, it can be exploited aspeacial
class-loader, to load classes directly from Jauarcgofiles
without first compiling them into byte-code. Souréites
don’t even need to be written to the file systerstfiSo, at the
end, JavaBeans can be loaded into the Java Vitaahine
directly from an OWL file.

Obviously, pre-compiled application code will na bble
to access newly loaded classes, which are not sedpo be
known at compile time. But the same embedded $egpt
engine can be used to interpret some ontology fspecide,
which could be loaded at run time from the samecof
the OWL ontology file, for example, or provided the
application in other ways.

compound services.

To increase adaptability, these agents should e tab
load needed classes and code at runtime. The OWisBea
package allows them to load into the Java VirtualcMne
some JavaBeans directly from an OWL file, togethi¢gh the
ontology-specific code needed to reason about the n
concepts.

D. JADE ontologies

Probably one of most interesting application of the
Semantic Web is its use by autonomous software tagen
which could use ontologies to reason and manipula¢e
environment. Their world would be made of resourased
services described in ontologies, which would reosbpposed
to be known a priori, at compile time. The OWLBe#&odkit
provides software agents the ability to load orgmes and
defined classes at run time, just when they're eéet when
they're discovered.

Apart from using the embedded Velocity templateieag
and the embedded Janino scripting engine to loagrgeed
classes at run time into the Java Virtual Machiaegther
component is provided to instantiate an empty JAD®logy
at run time, and populate it with classes and ptgseread
from an OWL file, or from other supported sources.

This proves useful when the agent doesn’t reallgdne
JavaBeans, but can use the internal ontology mufd&\DE
to understand the content of received messagestoawdte
the content of messages to send to others. Theragede
JADE ontology is very similar to the one producedthe
Velocity template, but it doesn’t need to be combilas no
source code is generated. Instead Java objecisanripulated

Among the various existing Java scripting engines wo create a new instance of t@atologyclass containing all

tested for integration into the toolkit, currenfignino proves
to be the best choice. It is developed as opencsqguroject
and released under LGPL license. It is an embeddexpiler

that can read Java expressions, blocks, classdadisets of
source files. The Java byte-code it generates ealodued
and executed directly into the Java Virtual Machine

the classes and properties of the intermediate Inode

The class providing this functionality is defined the
JadeOwlOntologyclass. This class does not implement the
OwlWriter interface, but extends tl@@ntologyclass of JADE,
adding the ability to read classes from an OWLBeans
intermediate model.

baldoni
120

121

Table 3 shows how the entities of one model can lsnce encapsulation is broken, even minimal maaliftms to
mapped to the other. the internal state representation of one of theehisted

Creating and populating a JADE ontology from artlasses would stopadeReadefrom working. We valued the
intermediate model is quite a straightforward psscén fact possibility to export JADE ontologies to OWL fileaportant
an OwiClass can be mapped without particular difficultiesenough to be released very soon, and thus creatiny a
into a JADESchemawhile anOwlPropertycan easily fit into patch proved necessary.
a JADE SlotDescriptor (a private inner class of Anyway, the proposed modifications to the ontoldddi of
ObjectSchemalmplwhich can be inspected through som&ADE are going to be submitted to the JADE Board tn
public methods of the outer class). The only sigaift the JADE community for their introduction into tloéficial
difference is JADE making explicit thiggregateScheméor distribution. They would make the API useful notlyoto
the range of slots witmaxCardinality > 1 and having a extract the content of ACL messages, or to compsosh
TypedAggregateFacefi.e. a restriction) to enforce themessages, but even to inspect the described entig
schema of the single elements. Moreover, in a JAD#scover some simple relationships among them. Mare
ontology, maxCardinalityand minCardinality are added to a they would not break backward compatibility, ast jéesw
slot through aCardinalityFacet while in the OWLBeans methods need to be added or made public. Nothsegyreteds
model, for simplicity, they are two fields of ti@wlProperty to be changed.

class. A particularity of theJadeReadecrlass is that it silently
adds some classes to the ontology it generateseTtiasses
represent some basic FIPA types for ontology ctassHPA
JADE OWLBeans SL in fact distinguishes ontology classes @sncepts
ObjectSchema OwlClass representing objects of the model,ppedicates representing
SlotDescriptor OwlProperty beliefs about the objects. Then there are more ifapec

SlotDescriptor.schema OwlProperty.range

concepts representiragtions i.e. some tasks that agents can

SlotDescriptor.optionality

OwlProperty.minCardinaty

CardinalityFacet.cardMin

OwlProperty.minCardinality

CardinalityFacet.cardMax

OwlProperty.maxCardinality

be requested to execute. The last basic classstsa¢ntly
added is a concept fagent identifiersor AIDs, a class used

TypedAggregateFacet.type OwlProperty.range

for assigning uniqgue names to FIPA agents [7]. g2,

Tab. 3 — Mappings between JADE/OWLBeans elements Captured from the Protégé ontology editor [17],[18ows

o)]) the hierarchy of the basic FIPA classes.
It is interesting to note that JADE defines facetlsich are

very similar to OWL restrictions, and which insteade

missing in the OWLBeans model. This was a precesgmh fRaER el ERAREHG

choice to make traversing the model easier, without (C) owl Thing
sacrificing needed metadata but probably loosingitaof ¥ (C)Concept
generality. {C)AD

The JadeReaderclass encapsulates all the dependencies () AgertAction
from the JADE framework This class does exactly tits (C) Predicate
name suggests: it “reads” an instance of a JAD®Blogy,

and generates an intermediate model from it. Unifaately,

as we already underlined, JADE ontologies are msighed

to be traversed from the outside. To be usefuhgpect the

content of an ontology, the model JADE uses intéyriacks schemas is checked for being an instance of acpéatibasic

few accessor methods: class and, accordingly, it is placed in the rigtanizh of the

e it lacks a method, in th®ntology class, to obtain the generated hierarchy of classes. For example, a
name of all defined classes; ConceptSchemelass will be mapped into @wiClassclass

it lacks a method in th®bjectSchemalass to get the having ‘Concept” among its ancestors, one of the classes
name of all defined properties; added by default to the intermediate ontology safter its

« finally it lacks two methods to read minimum andcreation. Similarly, aPredicateSchemalass will instead

maximum allowed cardinality, i€ardinalityFacet have ‘Predicaté among its direct parents, or among its
In the implementation of theladeReaderclass, these gncestors.

limitations are circumvented by using the reflectidPI of
Java to access hidden fields and methods when szges
Obviously, this solution can only be thought asmorary,
very limited and well documented, patch to allowDEA
ontologies to be fully inspected from external cobfefact,

Fig. 2 — Basic FIPA classes

When the JADE ontology is traversed, each one of it

IV. USING THE TOOLKIT

A customizable Java application is distributed witte
toolkit. Thanks to the modular design of the whpleject,
this application is very simple, yet allowing topéoit almost

baldoni
121

122

all the functionalities of the toolkit. It simplyakes the java it.unipr.aot.owl.Main [-input <input>] [-

output <output>] [-package <package>] [-ontology

intermediate model produced by a pluggable reatet feeds <ontology>] [-imports (truelfalse)]

with it a pluggable writer. In this way, it can lsed to

realize all the format conversions made possible by The optional arguments include the input file, theput
combining available readers and writers. It canubed to folder for generated sources, the name of the prciad the
generate Java classes from an OWL file, or to saJADE one of the ontology, and a flag to process impooteidlogies.
ontology into an OWL file, or even to generate soméhe last option is currently not yet implemented.
JavaBeans adhering the descriptions provided byREJ The following subsections show an example of exeout

ontology. The first subsection shows the input ontology. Tdtewing

The application can be execute from a shell, ushg oOne shows the source code generated by applyindetfailt
following syntax: templates.
A. Input OWL ontology
<?xml version="1.0"?>
<rdf:RDF

xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syn tax-ns#"

xmins:rdfs="http://www.w3.0rg/2000/01/rdf-schem a#t"

xmins:owl="http://www.w3.0rg/2002/07/owl#"

xmIns="http://www.owl-ontologies.com/unnamed.ow 17"

xml:base="http://www.owl-ontologies.com/unnamed.o wl">

<owl:Ontology rdf:about="">
<rdfs:label>Test</rdfs:label>
</owl:Ontology>
<owl:Class rdf:ID="AID">
<rdfs:subClassOf>
<owl:Class rdf:ID="Concept"/>
</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="Price">
<rdfs:subClassOf rdf:resource="#Concept"/>
</owl:Class>
<owl:Class rdf:ID="Tradeable">
<rdfs:subClassOf rdf:resource="#Concept"/>
</owl:Class>
<owl:Class rdf:ID="Predicate"/>
<owl:Class rdf:ID="Book">
<rdfs:subClassOf rdf:resource="#Tradeable"/>
</owl:Class>
<owl:Class rdf:ID="AgentAction">
<rdfs:subClassOf rdf:resource="#Concept"/>
</owl:Class>
<owl:ObjectProperty rdf:ID="price">
<rdf:type rdf:resource="http://www.w3.0rg/2002/
<rdfs:domain rdf:resource="#Tradeable"/>
<rdfs:range rdf:resource="#Price"/>
</owl:ObjectProperty>
<owl:DatatypeProperty rdf:ID="authors">
<rdfs:range rdf:resource="http://www.w3.0rg/200
<rdfs:domain rdf:resource="#Book"/>
</owl:DatatypeProperty>
<owl:FunctionalProperty rdf:ID="currency">
<rdfs:domain rdf:resource="#Price"/>
<rdfs:range rdf:resource="http://www.w3.0rg/200
<rdf:type rdf:resource="http://www.w3.0rg/2002/
</owl:FunctionalProperty>
<owl:FunctionalProperty rdf:ID="value">
<rdfs:range rdf:resource="http://www.w3.0rg/200
<rdf:type rdf:resource="http://www.w3.0rg/2002/
<rdfs:domain rdf:resource="#Price"/>
</owl:FunctionalProperty>
<owl:FunctionalProperty rdf:ID="title">
<rdfs:domain rdf:resource="#Book"/>
<rdf:type rdf:resource="http://www.w3.0rg/2002/
<rdfs:range rdf:resource="http://www.w3.0rg/200
</owl:FunctionalProperty>
</rdf:RDF>

07/owl#FunctionalProperty"/>

1/XMLSchema#tstring"/>

1/XMLSchema#tstring"/>
07/owl#DatatypeProperty"/>

1/XMLSchema#double"/>

07/owl#DatatypeProperty"/>

07/owl#DatatypeProperty"/>
1/XMLSchemattstring"/>

baldoni
122

B. Generated Java source code

12

package bookstore;

import jade.util.leap.List;
import jade.content.onto.*;
import jade.content.schema.*;

public interface Pri ce extends jade.content.Concept {

public double getValue();
public void setValue(double value);

public String getCurrency();
public void setCurrency(String currency);

}

public interface Tr adeabl e extends jade.content.Concept {

public Price getPrice();
| public void setPrice(Price price);

}

public interface Book extends Tradeable {

public String getTitle();
public void setTitle(String title);

public List getAuthors();
public void setAuthors(List authors);

public class Pri cel npl implements Price {

String currency;
public String getCurrency() { return currency; }
public void setCurrency(String currency) { this.c

double value;
public double getValue() { return value; }
public void setValue(double value) { this.value =

}
public class Tradeabl el npl implements Tradeable {
Price price;
public Price getPrice() { return price; }
public void setPrice(Price price) { this.price =
public class Book! npl implements Book {
String title;

public String getTitle() { return title; }
public void setTitle(String title) { this.title =

List authors;
public List getAuthors() { return authors; }
public void setAuthors(List authors) { this.autho

Price price;
public Price getPrice() { return price; }
public void setPrice(Price price) { this.price =

}

public class Bookst or eOnt ol ogy extends Ontology {
public static final String ONTOLOGY_NAME = "Books

/I The singleton instance of this ontology
private static Ontology thelnstance = new Booksto
public static Ontology getinstance() { return the

/I Vocabulary

public static final String TRADEABLE = "Tradeable
public static final String TRADEABLE_PRICE = "pri
public static final String PRICE = "Price";

public static final String PRICE_VALUE = "value";

urrency = currency; }

value; }

price; }

title; }

rs = authors; }

price; }

tore";

reOntology();
Instance; }

<

baldoni
123

124

public static final String PRICE_CURRENCY = "curr
public static final String BOOK = "Book™";

public static final String BOOK_TITLE = "title";
public static final String BOOK_AUTHORS = "author

public void addSlot(ConceptSchema schema, String
int optionality = (minCard > 0) ? ObjectSchema.
if (maxCard == 1) schema.add(slot, type, option
else schema.add(slot, type, minCard, maxCard);

}

public void addSlot(PredicateSchema schema, Strin
int optionality = (minCard > 0) ? ObjectSchema.
if (maxCard == 1) schema.add(slot, type, option
else schema.add(slot, type, minCard, maxCard);

}

public BookstoreOntology() {
super(ONTOLOGY_NAME, BasicOntology.getinstance(

try {
PrimitiveSchema stringSchema = (PrimitiveSche
PrimitiveSchema floatSchema = (PrimitiveSchem
PrimitiveSchema intSchema = (PrimitiveSchema)
PrimitiveSchema booleanSchema = (PrimitiveSch
PrimitiveSchema dateSchema = (PrimitiveSchema
ConceptSchema aidSchema = (ConceptSchema)getS

/I Adding schemas
ConceptSchema tradeableSchema = new ConceptSc
add(tradeableSchema, Class.forName("bookstore

ConceptSchema priceSchema = new ConceptSchema
add(priceSchema, Class.forName("bookstore.Pri

ConceptSchema bookSchema = new ConceptSchema(
add(bookSchema, Class.forName("bookstore.Book

/I Adding properties

addSlot(priceSchema, PRICE_VALUE, doubleSchem
addSlot(priceSchema, PRICE_CURRENCY, stringSc
addSlot(tradeableSchema, TRADEABLE_PRICE, pri

addSlot(bookSchema, BOOK_TITLE, stringSchema,
addSlot(bookSchema, BOOK_AUTHORS, stringSchem

/I Adding parents
bookSchema.addSuperSchema(tradeableSchema);

} catch (Exception e) { e.printStackTrace(); }

slot, TermSchema type, int minCard, int maxCard) {
MANDATORY : ObjectSchema.OPTIONAL;
ality);

g slot, TermSchema type, int minCard, int maxCard)
MANDATORY : ObjectSchema.OPTIONAL;

ality);

)

ma)getSchema(BasicOntology.STRING);

a)getSchema(BasicOntology.FLOAT);
getSchema(BasicOntology.INTEGER);
ema)getSchema(BasicOntology.BOOLEAN);
)getSchema(BasicOntology.DATE);
chema(BasicOntology.AID);

hema(TRADEABLE);
.Tradeablelmpl"));

(PRICE);
celmpl"));

BOOK);
Impl”));
a,0,1);
hema, 0, 1);

ceSchema, 0, 1);

V. CONCLUSIONS

The OWLBeans toolkit we presented in this papee ¢as
access to semantically annotated information bywsoé
agents. Its main functionality is to generate Ja@aais and
other artefacts, that can be used by agents negdsan
object-oriented model of their application domain.

not limited to a single class. A new reader shdigcadded to
build an ontology model, using Java reflection malsgze a

parent ontologies, is quite common.

Given its modular design, the toolkit is able tmqass
various kinds of input and produce different ouspu®o, REFERENCES

while the main purpose is to extract relations framOWL [1] The Agentcities Networkttp://www.agentcities.net/

. [2] Agentcities.RTDhttp://www.agentcities.org/EURTD/
ontology and generate JavaBeans, it can also be e

package of Java classes and extract needed metedata
Above all, some relations among ontologies shoutd b

recognized and handled. In fact, having a hierarohy

ontologies, with terms of an ontology referencimgnts of

BeanShellhttp://www.beanshell.org

perform all other conversions allowed by combinavgilable [4] Berners-Lee, Tim. Hendler, James, Lassila, Ofae Semantic Web

readers and writers.

Possible improvements include a better management [?J

Scientific American, May 2001.

Berners-Lee, TinBemantic Web Road maPeptember, 1998. Available
from http://www.w3.org/Designissues/Semantic.html

name conflicts that can arise while converting prtps from [6] FIPA spec. XCO0008.FIPA SL Content Language Specification.

an object oriented system to an ontology, wheri go®pe is

Available fromhttp://www.fipa.org/specs/fipa00008/

baldoni
124

12t

[7]1 Available from FIPA spec. XC00023FIPA Agent Management [16] http://www.w3.0org/TR/2003/WD-owl-semantics-2003028@itax.html

14] Java Server Pagebttp://java.sun.com/products/jsp/
15] OWL http://www.w3c.org/OWL

Specification Available fromhttp://www.fipa.org/specs/fipa00023/ [17] Protégé Ontology Editor and Knowledge Acquisitigist®m.
[8] FIPA spec. XCO0037FIPA Communicative Act Library Specification http://protege.stanford.edu/
Available fromhttp://www.fipa.org/specs/fipa00037/ [18] Protégé OWL Plugin - Ontology Editor for the Senaxteb.
[9]1 Hendler, James, Berners-Lee, Tim and Miller, Eflictegrating http://protege.stanford.edu/plugins/owl/
Applications on the Semantic Welmurnal of the Institute of Electrical [19] Velocityhttp:/jakarta.apache.org/velocity/
Engineers of Japan, Vol 122(10): 676-680, 2002. [20] W3C Web Pagesn Semantic Wethttp://www.w3.0rg/2001/sw/
[10] JADE Available fromhttp://jade.tilab.it [21] XML Schemattp://www.w3.org/XML/Schema
[11] Janina http://janino.net [22] Brooks, R.A.How to build complete creatures rather than isotate
[12] JavaBeanshttp://java.sun.com/products/javabeans/ cognitive simulatorsin K. VanLehn (ed.)Architectures for Intelligence
[13] Jena Semantic Web Framewonkp://jena.sourceforge.net/ pp. 225-239, Lawrence Erlbaum Assosiates, Hillsddlg 1991.
[
[

baldoni
125

Spatial Computing: the TOTA Approach

Marco Mamei, Franco Zambonelli

DISMI - Universita di Modena e Reggio Emilia
Via Allegri 13, 42100 Reggio Emilia — ITALY
mamei.marco@unimore.it, franco.zambonelli@unimore.it

Abstract. Spatial abstractions promise to be basic necessary ingredients for
a novel “spatial computing” approach to distributed systems development
and management, suitable to tackle the complexity of modern distributed
computing scenarios and promoting self-organization and self-adaptation.
In this paper, we analyze the key concepts underlying spatial computing
and show how they can be organized around a sort of “spatial computing
stack”, in which a variety of apparently very diverse mechanisms and
approaches can be properly framed. Following, we present our current
research work on the TOTA middleware as a representative example of a
general-purpose approach to spatial computing. In particular, we discuss
how TOTA can be exploited to support the development and execution of
self-organizing and self-adaptive spatial computing applications.

1. Introduction

During the nineties, most researches in distributed computing have focused on the

“network of workstations” scenario [CouDK94]. However, in the past few years, a

number of novel scenarios have emerged including: (i) micro-networks, i.e., networks of

low-end computing devices typically distributed over a geographically small area (e.g.,

sensor networks [Est02], smart dusts [PisO0] and spray computers [ZamO04]); (i)

ubiquitous networks, i.e., networks of medium-end devices, distributed over a

geographically bounded area, and typically interacting with each other via short/medium

range wireless connections (pervasive computing systems and smart environments

[GelSB02] and cooperative robot teams); (7ii) global networks, characterized by high-end

computing systems interacting at a world-wide scale (the physical Internet, the Web, P2P

networks [RipIF02] and multiagent systems ecologies [Kep02].
Despite clear dissimilarities in structure and goals, one can recognize some key
common characteristics distinguishing the above scenarios from more traditional ones:

e Large Scale: the number of nodes and, consequently, the number of components
involved in a distributed application is typically very high and, due to decentralization,
hardly controllable. It is not possible to enforce a strict control over their
configuration (consider e.g., the nodes of a P2P network) or to directly control them
during execution (consider e.g., the nodes of a sensor network distributed in a
landscape).

M. Baldoni, F. De Paoli, A. Martelli, and A. Omicini (Eds.): WOA 2004 — Dagli Oggetti agli
Agenti, Sistemi Complessi e Agenti Razionali, Torino, Italy, November 29" — December 1
2004. Pitagora Editrice Bologna. ISBN 88-371-1533-4. ht t p: / / woa04. uni to. it

baldoni

¢ Network dynamism: the activities of components will take place in network whose
structure derives from an almost random deployment process, likely to change over
time with unpredictable dynamics. This may be due to factors such as environmental
contingencies, failures (very likely e.g., in sensor networks and pervasive computing
systems), and mobility of nodes (as e.g. in robot teams and in networks of smart
appliances). In addition, at the application level, software components can be of an
ephemeral or temporary nature (as e.g. the peers of a P2P network).

o Situatedness: The activities of components will be strongly related to their location in
either a physical or a virtual environment. On the one hand, situatedness can be at the
very core of the application goal (as e.g. in sensor networks and pervasive computing
systems devoted to improve our interaction with the physical world). On the other
hand, situatedness can relate to the fact that components can take advantage of the
presence of a structured virtual environment to organize the access to distributed
resources (as e.g., in P2P data sharing networks).

The first two characteristics compulsory require systems to exhibit — both at the network
and at the application level — properties of self-organization and self-adaptation (or
generally, “self-*” properties). In fact, if the dynamics of the network and of the
environment compulsory require dynamic adaptation, the impossibility of enforcing a
direct control over each component of the system implies that such adaptation must occur
without any human intervention, in an autonomic way. The last characteristic calls for an
approach that elects the environment, its spatial distribution, and its dynamics, to primary
design dimensions. In any case, the three aspects are strictly inter-related, in that the
enforcement of self-* properties cannot abstract from the capability of the system to
become “context-aware”, i.e., to have components perceive the local properties of the
environment in which they are situated and adapt their behavior accordingly.

In the past few years, a variety of solutions exploiting specific self-* properties to
solve specific application problems for large-scale systems in dynamic networks are being
proposed [Dim04]. The question of whether it is possible to devise a single unifying
conceptual approach, applicable with little or no adaptations to a variety of application
problems and to scenarios as diverse as P2P networks and local networks of embedded
sensors, is still open.

In this paper, we identify the important role that will likely be played in that process
by spatial abstractions, and by their adoption as building blocks for a novel general-
purpose “spatial computing” approach for distributed system development and
management. A spatial computing approach — by abstracting the network as a continuum
space and by having application level activities expressed in terms of sensing the
properties of space and navigating in it — can effectively deal with network dynamics in
large scale systems, can facilitate the integration of variety of self-* properties in
distributed systems, and also suit systems whose activities are situated in an environment.

The remainder of this paper elaborates on spatial computing and is organized as
follows. Section 2 introduces the basic concepts underlying spatial computing and
discusses their relations with self-* properties. Section 3 proposes a framework around
which to organize the basic abstractions and mechanisms involved in spatial computing.
Section 4 presents our current research work on the TOTA middleware, as a
representative example of a general-purpose approach to spatial computing. Section 5
concludes by sketching a rough research agenda in the area.

baldoni
127

2. Spatial Computing

The key principles underlying spatial computing are that:

(i) the central role of the network — a discrete system of variously interconnected nodes
— evolves into a concept of space — i.e., an abstraction of a metric continuum built
over the network;

(ii) all application-level activities are abstracted as taking place in such space, and rely
on the capability of application components of locally perceiving (and possibly
influencing) the local properties of space;

In particular, in spatial computing, any type of networked environment is hidden below

some of virtual metric n-dimensional space, mapped as an overlay over the physical

network. The nodes of the network are assigned a specific area of the virtual space, and
are logically connected to each other accordingly to the spatial neighborhood relations.

Accordingly, each and every entity in the network, being allocated in some nodes of the

network, is also automatically situated in a specific position in space.

In this way, components in the network become “space-aware”. On the one hand, they
perceive their local position in space as well as the local properties of space (e.g., the
locally available data and services) and possibly change them. On the other hand, the
activities of components in that space are related to some sort of “navigation” in that
space, which may include moving themselves to a specific different position of space or
moving data and events in space according to “geographical” routing algorithms. The
primary way to refer to entities in the network is thus by “position”, i.e., any entity is
characterized by being situated in a specific position in the physical space.

The above characteristics notably distinguish spatial computing from traditional
distributed computing models. In transparent distributed computing models [CouDK94,
ChiC91], components are identified by logical names, applications abstract from the
presence of a distributed environment, and only a priori known interaction patterns can be
effectively supported. This makes them unable to deal with large-scale systems and with
network dynamics. In network-aware models [Wal97], components are typically aware of
executing in a network and are identified by their location in it (e.g.., the IP). This enables
dealing also with applications executing in large-scale networks, but still call for an
explicit and complex handling of dynamic changes in the network or in the position of
components. Neither of the two promotes suitable abstractions of environment.

Spatial computing overcomes the above limitations in a very effective way:

e Large scale: the size of a network does not influence the models or the mechanisms,
which are the same for a small network and for a dramatically large one.

¢ Network dynamics: the presence of a dynamic network is not directly perceived by
components, being hidden behind a stable structure of space that is maintained
despite network dynamism.

e Situatedness: the abstraction of space is a conceptually simple abstraction of
environment, which also perfectly matches the needs of those systems whose
activities are strictly intertwined with a physical or computational environment.

In addition, as discussed in the following sub-section, spatial computing promotes and

support self-* computing.

12¢

baldoni
128

3.1 Self-* Properties in Spatial Computing

Self-* properties, including the capability of a distributed system of self-configuring its
activity, self-inspecting and self-tuning its behavior in response to changed conditions, or
self-healing it in the presence of faults, are necessary for enabling spatial computing and,
at the same time, are also promoted by the adoption of a spatial computing model.

On the one hand, to enable a spatial computing model, it is necessary to envision
mechanisms to build the appropriate overlay spatial abstraction and to have such spatial
abstraction be coherently preserved despite network dynamics. In other words, this
requires the nodes of a network to be able to autonomously connect with each other, set
up some sort of common coordinate systems, and self-position themselves in such space.
In addition, this requires the nodes of the network to be able to self-reorganize their
distribution in the virtual space so as to (i) make room for new nodes joining the network
(i.e., allocate a portion of the virtual space to these nodes); (ii) fill the space left by nodes
that for any reason leave the network; (iii) re-allocate the spatial distribution of nodes to
react to node mobility. It is also worth outlining that, since the defined spatial structure
completely shields the application from the network, it is also possible for a system to
dynamically tune the structure of the space so as enforce some sorts of self-management
of the network, transparently to the higher application levels. As an example, load
unbalances in the network can be dynamically dealt, transparently from the application
level, by simply re-organizing the spatial structure so as to have overloaded nodes occupy
a more limited portion of the space.

On the other hand, the so defined spatial structure can be exploited by application
level components to organize their activities in space in an autonomous and adaptive way.
First of all, it is a rather assessed fact that “context-awareness” and “contextual activity”,
i.e., the capabilities of a component to perceive the properties of the operational
environment and of influencing them, respectively, are basic ingredients to enable any
form of adaptive self-organization and to establish the necessary feedback promoting self-
adaptation. In spatial computing, this simply translates in the capability of perceiving the
local properties of space, which in the end reflect some specific characteristics of either
the network or of some application-level characteristics and of changing them. Second,
one should also recognize that the vast majority of known phenomena of self-organization
and self-adaptation in nature (from ant-foraging to reaction-diffusion systems, just to
mention two examples in biology and physics) are actually phenomena of self-
organization in space, emerging from the related effect of some “component” reacting to
some property of space and, by this reaction, influencing at its turn the properties of
space. Clearly, a spatial computing model makes it rather trivial to reproduce in
computational terms such types of self-organization phenomena, whenever they may be
of some use in a distributed system.

1.1 Examples of Spatial Computing Approaches

The shift towards spatial computing is an emerging trend in diverse scenarios.

As an example, consider a sensor network scenario with a multitude of wireless
sensors randomly deployed in a landscape to perform some monitoring of environmental
conditions [Est02]. There, all activities of sensors are intrinsically of a spatial nature.
First, each sensor is devoted to local monitoring a specific portion of the physical space
(that it can reach with its sensing capabilities). Second, components must coordinate with

baldoni
129

each other based on their local positions, rather than on their IDs, to perform activities
such as detecting the presence and the size of pollution clouds, and the speed of their
spreading in the landscape. All of this implies that components must be made aware of
their relative positions in the spatial environment by self-constructing a virtual
representation of the physical space [NagSB03]. Moreover, they can take advantage of
“geographical” communication and routing protocols: messages and events flow towards
specific position of the physical/virtual space rather than towards specific nodes, thus
surviving in an self-adaptive way the possible dismissing of some nodes [RaoP03].

Another example in which spatial concepts appear in a less trivial way is world-wide
P2P computing. In P2P computing, an overlay network of peers is built over the physical
network and, in that networks, peers act cooperatively to search specific data and
services. In first generation P2P systems (e.g., Gnutella [RipIF02]), the overlay network
is totally unstructured, being built by having peers randomly connect to a limited number
of other peers. Therefore, in these networks, the only effective way to search for
information is message flooding. More recent proposals [Rat01] suggest structuring the
network of acquaintances into specific regular “spatial shapes”, e.g., a ring or an N-
dimensional torus. When a peer connects to the networks, it occupies a portion of that
spatial space, and networks with those other peers that are neighbors accordingly to the
occupied position of space. Then, data and services are allocated in specific positions in
the network (i.e., by those peers occupying that position) depending on their
content/description (as can be provided by a function hashing the content into specific
coordinates). In this way, by knowing the shape of the network and the
content/description of what data/services one is looking for, it is possible to effectively
navigate in the network to reach the required data/services. That is, P2P networks define a
spatial computing scenario in which all activities of application components are strongly
related to self-positioning themselves and navigating in an abstract metric space. It is also
worth outlining that recent researches promote mapping such spatial abstractions over the
physical Internet network so as to reflect the geographical distribution of Internet nodes
(i.e., by mapping IP addressed into geographical physical coordinates [Row04]) and,
therefore improve efficiency.

In addition to the above examples, other proposals in areas such as pervasive
computing [Bor04] and self-assembly [MamVZ04] explicitly exploit spatial abstractions
(and, therefore, a sort of spatial computing model) to organize distributed activities.

3. Framing Spatial Computing

Let us now have a more systematic look at the basic mechanisms that have been
exploited so far in distributed computing to promote self-* properties in distributed
systems. We will show that most of these mechanisms can be easily interpreted and
mapped into very similar spatial concepts, and that they can be framed in a unifying
flexible framework.

3.1. A Spatial Computing Stack

In this section, we introduce the “space-oriented” stack of levels (see Figure 1) as a
framework for spatial computing mechanisms. In each level of the stack, by introducing a
new paradigm rooted on spatial concepts, it is possible to interpret a lot of proposed self-*

13C

baldoni
130

approaches, in different scenarios, in terms of mechanisms to manage and exploit the
space (see Table 1). On this basis, it is likely that a simply unifying model for self-*
distributed computing — leading to a single programming model and methodology and —
can be actually identified.

The “physical level” deals on how components start interacting — in a dynamic and
spontaneous way — with other components in the systems. This is a very basic expression
of self-organizing behavior which is a pre-requisite to support more complex forms of
autonomy and of self-organization at higher levels. To this end, the basic mechanism
exploited is broadcast (i.e. communicate with whoever is available). Radio broadcast is
used in sensor networks and in pervasive computing systems, and different forms of
TCP/IP broadcast (or of dynamic lookup) are used as a basis for the establishment of
overlay networks in wide area P2P computing. Whatever the case, this physical level can
be considered as in charge of enabling a component of a dynamic network application to
get into existence and to start interacting with each other.

Application
Self-* Spatial Computing —P Level
Applications T~
Services to Navigate in the —>
Spatial Abstraction L
Navigation
Mechanism of Local Spatial —p Level
Local Sensing and Effecting T~
Provisioning of a Structured —
(Adaptive) Space Abstraction L
Structure
Mechanism of Spatial—p Level
Localization and Self-inspection T~
Communication Services in —p
an Unstructured Network L |
. . Physical Level
Mechanisms to get into I
existence in a network

Figure 2. A Spatial Computing Stack.

The “structure level” is the level at which a spatial structure is built and maintained
by components existing in the physical network. The fact that a system is able to create a
stable spatial structure capable of surviving network dynamics and adapting the working
conditions of the network is an important expression of self-organizing and self-adapting
behavior per se. However, such spatial structure is not a goal for the application, and it is
instead used as the basic spatial arena to support higher levels activities.

The various mechanisms that are used at the structure level in different scenarios are —
again — very similar to each other. Sensor networks as well as self-assembly systems
typically structure the space accordingly to their positions in the physical space, by
exploiting mechanisms of geographical self-localization. Pervasive computing systems, in
addition to mechanisms of geographical localization, often exploit logical spatial
structures reflecting some sorts of abstract spatial relationships of the physical world (e.g.,

131

baldoni
131

rooms in a building) [Bor04]. Global scale systems, as already anticipated, exploits
overlay networks built over a physical communication network.

The “navigation level” regards to the basic mechanisms that components exploit to
orient their activities in the spatial structure and to sense and affect the local properties of
space. If the spatial structure has not any well-defined metric, the only navigation
approaches are flooding and gossiping. However, if some sort of metric structure is
defined at the structure level (as, e.g., in the geographical spatial structures of sensor
networks or in metric overlay networks) navigation approaches relate in following the
metrics defined at the structure level. For instance, navigation can imply the capability of
components to reach specific points (or of directing messages and data) in the space based
on simple geometric considerations as in, e.g., geographical routing [BosMO01].

Starting from the basic navigation capability, is also possible to enrich the structure of
the space by propagating additional information to describe “something” which is
happening in that space, and to differentiate the properties of the space in different areas.
One can say that the structure of space may be characterized by additional types of spatial
structures propagating in it, and that components may direct their activities based on
navigating these additional structures. In other words, the basic navigation capabilities
can be used to build additional spatial structures with different navigation mechanisms.
Typical mechanisms exploited at these additional levels are computational fields and
pheromones. Despite the different inspiration of the two approaches (physical versus
biological), we emphasize that they can be modeled in a uniform way, e.g., in terms of
time-varying properties defined over a space [MamZ03]. The basic expression of self-
organization that arises here derives from the fact that the structures propagated in the
space — and thus the navigation activity of application components — are updated and
maintained to continuously reflect the actual structure and situation of the space.

At the “application level”, navigation mechanisms are exploited by application
components to interact and organize their activities. Applications can be conveniently
built on the following self-organizing feedback loop: (i) having components navigate in
the space (i.e., discriminating their activities depending on the locally perceived structure
and properties of the space) and (ii) having components, at the same time, modifying
existing structure due to the evolution of their activities.

Depending on the types of structures propagated in the space, and on the way
components react to them, different phenomena of self-organization can be achieved and
modeled. For example, processes of morphogenesis (as needed in self-assembly, modular
robots and mobile robotics), phenomena mimicking the behavior of ant-colonies and of
flocks, phenomena mimicking the behavior of granular media and of weakly correlated
particles, as well as a variety of social phenomena, can all be modeled in terms of:

e entities getting to existence in a space;

¢ having a position in a structured space and possibly influencing its structure;

e capable of perceiving properties spread in that space;

e capable of directing their actions based on perceived properties of such space and
capable of acting in that space by influencing its properties at their turn.

132

baldoni
132

MICRO NETWORKS
Nano Networks, Sensor
Networks, Smart Dust, Self-
Assembly, Modular Robots

UBIQUITOUS NETWORKS
Home Networks, MANETSs,
Pervasive Environments, Mobile
Robotics

GLOBAL NETWORKS
Internet, Web, P2P networks,
multiagent systems

“Application”
Level
(exploiting the
spatial
organization to
achieve in a self-
organizing and
adaptive way

Spatial Queries

Spatial ~ Self-Organization and
Differentiation of Activities

Spatial Displacement

Motion Coordination & pattern
formation

Discovery of Services

Spatial Displacement
Coordination and Distribution of
Task and Activities

Motion coordination & pattern
formation

P2P Queries as Spatial Queries in
the Overlay

Motion Coordination on the
Overlay

Pattern formation (e.g., for
network monitoring)

specific app- DATA: fil ices, knowl

goals) DATA: environmental data DATA: local resources and - files, services, knowledge
environmental data

“Navigation” Flooding Computational fields Flooding

Leve_l . Gossiping (random navigation) Multi-hop routing based on | Gossiping (random navigation)

(dealing with the Spanning Trees

mechanism Geographical Routing (selecting P 9 Metric-based (moving towards

exploited by the
entities living in
the space to
direct activities
and movements
in that space)

and reaching specific physical
coordinates)
Directed Diffusion (navigation

following sorts of computational
fields)

Stigmergy (navigation following
pheromone gradients)

Pattern-matching and Localized
Tuple-based systems

specific coordinates in the
abstract space)

Gossiping (random navigation)

Stigmergy (navigation following
pheromone gradients distributed
in the overlay network)

“Structure”
Level

(dealing with
mechanisms and
policies to
adaptively shape
a metric space
and let
components find
their position in
that space)

Self-localization ~ (beacon-based
triangulation)

Self-localization (Wi-Fi or RFID
triangulation)

Definition and Maintenance of a
Spanning Tree (as a sort of
navigable overlay)

Establishment and Maintenance
of an Overlay Network (for P2P
systems)

Referral Networks and e-

Institutions (for multiagent
systems)

“Physical”
Level

(dealing with the
mechanism to
interact)

Radio Broadcast
Radar-like localization

Radio Broadcast
RF-ID identification

TCP broadcast — IP identification
Directed TCP/UDP messages

Location-dependent Directory
services

Table 1. Spatial Mechanisms in Modern Distributed Computing Scenarios

4.2 Multiple Spaces and Nested Spaces

In general, different scenarios and different application problems may require different
perceptions of space and different spatial structures. For instance, a world-wide resource-
sharing P2P network over the Internet may require — for efficiency reason — a 2-D spatial
abstraction capable of reflecting the geographical distribution of Internet nodes over the
earth surface. On the other hand, a P2P network for social interactions may require a
spatial abstraction capable of aggregating in close regions of the virtual space users with
similar interests. Also, one must consider that in the near future, the different network
scenarios we have identified will be possibly part of a unique huge network (consider that
IPv6 addressing will make it possible to assign an IP address to each and every square
millimeter on the earth surface). Therefore, it is hard to imagine that a unique flat spatial
abstraction can be effectively built over such a network and satisfy all possible

management and application needs.

13

~
<

baldoni
133

With this regard, the adoption of the spatial computing paradigm does not prescribe at
all to adopt the same set of mechanisms and the same type of spatial structure for all
networks and for applications. Instead, being the spatial structure a virtual one, it is
possible to conceive both (i) the existence, over the same physical network, of multiple
complimentary spatial abstraction independently used by different types of applications;
and (7i) the existence of multiple layers of spatial abstractions, built one over the other in
a multi-layered system.

With regard to the former point, in addition to the example of the different types of
P2P networks calling for different types of spatial abstractions, one could also think at
how different problems such as Internet routing, Web caching, virtual meeting points,
introduce very different problems and may require the exploitation of very different
spatial concepts.

With regard to the latter point, one can consider two different possibilities. Firstly, one
can think at exploiting a first-level spatial abstractions (and the services it provides) to
offer a second-level spatial abstraction enriching it with additional specific characteristics.
For examples, one can consider that a spatial abstraction capable of mapping the nodes of
the Internet into geographical coordinates can be exploited, within a campus, to build an
additional overlay spatial abstraction mapping such coordinates into logical location (e.g.,
the library, the canteen, the Computer Science department and, within it, the office of
Prof. Zambonelli). Such additional spatial abstraction could then be used to build
semantically-enriched location dependent services. Secondly, one could think at
conceiving a hierarchy of spatial abstractions that provides different levels of information
about the space depending on the level at which they are observed, the same as the
information we get on a geographical region are very different depending on the scaling
of the map on which we study it. As an example, we can consider that the spatial
abstraction of a wide-area network can map a sensor network — connected to the large
network via a gateway — as a “point” in that space, and that the distributed nature of the
sensor networks (with nodes having in turn a specific physical location in space) becomes
apparent only when some activity takes place in that point of space (or very close to it).

4. TOTA: a Middleware Approach to Spatial Computing

The ambitious goal of a uniform modeling approach capable of effectively capturing
the basic properties of self-organizing computing, and possibly leading to practical and
useful general-purpose modeling and programming tools, is far from close. Earlier in this
paper we have strongly advocated the generality, flexibility, and modularity of a spatial
computing approach. Although we have do not have the ultimate proof that spatial
computing can be effectively put to practice and fulfill all its promises, our experience in
spatial computing with the TOTA [MamZ04] middleware can support in part our claims.

The TOTA middleware (short for “Tuples On The Air”), gathers concepts from both
tuple space approaches [Cab03, MamZL04] and event-based ones [CarOl, Jini] and
extends them to provide applications with simple and flexible mechanisms to create, self-
maintain, and exploit at the application level a variety of spatial structures, implemented
by means of distributed tuples. Unlike traditional shared data space models, tuples are not
associated to a specific node (or to a specific data space) of the network. Instead, tuples
are injected in the network and can autonomously propagate and diffuse in the network

134

baldoni
134

accordingly to a specified pattern.

To support this idea, the typical scenario of a TOTA application is that of a peer-to-
peer network of possibly mobile nodes, each running a local version of the TOTA
middleware. Each TOTA node holds references to a limited set of neighboring nodes and
can communicate directly only with them.

Upon the distributed space identified by the dynamic network of TOTA nodes, each
component is capable of locally storing tuples and letting them diffuse through the
network. Tuples are injected in the system from a particular node, and spread hop-by-hop
accordingly to their propagation rule. In fact, a TOTA tuple is defined in terms of a
“content”, and a “propagation rule”. T=(C,P). The content C is an ordered set of typed
fields representing the information carried on by the tuple. The propagation rule P
determines how the tuple should be distributed and propagated across the network. This
includes determining the “scope” of the tuple (i.e. the distance at which such tuple should
be propagated and possibly the spatial direction of propagation) and how such
propagation can be affected by the presence or the absence of other tuples in the system.
In addition, the propagation rules can determine how the content of a tuple should change
while it is propagated. Tuples are not necessarily distributed replicas: by assuming
different values in different nodes, tuples can be effectively used to build a distributed
data structure expressing contextual and spatial information. So, unlike traditional event
based models, propagation of tuples is not driven by a publish-subscribe schema, but it is
encoded in tuples' propagation rule and, unlike an event, can change its content during
propagation (see figure 3).

Distributed tuples must be maintained coherent despite network dynamism. To this
end, the TOTA middleware supports tuples propagation actively and adaptively: by
constantly monitoring the network local topology and the income of new tuples, the
middleware automatically re-propagates tuples as soon as appropriate conditions occur.
For instance, when new nodes get in touch with a network, TOTA automatically checks
the propagation rules of the already stored tuples and eventually propagates the tuples to
the new nodes. Similarly, when the topology changes due to nodes' movements, the
distributed tuple structure automatically changes to reflect the new topology.

13t

baldoni
135

Application
Components

i k J : High-level
: S ik interaction and
i K—/ L ' coordination

Application Level

Navigation
Direction

Navigation Level |

A z’v':; Tuple Sources

Tuple Propagation

Strucutre Level
@ TOTA Middleware

[]
Tuple
Tx P

Physical Level

Figure 3: The General Scenario of TOTA in the spatial computing stack: at the
physical level there is the network, communication is broadcast of messages
encoding TOTA tuples. At the structure level, the space is represented by means of
the TOTA distributed tuples. At the navigation level spatial structures can provide
basic navigation directions. At the Application level complex coordination tasks can
be achieved.

The TOTA middleware supports the spatial computing stack introduced in section 4.
In fact, from the application components’ point of view, executing and interacting
basically reduces to create distributed spatial structures in the network (inject tuples),
navigate such spatial structures (sense tuples in a neighborhood), and act accordingly to
some application-specific policy.

To clarify and ground the discussion we introduce the following exemplary pervasive
computing case study application: tourists with wireless PDAs visit a museum provided
with an embedded computer network. We suppose that the PDAs and the embedded
devices run the TOTA middleware and that they connect with each other forming a multi-
hop mobile wireless network. In the following subsections, working on this case study
application, we will detail how TOTA deals with all the levels in the spatial computing
stack.

13€

baldoni
136

4.1. Physical Level

The physical level deals with how components find and start communicating with each
other. At this level, the specific nature of the network scenario has an important role.
Since our primary focus is pervasive computing, we mainly consider a wireless network
scenario without long-range routing protocols available (like in a “bare” mobile ad-hoc
network). In such scenario, it is easy to identify the node's neighborhood with the network
local topology (e.g. all the nodes within 10m, for a Bluetooth network). In this case, a
TOTA node detects in-range nodes via one-hop message broadcast.

Turning the attention to the case study, each PDA detects neighbor devices, by
broadcasting and receiving “here I am” messages. Such discovery operations is executed
periodically to take into account the possible movements of users. Upon injecting a tuple,
the TOTA middleware broadcasts the tuple to its current neighbors. There, the tuple will
be recursively broadcasted hop-by-hop to travel across the network, accordingly to its
propagation rule.

To support our experiments, we developed a first prototype of TOTA running on HP
IPAQs 36xx equipped with 802.11b wireless card, Familiar LINUX and J2ME-CDC
(Personal Profile). IPAQs connect locally in the MANET mode (i.e. without requiring
access points) creating the skeleton of the TOTA network. Tuples are being propagated
through multicast sockets to all the nodes in the one-hop neighborhood. The use of
multicast sockets has been chosen to improve the communication speed by avoiding
802.11b unicast handshake. By considering the way in which tuples are propagated,
TOTA is very well suited for this kind of broadcast communication. We think that this is
a very important feature, because it will allow in the future implementing TOTA also on
really simple devices (e.g. micro mote sensors [Pis00]) that cannot be provided with
sophisticate communication mechanisms.

It is important to remark that, despite our focus to wireless networks and pervasive
computing, the TOTA mechanisms are general and independent from the underlying
physical network. For example, in an Internet scenario (where a long-range routing
protocol is available), TOTA identifies the neighborhood of a node with the nodes whose
IP address is known (a node can communicate directly with another, only if it knows the
other node's address). To realize neighbors discovery, TOTA can either download from a
well-known server the list addresses representing its neighbors or it can start an
expanding-ring search to detect close nodes [RipIF02]). Given that, the multi-hop
propagation of a tuple proceeds as previously described.

4.2. Structure Level

TOTA tuples create a “structure of space” in the network. At the basic level, once a
tuple is injected from a node and propagates across the network, it creates a source-
centered spatial structure identifying some spatial features relative to the source.

For example, a tuple incrementing one of its fields as it gets propagated identifies a
spatial structure defining the network distances from the source. This kind of structure of
space provides spatial awareness to application agents. In fact, an agent is both able to
infer its approximate distance from the source (in terms of hops — i.e. network link range),
and the direction of the source by looking at where the gradient of the tuple descends.

Moreover, TOTA allows to combine different tuples to create more complex spatial
representations. A particularly significant example of these mechanisms is the creation of

baldoni
137

shared coordinate systems in the network on the basis of mere connectivity. Localization,

in general, can rely on the (geometrically intuitive) fact that the position of a point on a

surface can be uniquely determined by measuring its distance from at least three non-

aligned reference points (“beacons”), via a process of “triangulation” [NagSBO03].

Implementing such localization mechanism in TOTA is rather easy. (i) A leader election

algorithm can elect three beacons nodes. (ii) Each beacon “arbitrarily” locates at specific

coordinates (without external location information the coordinate system can only be
internally coherent [NagSBO3]). (iii) Each beacon injects a TOTA tuple, increasing its
content hop-by-hop and marked with the beacon coordinates. As previously pointed out,
this tuple allows other nodes to estimate their distance from the beacon. (iv) After at least
three beacons had propagated their ranging tuples, nodes can apply a triangulation
algorithm to infer their coordinates. Moreover, since TOTA tuples self-maintain, the

coordinate system remains up to date and coherent despite network dynamism. If upon a

node movement the topology of the network changes, the tuples maintenance triggers an

update in the coordinate system, making the latter robust.

A shared coordinate system provides a powerful spatial structure in a network and
allows to realize complex navigation and coordination tasks (see later).

In addition, although at the primitive level the space is the network space and distances
are measured in terms of hops between nodes, TOTA allows to exploit a much more
physically-grounded concept of space.

This may be required by several pervasive computing scenarios in which application
agents need to interact with and acquire awareness of the physical space. For instance,
one can bound the propagation of a tuple to a portion of physical space by having the
propagation procedure - as the tuple propagates from node to node - to check the local
spatial coordinates, so as to decide whether to further propagate the tuple or not. In order
to bound agents' and tuples' behavior to the physical space, nodes must be provided with
some kind of localization mechanism [HigBO01]. From our perspective, such mechanisms
can be roughly divided into two categories:

e A GPS-like localization mechanism provides absolute spatial information (e.g. it
provides latitude and longitude of a node in the network). An actual GPS (Global
Positioning System) getting spatial coordinates from satellites naturally belongs to
this category. Beacon-based signal triangulation (coupled with beacons actual
physical location) is anther example of this category (nodes get their coordinates in
an absolute coordinate-frame defined by the beacons [NagSB03])

e A RADAR-like localization mechanism provides local information (e.g. relative
distances and orientations between nodes). An actual radar or sonar device belongs
to this category (radio and sound waves reflected by neighbor devices enable to infer
their distance and orientation). A videocamera installed on a node can serve the
same purpose (processing the image coming from the camera, a node can infer
where other nodes are). Also network roundtrip-time and signal-strength attenuation
may serve this purpose.

The kind of localization mechanism being available strongly influences how nodes can
express and use spatial information. GPS-like mechanism are more suitable at defining
“absolute” regions. For example, they allow to easily create tuples that propagate across a
region defined by means of the coordinates of its corners (e.g. propagate in the square
area defined by (0,0) and (100,100)). RADAR-like mechanism are more suitable at

13¢

baldoni
138

defining “relative” regions, where for example tuples are constrained to travel north form
the source or within a specified distance.

It is fair to report that a similar idea has been developed and exploited in the context of
a recently proposed language to program a vast number of devices dispersed in an
environment [Bor04]. The idea of this programming language is to identify a number of
spatial regions relevant for a given application and to access the devices through the
mediation of these regions (e.g. for all the devices on the “hill” do that). In [Bor04], the
definition of the regions is performed adopting GPS devices and distributed data
structures similar to TOTA tuples.

Other than the network and the physical space, one could think at mapping the peers of
a TOTA network in any sort of virtual space. This space must be supported by an
appropriate routing mechanism allowing distant peers to be neighbors in the virtual space.
Such virtual spaces are particularly useful and enable the definition of advanced
application such as content-based routing, as in CAN [Rat01]. TOTA concretely supports
the definition of these kinds of applications. Also in this case it is fair to report that
similar principles have been used in the Multilayered Multi Agent Situated System
(MMASS) model [BanMV04]. In MMASS agents' actions take place in a multilayered
environment. Each layer provides agents with some contextual information supporting
agents' activities. The MMASS environment is thus a hierarchy of virtual spaces built
upon one another, where lower layers provide the routing infrastructure for upper ones.

4.3. Navigation Level

TOTA defines a set of API to allow application components to sense TOTA tuples in
their one-hop neighborhood and to locally perceive the space defined by them.
Navigation in the space consists in having agents act on the basis of the local shape of
specific tuples.

As a first simple example we can consider physical navigation. Turning the attention to
our case study, it is clear that a PDA injecting a hop-increasing tuple in the network,
becomes immediately reachable by other users. Users, in fact, can move following the
gradient of the tuple downhill, to reach the tuple source. Moreover, since the tuple shape
is maintained despite network dynamism, users can reach the source of a tuple even if it
moves.

Navigation is not related to physical movement only. TOTA allows to relate the
propagation of a tuple to other tuples already propagated (e.g. a tuple can propagate
following another tuple). This can be at the basis of the routing algorithm detailed in the
following [P0oo00]. In very general terms, when a node “A” wants to send a message to a
node “B”, it actually injects the network with a TOTA tuple, that holds: the source
identifier i.e. “A”, the message, and the number of hops from the source of the message to
the current node. Such structure not only trivially hand-off the message to “B”, but
creates a path leading to “A” that can be exploited for further uses. If node “B” wants to
reply, it can just send a message that follows the “A”-field downhill towards node “A”. In
this case no flooding is involved. The field-like distributed data structures created in this
process, can be used further also by other peers to communicate.

Complex spaces enable advanced navigation strategies. A shared coordinate system,
like the one described in the previous section, allows, for example, to set-up geographic
routing algorithm [BosMO1]. A geographic routing algorithm is a mechanism that takes

baldoni
139

advantage of the established coordinate frame to send messages to the node closer to a
specific location. Such algorithm is suitable in a lot of application scenarios because it
inherently supports communication decoupling in that senders and receivers are
decoupled by the coordinate frame. For example, a sender can send a message to an
unknown receiver located at a specific location and the message will be received by
whoever is closer to that location.

4.4. Application Level

The spatial abstractions and tools promoted by TOTA enable to easily realize complex
coordination tasks in a robust and flexible way.

Our research, up to now, has mainly focused on the problem of enabling a group of
agents to coordinate their respective movements (i.e. distributed motion coordination).
Specifically, considering our case study, we focus on how tourists can be supported in
planning their movements across a possibly large and unfamiliar museum and in
coordinating such movements with other, possible unknown, tourists. Such coordination
activities may include scheduling attendance at specific exhibitions occurring at specific
times, having a group of students split in the museum according to teacher-specific laws,
helping a tourist to avoid crowd or queues, letting a group of tourist to meet together at a
suitable location, and even helping to escape accordingly to specific evacuation plans.

An intriguing possibility to realize motion coordination is to take inspiration from the
physical world, and in particular from the way masses in our universe move accordingly
to the gravitational field. By interpreting (rather roughly) the General Relativity Theory,
we can say that the gravitational field actually changes the structure of the space letting
particles to globally self-organize their movements. Under this interpretation, particles
achieve their “tasks” by simply following the structure of the space.

Realizing this kind of idea with the spatial abstraction promoted by TOTA is rather
easy. Under the assumption that users spread hop-counting tuples in the network, it is
possible to realize several coordination tasks. A group of tourist following downhill each
other tuples will collapse in a single location allowing the tourists to meet somewhere in
the building. Analogously, museum’s guides could decide to sense each other's tuples (i.e.
spaces) so as to maintain a certain distance from each other to improve their reachability
by tourists. If a guide has to go away, the same tuples would allows the others to
automatically and adaptively re-shape their formation.

Following this approach, agents achieve their goals not because of their capabilities as
single individuals, but because they are part of an auto-organized system that leads them
to the goal achievement. Such characteristics also imply that the agents’ activities are
automatically adapted to the environmental dynamism, which is reflected in a changing
spatial representation, without forcing agents to re-adapt themselves.

Motion coordination with spatial abstractions is by no means limited to the presented
case study. It can be applied to a wide range of scenarios ranging from urban traffic
management, mobile software agents on Internet and even self-assembly in modular
robots (detailed in the following). A modular or self-reconfigurable robot is a collection
of simple autonomous mobile robots with few degrees of freedom. A distributed control
algorithm is executed by all the robots that coordinate their respective positions to let the
robot assume a global coherent shape or a global coherent motion pattern (i.e. gait).

From a methodological viewpoint, robots can exploit spatial abstraction and TOTA

14C

baldoni
140

tuples to self-organize their respective positions in space. In particular, starting from any
spatial configuration of robots: (i) robots start diffusing specific types TOTA tuples; (i)
robots react to locally perceived tuples by trying to follow them downhill/uphill, or by
changing their activity state possibly depending on the perceived values of the tuples (i.e.
depending on their position in some abstract space); (iii) changes in the activity state of
robots can lead to inhibiting the propagation of some tuples and/or to the diffusion of new
types of tuples in the system, leading back to point (7). One can then apply this process
several times, with new types of tuples being propagated in different phases, so as to
incrementally have robots self-organize into the required shape [MamVZ04].

In all these application scenario, we verified that the spatial abstractions promoted by
TOTA effectively support robust and flexible self-organizing behaviors.

5. Conclusions

By abstracting the execution of distributed applications around spatial concepts,
spatial computing promises to be an effective approach towards the identification of
general and widely applicable self-* approaches to distributed systems development and
management. Our experiences with the TOTA middleware confirm the effectiveness of
the approach.

However, besides the claims of this paper and our personal experience, much work is
needed to asses the potentials of spatial abstractions in distributed computing, and to
verify whether they can actually pave the way to a sound and general-purpose approach to
self*- computing. In particular:

e s the spatial computing stack depicted in Table 1 meaningful and useful, or a better
and more practical framing can be proposed?

e If and when such a unifying model will be found, will it be possible to translate it into
a limited set of programming abstractions and lead to the identification of a practical
methodology for developing self-organizing distributed computing systems?

e [s a middleware-centered approach like that of TOTA the best direction to follow?

e Several self-organization phenomena disregarded by this paper, deals with concepts
that can be hardly intuitively mapped into spatial concepts. Would exploring some
sorts of spatial mapping be still useful and practical? Would it carry advantages?

¢ Possibly most important of all questions: is the search for a unifying model fueled by
enough applications? Or it is rather the search for specific solutions to specific
problems the best direction to follow?

In our hope, further researches and a larger variety of studies about self-* properties in

distributed systems will soon provide the correct answers to the above questions.

References

[BanMV04] S. Bandini, S. Manzoni, G. Vizzari, “Towards a Specification and Execution
Environment for Simulations based on MMASS: Managing at-a-distance Interaction”, Fourth
International Symposium From Agent Theory to Agent Implementation (AT241'04), Vienna,
Austria, 2004.

[Bor04] C. Borcea, “Spatial Programming Using Smart Messages: Design and Implementation”,
24™ Int.I Conference on Distributed Computing Systems, Tokio (J), May 2004

[BosMO1] P. Bose, P. Morin, 1. Stojmenovic, J. Urrutia, “Routing with Guaranteed Delivery in Ad
Hoc Wireless Networks”, Wirleless Networks 7:609-616, Kluwer Academic Publisher, 2001.

141

baldoni
141

[Cab03] G. Cabri, L. Leonardi, M. Mamei, F. Zambonelli, Location-dependent Services for Mobile
Users, IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems And Humans,
Vol. 33, No. 6, pp. 667-681, November 2003

[Car01] A. Carzaniga, D. Rosenblum, A. Wolf, “Design and Evaluation of a Wide-Area Event
Notification Service”, ACM Transaction on Computer System, 19(3):332-383.

[ChiC91] R. S. Chin, S. T. Chanson, “Distributed Object-Based Programming Systems”, 4CM
Computing Surveys, 23(1), March 1991.

[CouDK9%4] G.Coulouris, J. Dollimore, T. Kindberg,
Distributed Systems. Concepts and Design
Addison-Wesley, second edition, 1994.

[Dim04] G. Di Marzo, A. Karageorgos, O. Rana, F. Zambonelli (Eds.), Engineering Self-organizing
Systems: Nature Inspired Approaches to Sofiware Engineering, LNCS No. 2977, Springer
Verlag, May 2004.

[Est02] D. Estrin, D. Culler, K. Pister, G. Sukjatme, “Connecting the Physical World with Pervasive
Networks”, IEEE Pervasive Computing, 1(1):59-69, 2002.

[GelSB02] H.W. Gellersen, A. Schmidt, M. Beigl, “Multi-Sensor Context-Awareness in Mobile
Devices and Smart Artefacts”, Mobile Networks and Applications, 7(5): 341-351, Oct. 2002.

[HigB01] Hightower and G. Borriello, “Location Systems for Ubiquitous Computing,”
Computer, vol. 34, no. 8, Aug. 2001, pp. 57-66.

[Jini] JINI, http://www.jini.org

[Kep02] J. Kephart, “Software Agents and the Route to the Information Economy”, Proceedings of
the National Academy of Science, 99(3):7207-7213, May 2002.

[MamVZ04] M. Mamei, M. Vasirani, F. Zambonelli, “Experiments of Morphogenesis in Swarm os
Simple Mobile Robots ”, Journal of Applied Artificial Intelligence (to appear) 2004.

[MamZ03] M. Mamei, F. Zambonelli, “Co-Fields: a Unifying Approach to Swarm Intelligence”, 3"
Workshop on Engineering Societies in the Agents’ Word, LNCS No. 2677, April 2003.

[MamZ04] M. Mamei, F. Zambonelli, “Programming Pervasive and Mobile Computing
Applications with the TOTA Middleware”, 2nd IEEE Conference on Pervasive Computing
and Communications, Orlando (FL), IEEE CS Press, March 2004.

[MamZL04] Mamei, M., and F. Zambonelli. 2004b. Co-Fields: a Physically Inspired Approach to
Distributed Motion Coordination. /EEE Pervasive Computing, 3(2):52-60.

[NagSB03] R. Nagpal, H. Shrobe, J. Bachrach, “Organizing a Global Coordinate System from
Local Information on an Ad Hoc Sensor Network”, 2" International Workshop on Information
Processing in Sensor Networks, Palo Alto (CA), April, 2003.

[Pis00] K. Pister, “On the Limits and Applicability of MEMS Technology”, Defense Science
Study Group Report, Institute for Defense Analysis, Alexandria (VA), 2000.

[P0oo00] R. Poor, Embedded Networks: Pervasive, Low-Power, Wireless Connectivity, PhD Thesis,
Massachusstes Institute of Technology, 2001.

[RaoP03]A. Rao, C. Papadimitriou, S. Ratnasamy, S. Shenker, I. Stoica. “Geographic Routing

Without Location Information”. ACM Mobicom Conference. San Diego (CA), USA, 2003.

[Rat01] S. Ratsanamy,, P. Francis, M. Handley, R. Karp, ”A Scalable Content-Addressable
Network”, ACM SIGCOMM Conference 2001, Aug. 2001.

[RipIF02] M. Ripeani, A. lamnitchi, 1. Foster, “Mapping the Gnutella Network”, IEEE Internet
Computing, 6(1):50-57, Jan.-Feb. 2002.

[Row04] A. Rowstron et al., “PIC: Practical Internet Coordinates”, 24™ International Conference

on Distributed Computing Systems, IEEE CS Press, Tokyo (J), May 2004.

[Wal97] J. Waldo et al., “A Note on Distributed Computing”, Mobile Object Systems, LNCS No.
1222, Feb. 1997.

[Zam04] F. Zambonelli, M.P. Gleizes, R. Tolksdorf, M. Mamei, Spray Computers: Frontiers of
Self-organization, I*' International Conference on Autonomic Computing, IEEE CS Press,

New York (I), May 2004.

142

baldoni
142

SIMULATION IN THE TEXTILE INDUSTRY:
PRODUCTION PLANNING OPTIMIZATION

Gianluigi Ferraris
University of Turin
Email: ferraris@econ.unito.it

Abstract— The work being introduced is aimed at supporting
the crucial activity of deciding what is to be done, and when,
within an industrial, applied, real-world situation. More specif-
ically: matching assorted tasks to applicable production units,
and deciding the priority every job is to be given. The problem,
common to many different industries, arises when a considerable
amount of different articles must be produced on a relatively
small number of reconfigurable units. Similar issues have a
strong impact on an essential concern, eminently in the textile
industrial domain: satisfying the always-in-a-rush customers,
while keeping accessory production costs (set-up costs, machinery
cleaning costs, ...) under control, keeping at a minimum the
losses related to wasteful resource-management practices, due to
“under pressure” decision making.

Given the real-world situation, where human planners tend to
be the only ones considered able to tackle such a problem, the
innovation hereby suggested consists of an automated, artificial
intelligence based, system capable of objectively driving the
search and implementation of good solutions, without being
influenced by pre-existing knowledge, mimicking a powerful
lateral-thinking approach, so difficult to accomplish when man-
agement pressure impedes and daunting tasks bound the human
rationality.

Ranking the effectiveness of a candidate solution, where path-
dependency and unexpected complex effects may bias the final
outcome, is not a matter trivially manageable by traditional
operational research-style systems where no dynamics (recur-
sive phenomena, feedbacks, non-linearity) appear. In order to
overcome the limitations that an analytical specification of the
problem imposes, the Agent-Based Modelling paradigm had to
be taken into consideration.

Thanks to ABM we’re provided with the opportunity of “in-
silico” experimenting every imaginable scenario, by executing the
planning in a virtual lab, where the production events happen
instead of simplistically being computed. In this way we avoid
following a reductionist approach, clumsily based on the usage
of a static representation of the enterprise world, squashed into
a cumbersome system of equations.

The model have been built resorting to the Swarm toolkit
(see [Bur94], [JLS99], [MBLA96]); the underlying programming
language (Objective-C) made the procedure of mapping the
agents involved in the process onto software objects a plain and
consistent task.

The problem presented belongs to the “shop problems” family
in general, although many peculiarities make it an unconventional
and distinguished one. When referring to “production planning”,
the authors have in mind the scheduling problem rather than
ERP/MRP issues. In fact, the stage of the production on which
the work is focused gives the availability of raw and semi-
finished materials for granted. The up- and down-streams of the
supply chain are normally performed by significantly oversized
equipment, in the textile industry. On the other side, “core”

M. Baldoni, F. De Paoli, A. Martelli, and A. Omicini (Eds.): WOA 2004 — Dagli Oggetti agli
Agenti, Sistemi Complessi e Agenti Razionali, Torino, Italy, November 29" — December 1
2004. Pitagora Editrice Bologna. ISBN 88-371-1533-4. ht t p: / / woa04. uni to. it

Matteo Morini, corresponding author

University of Turin and LABORatorio ’R. Revelli’

Email: matteo.morini@unito.it

processes, spinning and weaving in particular, require peak
exploitation of the available production units.

KEYWORDS:

Production, Scheduling, Optimization, Industrial Processes,
Manufacturing

|. THE PROBLEM

Matching tasks to units, under additional constraints, is the
key issue. While certain constraints are to be regarded as
“hard” (let’s think of a technical issue rendering some of the
production units useless in working on particular a (sub)task,
thus reducing the set of available units), others are “soft”
constraints: different units perform better on certain tasks,
whereas others can suboptimally do, maybe with worse (yet
acceptable) results, or take a longer time.

The sequencing of tasks is, on the other hand, one of the
degrees of freedom of the problem, being the choice of giving
priority to one task driven by timely delivery constraints.

For the sake of readability in this paper the words “order”,
“task”, “job” will be used interchangeably.

A. Minimizing the productionoverall cost

Different production plans result in varying (aggregate)
production costs. Each evaluation in terms of costs is made
by adding several components: some of them are costs in a
proper sense, others are more like abstract values by which we
try to capture the economical impact of undesirable situations.
Examples of the first kind are the setup costs; on the other
hand delayed deliveries are certainly unwanted, even if not
directly expressible as economical losses. Being considered an
unreliable supplier because of repeated delays, in the long run,
leads to unsatisfied customers being lost. This is, of course, an
hardly economically quantifiable loss: it depends on how the
firm’s management perceives the importance of reliability, and
how strongly is feared the risk of losing a repeatedly “deluded”
customer.

B. Textile technicalities explained

The simulation is performed on and limited to, for the
sake of simplicity, one of the production chain tasks only:
proper spinning. Previous and successive operations can be
overlooked, since they normally take place in oversized depart-
ments. Warping and combing, for instance, require relatively
inexpensive machinery to be completed: it is common practice

baldoni

to buy extra units ’just in case’, since most of the plants
value comes from spinners. The department where extreme
care must be taken in avoiding any bottleneck effect is the
spinning room.

We may confidently say that, should a good production plan
be found for the spinning, the raw materials availability could
be taken for granted, and the operations due to be performed
up- and downwards the production chain could be arranged
easily, not acting as constraints.

Finding a good production plan often implies dealing with
mutually exclusive goals, in situations ridden with trade-offs.
The only reasonable way to manage so many different aspects
simultaneously is to reduce everything to its economical
meaning, and it is hardly a straightforward task.

1) Production units setup: Spinners are complicated ma-
chines that can be adapted to produce many different kinds
of yarns: apart from technical-mechanical parameters that can
be tuned (speed, crossing angle, twisting...), each head (see
Glossary can be set up, by physically substituting some
parts, to make for a wide range of technical specifications.
Every kind of yarn features specific technical parameters and
may require different parts to be mounted. At least three
families (each one made by three types or more) of mechanical
parts must be kept into account: cards, rotors, nozzles (see
Glossary.

The act of setting up a spinning unit in order to have it ready
to produce a certain kind of yarn may take a considerable
amount of time: up to three hours may be spent removing and
re-inserting a big amount of different mechanical parts, apart
from trimming the appropriate software controls.

Of course putting similar products in sequence saves setup
time: the least different two lots put in sequence are, the
simplest and quicker the setup operations will be.

SCij = f(Pr,ijsP2,ijs- -

The setup cost SC for order 4 placed after order 5 (or on
a stopped production unit) depends on the dummy variables
P{1<n<N},i,j- €ach of them expressing the fact that the spinner
part enumerated as the n-th (out of) needs being exchanged
when order j comes after order i (regardless of the spinner
involved).

This seems a good enough reason to keep similar, if not
identical lots, together, sticking them one after another. We’ll
see later why it’s not that simple.

Nevertheless, the cost of setup can simply and accurately
be accounted for in terms of man/hours spent performing the
operation: after all, it consists of a sort of opportunity cost.

2) Timelydelivery: Each order the firm is asked to produce
is labelled with an “expected delivery date”: customers are
promised their yarn will be ready to ship by an approved
calendar date (sometimes stringent conditions are imposed by
“big” buyers), which they expect to be reliable. Should the
delivery constraints be missed, a disappointed customer would,
to say the least, complain bitterly. We have a situation which
is very difficult to express in economical terms; very seldom a

PNij)

144

penalty is contractually established, rather the firm reputation
is at stake, and the risk is to lose customers.

In order to keep into account, besides of the setup constraint
(“less is better™), this additional constraint, a figurative cost has
been introduced. It consists of an amount of money associated
with the delay and the importance, positively correlated with
both: the longer the delay and the bigger the order, the higher
the (not-so-metaphorical) cost to be charged. Expressed in
symbols:

DC; = f(df,w})

where the delay cost DC for order 7 grows as the delay d and
weight w (in kilograms) grow.

It becomes clear that sequencing similar orders on the same
spinner is not an option: the freedom to save setup costs is at
odds with the need to satisfy the timely delivery condition. A
simplified example is presented (see Appendix, gantt sample).

3) Simultaneoussetups,patrolling: To make things even
worse (and almost impossible to deal with “by hand”, which is
nowadays the only viable way available to enterprises) further
constraints are to be kept into account.

Production units setups, for instance, are performed by
specialized workers; the number of setup teams available is
limited, thus limiting the amount of setup operations which
can happen at the same time. The effect of a missed setup
(because of the unavailability of a team) on the production is
simply a delay in the production of the order: no setup can
be performed until one of the busy setup teams is available
again. The total production time, and the time the order will
be ready to ship, will be determined by the actual production
time plus the initial delay.

Other employees are committed to the so-called spinners
“patrolling”: they are required to follow the ongoing produc-
tion, ready to fix any problem should occur. A patroller is
normally assigned 4 to 6 spinners to watch; the complication
here arises from heterogeneity in the behaviour of different
spinners: every different yarn features a specific likelihood to
create (generically speaking) problems, that is to draw more
or less attention from the patrollers. A patroller will be able to
follow productions that are problematic up to a certain point:
the average must be kept below this critical point. Above the
limit, production times will grow (in a more or less foreseeable
way) for all of the spinners under the overloaded patroller.

An index of “problematicity” is needed in order to manage
such a subtle issue. The patroller load P L corresponds (for the
n-th patroller) to the sum of the “problematicity index” p for
each order ¢ multiplied by the number of heads, h, available
on the spinner ;.

s
PL, =Y hip;
=1
Index PL is normalized in order to have 1 as the maximum
tolerable patrolling load. Above this load, orders production
times increase by empirically determined amounts:

baldoni
144

| PL | APT | |
0<PL<1 0 normal load
1< PL<1.2 +10% slight overload
1.2<PL<15| +25% severe overload
PL>15 > +25% | unacceptable overload

PT = production time

C. Evaluationby simulation

In order to evaluate the alternative candidate production
plans, being able to rank them by “goodness”, it takes a
metric: a measurement of their own figurative cost. Such an
operation needs to take into account the intrinsic complexity
of executing the plan: each decision taken with regard to
the assignment of a certain task conditions the subsequent
decisions. While executing a plan two dimensions come into
place: time and space; its evaluation cannot overlook this
crucial assumption. Setup teams, for instance, may grant a
total availability, compatibly with daily timetables, yet this
can be suboptimal if compressed in a limited amount of time:
queues tend to form.

A simulation was introduced, based on the enterprise de-
sign, which let us overcome the hard - if not impossible -
problem of keeping track of such effects in the accounting.
By simulating, all the production events are “made happen”:
formation of queues, delays, interaction among entities emerge
spontaneously and are accounted for, when evaluating the total
cost. This way avoids introducing tricks and approximations
such as assigning pre-digested costs to unforeseeable events,
using average (yet reliable?) values that render the accounting
less accurate.

Exploiting a simulation also gives the advantageous chance
to experiment with unlikely settings, or hard to observe in real-
world situations. The need to evaluate by traditional compu-
tational techniques a production unit breakdown, for instance,
one would be compelled to resort to an average “expected
time between failures”: this implies accepting two unrealistic
assumptions, that we deal with a continuous phenomenon,
and that the events are evenly distributed. By simulating,
randomly occurring (and randomly lasting) events can be
generated, while keeping probabilities within a pre-defined
range: instead of an unrealistic continuous distribution we are
correctly working on discrete events, with different durations.

An accurate cost tracking and accounting is instrumental to
a good final result: the figurative cost of each plan enters the
solutions generator (the genetic algorithm), where it is used to
evolve subsequent generations of solutions. Even small distor-
tions may disrupt the search process towards inefficient regions
of the solutions space, prolonging computational times and
considerably worsening the quality and reliability produced
solutions.

Il. EXPERIMENTING SOLUTIONS

A. Agents: a local definitionfor an umbeella-term

The wealth of definitions and interpretations that coexist
when “agents” come into play calls for a clarification: the

14¢

agents hereby presented are to be intended as interacting no-
minded software objects (in the Object-Oriented programming
sense), whose main role is to encapsulate data, to make
(mostly basic) computations and to pass informations back
and forth. There is no communication protocol specification
apart from the well-known getters/setters; the Swarm toolkit is
used as an useful framework (see also [LS00a], [Ter98]) where
software agents perform actions in a (perhaps sophisticated)
time sequence by means of a scheduler triggering events, in
this specific case in a deterministic way.

B. An Enterpriseto experimentupon

The Enterprise Simulator is the module where solutions
are experimented, that is where the simulation takes place.
A model of the supply chain under scrutiny is used in order
to watch candidate plans ’happen’: the production process
is represented in abstract, resorting to representative agents.
Production units agents, setup agents, patrollers agents have
been developed with the aim of giving simple yet exhaus-
tive representations of their respective roles. Even production
orders are embodied by dumb agents: objects encapsulating
all the informations pertaining to the tasks to be performed,
which are bounced between proper agents that act based on
the informations they achieve from the orders themselves.

Presenting how the process takes place in the model is out of
the scope of this paper; the steps - in a way absolutely adherent
to the real process - implemented are: orders reception (in
batch), orders dispatching to production units (filling queues),
PUs setups, involving setup time computation after setup teams
gathering, patrollers capacity reservation, production, repeat.

Ongoing and predetermined orders, already loaded on PUs
and/or already due, are completed before initiating the candi-
date plan evaluation.

I11. INVENTING SOLUTIONS (ENTER THE GOLEM)

To find a good planning solution, given the enormous? set
presenting itself, a Genetic Algorithm has been implemented,
based on the well known Al paradigm first introduced by J.
Holland (in [Hol75]).

The idea was to emulate the natural evolutionary process
performing reproduction and death of structures that are rep-
resenting a strategy. Provided that a whole set of structures
is normally called “the population” of the GA, each of them
is analogously named “an individual”; each one encodes a
strategy into a binary string called “a genome”. After having
created an initial random set of structures, each of them is
evaluated, one item at a time, by performing the strategy it
represents, encoded, into an appropriate simulated environ-
ment. In this way a serial? evaluation of each structure can be

1An average spinning mill needs to plan about 50 jobs onto about 15
spinners at a time, which results in circa 107 different feasible schedules.
The weaving industry involves even bigger figures: up to 100-120 jobsto plan
on 50-60 weavers, giving 10129 schedules.

2The process of evaluating populations is intrinsically parallel, being the
population refresh step the only “pivot” operation which needs to wait for
the completion of the individual-by-individual fitness assignments. For an in-
depth presentation of the authors' works in this direction, see [Mor04], and
thereafter in this article.

baldoni
145

performed, in order to assign every strategy a value measuring
its goodness: the so-called fitness of the individual. When the
whole set has been evaluated, an evolution step can be taken:
each individual is assigned a probability to reproduce itself
(give birth to “offspring”) and a probability to die, according
to its fitness value: better-fitted genomes are assigned a higher
probability to reproduce and a lower probability to die, and
vice versa. Reproduction is made by copying and crossing
two individual’s genomes to obtain a couple of new structures
to put into two new individuals; these newborn individuals
will replace two old structures selected - from the previous
generation - to die. By performing this algorithm in a loop
the population becomes more and more fitted and the better
types tend to spread into the population. The GA method is
very useful when a wide set of alternatives has to be explored:
it is general-purpose, it does not require any previous coded
knowledge about the problem and it allows finding reasonable
solutions in a short time.

To face the scheduling problem a special, but general,
implementation of a GA has been employed. The goal was
to set up a boosted GA, able to handle individuals composed
by more than one structure, and structures defined on a very
large alphabet. Another requirement was that this special
implementation of a GA, the Golem, needed to handle special
structures where all the alphabet symbols appeared only once?.

The decision to write a special GA was due to the peculiar-
ities of the problem to tackle. Each candidate strategy aimed
to solve it can be split into two parts:

1) which machine will have to make an order
2) which priority will be assigned to each order

The two parts interact between each other in a complex way
so the goodness of a solution depends on the goodness of each
of them, but it is not possible to determine the contribution
of each part to the performance of the solution. Both have to
be evaluated simultaneously. Unless that, the contents of each
part are very different and they could be coded in a highly
different way. The first part could be expressed by a sequence
of numbers, each of them identifies a unit, whereas the position
of each code number identifies the order to be made. Adopting
the same structure for the priorities the problem to assign
univocal values to each order has to be faced. In addition
the code numbers are defined on a set which cardinality is
given by the number of machines the enterprise owns, while
the cardinality of the priority set is defined by the number of
orders the enterprise is going to plan. Resorting to the standard
two-symbol (0, 1) alphabet would have caused an ineffective
representation of the solutions space, given the problem to
represent each number in binary code every time the number
of orders, or the number of machines, is not a power of two.

The Golem tackles the aforementioned issues by allowing
the user:

1) to decide independently for each genome how many
symbols need to be used by the coding alphabet, i.e.

3The so-called “univocal” genomes, where every symbol representing a job
must not be repeated nor left out of every perspective solultion.

14€

how many different values will be used in it

2) to decide a different length for each genome, i.e. how
many positions it will include

3) to handle genomes where each symbol of the related
alphabet will appear only once.

In addition the Golem was written taking into consideration:

1) the robustness of the methods exposed to the user, who
can hardly misuse them
2) the efficiency (performance-wise) of the program

The Golem features methods to let the users’ applications
smoothly handle and control the search process. The user
has simply to define the structure of the strings/individuals
by coding the number and specific parameters for each of
them: type (univocal or random), length, alphabet cardinal-
ity. The application (the Enterprise Simulator in this case)
can conveniently interact with the Golem, demanding for
an individual to evaluate and, after having performed the
evaluation, returning the fitness value to the Golem. When all
the population’s individuals have been evaluated, the Golem
automatically performs the evolutionary step. The Golem code
has been optimized to ensure a high performance level, and
has been regression—tested versus the earlier, more readable
versions.

1V. EXPERIMENTING INVENTED SOLUTIONS, ERGO
SUGGESTING THE GOOD ONES

The evolution process performed by the Golem is driven
by evaluating each single candidate solution appearing in the
GA population. The production plans require an estimation
as accurate as possible, incorporating every element of the
dynamic interaction characteristic of the enterprise operations.
It is the existence of such relationships among the intervening
parts which distinguishes the problem as one of a complex
kind: the aggregated outcome differs from what is obtained
by the single components.

Keeping in mind the facts mentioned above, the un-
feasibility of operating by decomposing the problem in parts is
self-evident: the interactional effect would be totally missed:;
likewise, resorting to mathematical functions, static by their
own nature, would imply neglecting all the time-related fea-
tures, which are fundamental when it comes to plan actions
intended to happen over time, being themselves subject to
scheduling.

Computer simulation, by allowing management facts to hap-
pen in an artificial laboratory (the enterprise model), permits to
quantify and express costs, whether figurated or not, generated
by each candidate schedule, accurately and significantly, in
order to promote the search for the best solution to the given
problem.

The very same tool can be exploited in performing what-
if analyses driven by human decisions, in order to rank GA-
made solutions; this allows comparing what’s produced by the
human heuristics versus what’s suggested by Al techniques,
in a straightforward way. Plausibly it’s the only viable method
to provide a shared metric which permits, given the amplitude

baldoni
146

of the problem, to decide whether the search direction is a
productive one or not.

In order to exploit the enterprise simulation to these pur-
poses, the modelled objects are required to act as a bridge
between the (scheduling) plan from the inferential method (the
Golem) to the enterpreneurial metric.

In designing the Golem, that concerning this activity is
just one of the advantages aimed at: the chance to use an
extended (symbolic) alphabet solved some coding issues that
during the first trials performed by standard AGs hindered
the search process. An alphabet restricted to binary digits
forces production units and orders number to be expressed by
grouped symbols (as many as needed in order to the maximum
value in the definition domain to fit); wherever the defined
domain is less dense than the set of the natural numbers (when
dealing with orders classified by differentiating their number
by thousands or tenths of thousands, for instance), several
non-significant solutions may appear. In such circumstances
translation algorithms need to be employed, which, keeping
such unfavorable factors into account, operate extraneous
transformations (i.e. back-and-forth remapping) unknown to
the AG; in the worst cases the same value gets assigned to
formally different structures. Such behaviours can sensibly
mislead the solutions learning and refinement process, keeping
effective results from being efficiently achieved: execution
times may stretch considerably.

A further issue emerged from the orders execution priorities.
A standard GA in this case tended to produce non-univocal
outcomes: the same priority may have been assigned to several
different orders. Artificially differentiating equal values, based
on the position within the structure for instance, might have
impaired the GA abilities also in this situation. The system
would have somehow been “deceived” by such artifacts. Pro-
viding the ability to opt between different operators, applicable
to different kinds of genomes, the Golem could solve this issue
too.

Achieving reasonable solutions quickly is fundamental to
the enterprise: by analysing the experimental results a loga-
rithmic trend of the solutions goodness have emerged clearly,
functional to the number of evolutions performed. Practically
speaking, the Golem is able to rapidly improve the solutions
during the early stages of learning, while its productivity
decreases as the optimum is approached. Going for popula-
tion convergence appeared a suboptimal behaviour: halting
the system after a certain number of evolutions seems way
better than comsuming a long time in exchange for marginal
improvements.

V. PRELIMINARY RESULTS

Although the system hereby presented is, from a develope-
ment standpoint, mature, its adoption at a production stage by
the pilot plants involved is at its early phase. Nevertheless,
batteries of tests on real-world data have been thoroughly
performed.

The typical set-up involved sampling batches of orders from
a random date in the past (picking up real-time fresh data

very seldom, for reasons to be explain afterward). The results
obtained were measured against random plans (averaged over
multiple runs with different random seeds), against an ingen-
uous strategy*, against human solutions.

The system has been evaluated at various stages of the
search: although only after a 5-minutes run on an ordinary
desktop PC (details in Appendix) the proposed solution is
already better then the human-made, the performance level
(the costs saved) improves quickly, yet asymptotically (see
fig. 1).

A systematic comparison between results is hard to perform:
historical data on previous production plans isn’t always
available; asking human planners to re-evaluate prior data sets
is very likely to lead to biased solutions; the same happens
with “live” data. Additional problems associated with hard-
to-extract implicit knowledge are very likely to arise, when
dealing with real-world situations. This has been kept into
account, and comparisons have been performed both against
ad-hoc solutions on datasets expressly and silently submitted
to human planners and historical data, when available, hoping
to level out bias.

Early - yet consistent - results have been presented and
discussed with managers and experts, and they clearly show
the superiority of the system presented. In the following table,
results are shown as an indicator normalized versus the human
performance (made equal a hundred), and represent the overall
costs kept into account by the system, which of course neglects
€X0Qgenous Costs.

random 100.00
pseudo-FIFO (see note 4) | 92.05
human 82.27
5’ run 68.75
30’ run 62.25
6h run 60.62

V1. CONCLUSIONS

Production planning constitutes a typically complex prob-
lem: the interacting parts taking part in the process makes
impossible the application of traditional search procedures,
based for most part on the decomposability of the problem
as a prerequisite.

Given an (although limited) number of tasks to schedule,
even the plain enumeration of the possible solution becomes
practically unfeasible, given the combinatorial explosion im-
plied. In this scenario the limits of applying heuristics based
on human experience have appeared: the human mind attempts
to solve the problem operating on limited subsets at a time,
implicitly decomposing the complex problem, thus missing an

4The strategy, which is an oversimplification of the human way of schedul-
ing jobs, consists of asort of modified and refined “First-1n-First-Out”method:
jobs are appended to jobs with similar set-ups requirements that are already
in queue on a given production unit; jobs with different set-up requirements
are scheduled either on free PU’s, if any, or the first PU expected to become
available.

baldoni
147

overall view on it. Every single decision taken on the assign-
ment of a task onto a production unit constitutes a sensible
“cut-off” on the solutions space, resulting in neglecting the
exploration of large areas.

Implementing GAs let us exploit their implicit parallelism,
both from a computational and an investigative point of view:
starting from randomly generated solutions, avoiding pre-
digested strategies, the GA also considers solutions that would
be rejected by a human solver as absurd ones; not seldom
innovative ideas are found among such apparently suboptimal
candidates, and they are the ones that give superior results.

Apparently this is the main reason for the superiority of the
system with respect to the human approach. It demonstrates
itself far superior both in computation duration - efficiency -
and final results - efficacy.

The system put into place constitutes, though, just a starting
point: ways to improve the efficiency are being investigated
and experimented, by distributing the “thinking” part of
the work, the simulation, on several distributed nodes of
a computer network, drastically incrementing the degree of
parallelism of the computational process. At the same time
work is being done on making the inferential engine (the
Golem) more powerful, by introducing even more dramatic
variations with respect to the standard GA’s. The ongoing
tests concern: clustered, cooperating GA’s, and GA’s featuring
varying populations and variable-length individuals.

GLOSSARY

A brief list of technical terms relevant to the textile industry.

head: one of the (tenths to hundreds of) elements working
on a single thread, constituting a spinning mill.

card: a toothed brush used to disentangle fibers.

rotor: a rotating device used in transporting fibers.

nozzle: a v-shaped element through which air flows.

APPENDIX
o Gantt example:

Customers a and b demanded, respectively, for [Al, A2] and
[B1, B2]. Orders Al and A2 are, from a technical standpoint,
similar, and require a negligible setup time between them. B1
and B2 are also very similar. Ignoring (by now) the delivery
constraints the obvious plan is to sequence similar orders on
the same spinner (solution 7):

[spinner # [to | &1 | ... | ta |
1 AL | A2
2 BL | q-B2

The two customers, on the other hand, have different timing
requests: a needs Al and A2 as soon as possible; b is not
pressing very much for a quick delivery and is fine for him to
receive B1 and B2 by a later date. The most appropriate plan
in this case would appear as follows (solution iz, grid entries
changed from solution i have been italicized in order to let
them stand out):

14¢

Fig. 1. Evolution of solutions in successive generations, over time

T Tar
[spinner # [o [&1 [... [tn]
1 Al | I-B1
2 A2 | I-B2

The small letters preceding the second orders are meant to
show the different setup times required in both situations: as
expected, g stands for *quick’ setup, | for ’long’ setup.

Even in an oversimplified situation like the one described
above, the complicated management of incompatible con-
straints appears; what makes solution ¢ preferable over i are
the actual setup and delivery “costs”, which must be accounted
for as accurately as possible.

o Experimental set-up: technical details

The experimental gear used consisted of a rather aged
desktop PC equipped with a single 800-Mhz Pentium-111 CPU
and 256 MB RAM. The amount of available memory becomes
relevant when the GenomaBucket solutions caching system
comes into play. It is beyond the scope of this article to present
it; refer to [Mor03] for details.

REFERENCES

R. L. Axtell and J. M. Epstein. Agent-based modelling: Under-
standing our creations. Bulletin of the Santa Fe Institute, 9(2),
1994.

R. Axtell. The Emergence of Firms in a Population of Agents.
Brookings Institution, Washington, 1999.

R. Axtell. Why Agents? On the Varied Motivations for Agent
Computing in the Social Sciences. Center on Socia and Eco-
nomic Dynamics, November 2000. Working Paper No. 17.

S. Bandini, S. Manzoni and G. Vizzari. Multi Agent Systems
in Computer Science: Focusing on MAS Based Modelling and
Agent Interaction, EXYSTENCE Thematic Institute for Com-
plexity and Innovation, forthcoming.

R. Burkhart. The Swarm Multi-Agent Simulation System, Posi-
tion Paper for OOPSLA ’94 Workshop on “TheObject Engine”,
http://ww. swarm or g/ ar chi ve/ oopsl a94. ht m
JH. Holland D.E. Goldberg. Genetic algorithms and machine
learning. Machine Learning, 3:95 104, 1988.

J. M. Epstein. Growing Artificial Societies. Brookings Institution
Press,Washington, D. C., 1996.

J. M. Epstein. Agent-based computational models and generative
social science. Complexity, 4(5):41 60, 1999.

[AE94]

[Axt99]

[Axt00]

[BMVI]

[Bur94]

[DG8g]
[Eps96]

[Eps994]

baldoni
148

Fig. 2. Architectural overview
ES

L

W™
bB |

GA

Data interfaces:
- Web forms

- XML upload
- Legacy ERP

[Eps99b]
[Fer01]
[GTOO]
[Hol75]
[Holog]
[HR99]

[ILS99]

[LS00g]

[LS00b]

[LS00C]

[LTS96]

[MBLA9S]

[MT00g]

[Mor03]

[Mor04]

J. M. Epstein. Learning To Be Thoughtless: Social Norms and
Individual Computation. Center on Social and Economic Dynam-
ics, September 1999. Working Paper No. 6.

G. Ferraris. GAMES: Algoritmi Genetici per I'Economia. Num-
ber 51 in Quaderni del Dipartimento di Scienze Economiche e
Finanziarie G. Prato . Universit degli studi di Torino, Facolt di

Economia, March 2001.

N. Gilbert and P. Terna. How to build and use agent-based models
in social science. Mind & society, 1(1), 2000.

J. H. Holland. Adaptation in Natural and Artificial Systems. MIT
Press, Cambridge, MA, 1975.

B. Holmstrom. The firm as a subeconomy. In Bureaucracy: |ssues
and Apparatus, October 1998.

M. Harris and A. Raviv. Organization Design. University of

Chicago, July 1999.

P. Johnson, A. Lancaster, and B. Stefansson. Swarm User Guide.

Swarm Development Group, November 1999.

Francesco Luna and Benedikt Stefansson, editors. Economic Sim-
ulations in Swarm: Agent-Based Modelling and Object Oriented
Programming. Kluwer Academic Publishers, 2000.

Francesco Luna and Benedikt Stefansson, editors. Economic Sim-
ulations in Swarm: Agent-Based Modelling and Object Oriented
Programming, chapter 9. Kluwer Academic Publishers, 2000. F.-

R. Lin, T. J. Strader, M. J. Shaw, Using Swarm for Simulation the
Order Fulfillment Processin Divergent Assembly Supply Chains.
Francesco Lunaand Benedikt Stefansson, editors. Economic Sim-

ulations in Swarm: Agent-Based Modelling and Object Oriented
Programming, chapter 10. Kluwer Academic Publishers, 2000. C.

Schlueter-Langdon, P. Bruhn, M. J. Shaw, Online Supply Chain
Modelling and Simulation.

F-R. Lin, GW. Tan, and M. J. Shaw. Multi-Agent Enterprise
Modelling. University of Illinois at Urbana-Champaign, October
1996. Office of Research Working Paper 96-0134.

N. Minar, R. Burkhart, C. Langton, and M. Askenazi.

The Swarm Simulation System: A Toolkit for Building
Multi-agent Simulations. Santa Fe Institute, June 1996.

http://ww. swarm or g/

J. P Marney and H. F. E. Tarbert. Why do simulation? toward a
working epistemology for practitioners of the dark arts. Journal

of Artificial Societies and Social Simulation, 3(4), October 2000.
M. Morini, Penelope Project: Web-Based Textile Production
Planning, SwarmFest 2003, University of Notre Dame, IN.

http://ww. nd. edu/ swar n0D3/

M.Morini, Penelope Meets NEMOTE: Distributed
Production Planning Optimization, SwarmFest
2004, University of Michigan, Ann Arbor, MI.

http://cscs. um ch. edu/ swar nf est 04/

[PCGYY]

[SLS96]

[SLS98]

[Terog]

14¢

M. J. Prietula, K. M. Carley, and L. Gasser, editors. Simulating
QOrganizations, Computational Models of Institutions and Groups.
AAAI Press The MIT Press, 1999.

T. J. Strader, F-R. Lin, and M. J. Shaw. Information infrastructure
for electronic virtual organization management. University of
Illinois at Urbana-Champaign, October 1996. Office of Research
Working Paper 96-0135.

T. J. Strader, F-R. Lin, and M. J. Shaw. Simulation of order ful-
fillment in divergent assembly supply chains. Journal of Artificial
Societies and Socia Simulation, 1(2), March 1998.

P Terna Simulation tools for socia scientists:
Building agent based models with swarm. Journa of
Artificial Societies and Socia Simulation, 1(2), 1998.

http://ww. soc. surrey. ac. uk/ JASSS/ 1/ 2/ 4. ht m

baldoni
149

An Agent-based Matchmaker

(A case study in biomedical services discoyery

Flavio Corradini, Chiara Ercoli, Emanuela Merelli and Barbara Re Dipartimento di Matematica e Informatica,
Universita di Camerino
62032 Camerino, Italy
Email: {flavio.corradini,emanuela.merelli}{@unicam.it, {chiara.ercoli,barbara.re}@studenti.unicam.it

Abstract—Service discovery is the process of localizing re- that it is difficult if not impossible, until today, to define a
sources and ser_/ices available in large scale open and distributgd specific metrics capable of measuring the quality of resources
systems. In a distributed and redundant system as the Web, it available through the Web. Although there exists several
is necessary, beside localizing services, to filter them in orderto _ .=~ . . :
obtain those which are best for the activities for which they have criteria to evaluate cqn&stqncy anq internal -correctness of a
been requested. By the termmatchmakerwe mean a software €source, true evaluation of its quality, that of interest to users,
entity which monitors services availability, maintains an updated relies on the effectiveness of the resource itself. In other words,
file of all useful information for using services and possibly one has to ascertain if a specific group of users considers
ensures a quality choice of them. In this paper we propose an the ge of that resource satisfactory for its information needs.

architecture for an agent-based matchmaker The matchmaker In fact. bef finding the ideal . ts for th it
that takes part in the request process has been developed by using'"" fact, DeTore finding the ideal requirements or the qualiity

the potential of a quality model based on suitable parameters Model, it is necessary to carefully analyze the application
to ensure the proper choice of a service to be consumed in adomain in which the quality model has to be used. Hence

specific application domain. A case study in biomedical domain the quality model has two main components, the general one
is presented. This case study is concerned with the developmentwhich describes the quality aspects of the distributed system
of a multi-agent system including a Bio-certifier in support of the Web d the oth hich d ibes th ii I't’
service discovery activity. e.g. the Web, and the other which describes the specific quality
aspects of the application domain; the biomedical in our case

study. The established quality model then becomes a tool

I. INTRODUCTION of consultation for the software entity in charge of service

Service discovery is the process of localizing services aflicovery.

resources in the Web that best fit the requests of potentiaf? this paper an architecture for a quality of service (QoS)
USErs. agent-based matchmaker is presented. The teatthmaker
The Web main feature is the interconnection of an ev&fl: [4] means a software entity capable of monitoring the
increasing number of open, dynamic and geographically dg\gallabll!ty of services, maintaining an updatgd. file of a}l
tributed systems which have an high heterogeneity of riformation on service use and, we add, of providing a quality
sources, information systems and tools for specific applicatiGiCice of service. The matchmaker is an agent contacted by
domains. Hence the Web is a rather complex environment fJ'€r 2gents wanting to obtain a quality service with respect to
service discovery activities as can be seen, for example, in & activity where the service will be used. In order to ensure
biomedical domain. a choice of quality of a requested service, the matchmaker

Biological and medical research is characterized by a glofgmmunicates with the QoSertification authority i.e. an
distribution of information and by an almost complete ay29€nt capable of implementing the established quality model.

tonomy of research groups, from which an heterogeneous,B”eﬂy' an agent is a software system capable of acting with

redundant, incomplete and rapidly aging access to resourbdg@im of solving a problem in a flexible and autonomous way
derives. Hence the choice of what could be the most suitaiéd in an open, dynamic, unpredictable environment which is
tool or service for biomedical work activities is often difficultyPically populated by other agents. Often agents are created to
and time consuming. From these considerations there follolfieract and cooperate with each other. The need of making an
the need of building a quality model to support the discovefgENt intéracting and communicating with other agents leads
process which will be based in symbolic descriptions 4 the need of coordinating the activities of the agents involved

relations among concepts of one or more domains of intdf- & s.ystem [5], [6]. In order to coordinate a pool of agents
est allowing classification of services which are functionall AS: Multl-Agent. System) it is necessary anq fundamental
similar [1]. 0 understand which are the actors involved in the system,

Quality can be defined as all the features of an enti heir roles and which information are more important. In so
(resource, service, tool) that influence its capability to satisfiPIng: We also achieve the result of specifying the importance
declared or implicit needs [2]. From this definition it is cleai"mddtrlue value of the parameters that characterize the quality
model.
This work was supported by the by the MURST strategic project ‘Oncology The coordination model we have followed is the match-

Over Internet’, by the CIPE project ‘SICOM: Sistemi Coperativi Multi-agentemaking model presented in [7] which is based on a process of
and the Center of Excellence for Research ‘DEWS: Architectures and Desi

n
Methodologies for Embedded Controllers, Wireless Interconnect and Systé%?ned!at'on that implements direct Cor_nmumcat'on among the
on-chip’. providers and the consumers of services and resources.

M. Baldoni, F. De Paoli, A. Martelli, and A. Omicini (Eds.): WOA 2004 — Dagli Oggetti agli
Agenti, Sistemi Complessi e Agenti Razionali, Torino, Italy, November 29" — December 1%
2004. Pitagora Editrice Bologna. ISBN 88-371-1533-4. ht t p: / / woa04. uni to. it

baldoni

151

To the aim of showing the applicability of matchmakecould be involved in the same biochemical pathway (i.e. chain
architecture enriched with the QoS component, we have exanfi-biochemical reactions). For this purpose, the biomedical
ined a case study in the biomedical domain, and developedeaearcher decides to use the Gene Ontology (GO) anndtation
multi-agent system for the discovery of quality services baséal find out the relations among genes, biological processes
on JADE platform. and biochemical pathway.” In this example GO is used as a

The remaining of the paper is organized as follows. Sectiglomain-specific language to specify the request, thus GO terms
Il'is an introduction to the case study. Section Il presents théll effect the domain specific quality aspects of the proposed
architecture of the multi-agent system for service discovergodel.
and introduces the quality model. Section IV describes ti& doctor is treating a patient that has some constant slight
architecture of the system, defines the quality model ftemperature (37,5 C). The temperature persists after antibiotics
biomedical domain and debates some experimental resultstHarapy and hence the doctor decides to control the protein
section V different approaches proposed in the literature flavel of the patient and prescribes some blood tests and urine
the service discovery are analyzed and future extension of test. The performed tests show that the level of some proteins

paper are presented. is not normal but no sure conclusion can be drawn (no certain
diagnosis). The doctor then decides to search the possible
II. A CASE STUDY IN THE BIOMEDICAL DOMAIN interactions among these proteins.” Instead, this example does

not use any domain specific language (ontology) to describe

_Health science 1s the applied science discipline that de% service, thus the quality model consists only of the general
with human and animal health by means of study, research lity aspects

application of knowledge with the aim of improving general' |, thase and similar situations the search for useful informa-
health. Biomedicine is a branch of health science that appllﬁén with the aim of giving an answer to the questions being

biological an.d phy.si.ologicaI. principles to clinical ,praCticeasked implies the choice and use of several resources. The
Support to biomedicine is given by the understanding of “Eﬁscovery process should be capable of identifying the best

way in which both human and animal biological systemg,ice which will give the sought result in the shortest time,
work and by the analysis of the (sometimes hidden) existing making the system efficient and effective
relations between medical reports and results of performed '

therapies. In both cases, the use of computational tools aIIow:fII
us to find and analyse biological and clinical information
in order to answer complex questions in biological domain. .])]
Moreover, appropriate computational models would also allow In this section we p_resent the arghltecture of the multl-age_nt
to simulate biological systems [8], [9] with the aim of verifyingSyStém and the quality model defined to support the service
properties useful both for diagnosis and therapy. discovery in a distributed environment.

The Web is an endless source of information of fundamental Th€ System supporting service discovery has been designed

importance to increase knowledge in the biomedical domaktsing agent technology because the problem dealt with was
however it is often difficult and complex to retrieve this’swtable to be described in terms of autonomous, flexible actors

information. which operate in a dynamic and unpredictable environment
In several disciplines, complex questions are stated d are created to cooperate with each other. Our choice has

means of workflow of activities representing different in&/S0_been affected by such parameters as development and

stances of problems which are simpler to solve. Carryi,@gministration costs of the discovery system, implementation
out these activities implies the use of resources (tools af interoperability among the different active systems, and

services) usually accessible through the Web [10]. Introducifiy@rantee of an acceptable security level. .
quality in a workflow means giving a way of finding the most The proposed system architecture is an extension of the one

appropriate resource/service to effectively satisfy the requedgfined in Retsina [11] infrastructure and its main feature is a
of each activity. The following two scenarios are present&ioup of three actors (agents) that communicate and exchange
as examples in order to introduce the workflow concept |Hformat|0n among themselves with service discovery as their
biomedicine: common goal. . . o
“Let us assume that a biomedical researcher be an expert of '€ Service providersupplies the services by which it is
a gene, of the corresponding protein, of the known mutatioRessible .to find the required mformatlon' or solve specmc
of that protein, and of consequent pathologies as well. ngmputatlonal pr(_)blems related to an application domam_. The
biomedical researcher wants to design a microdreperi- service requesteis the user (or consumer) of the services

ment to analyse the gene expression (i.e. how much the g&fféred by theservice providerand finally themiddie-agent
produces) in different normal and pathological tissues. TH%the software entity that mediates between the previous two

experiment allows him to also find out the genic expressidh Order to find the sought services.

of other genes in addition to the one of the gene being studied” the literature [11]middle-agentsare classified according

and hence he needs to have an updated list of the genes tmgfleir functionalities as mediators, brokers and matchmakers.
In its original definition, given by Wiederhold in 1992 [12], a

Lhitp://jade.tilab.com mediatoris the active and dynamic interface by which a given

2A DNA microarray is a piece of slide with a microscopic array on which
single DNA pieces are placed. Swww.geneontology.org/

THE MULTI-AGENT ARCHITECTURE FORSERVICE
DISCOVERY

baldoni
151

152

user ervice requestgraccess data and knowledge owned b¥. The Proposed Agent-based Matchmaker

itself. To the classical matchmaking model, as presented in [11],

A broker, sometimes also calledfacilitator, is the existing oyr architecture introduces a fourth kind of agent (see Figure
interface between aervice requesteand aservice provider 2) representing the QoSertification authority This agent,
which acts as a mediator for service requests. All conrough certification, ensures that resources, services and tools
munications between pairs @lrvice providersand service pe consistent with the user request non-functional require-
requestersflow into the broker which typically contacts thements. In the proposed extended model, the duties of the
more importanservice providersiegotiating execution of and ,, 4t hmaker also include coordination of available services
access control to the most appropriate service and returnjfgccordance with specific protocols, agreements and policies,
the service result to theervice requester and mediation to obtain reliable services both in terms of

On the contrary, the task of enatchmakeris to create quality and confidence, the latter being due to the multi-agent
a connection between theervice requesteand theservice system.
provider, matching the request of a given service request8uch a process of quality service discovery must include a
to the offer of service of &ervice providerIn this case an component capable of analysing certain fundamental require-
autonomous interaction will take place. Unlike the functiorments that are made appropriate to the domain to which
alities of both the broker and the mediator, the functionalithey belong. Verification of these requirements will allow
of the matchmaker is to return to the service requesting agéimé QoS certification authorityto give a quality level to
an ordered list oBervice providersConsequently theervice each registered services taken into consideration. In particular
requesterhas to directly contact theervice providerand the general evaluation criteria of our authority include some
negotiate with it in order to get the desired service. macro-categories as aim of resource, user target, reliability,
One could then consider matchmaking as a subset of brokerguitents, privacy, updating of formal features and quantitative
but at the same time it can be seen as an extension of it becgusetions.
matchmaking allows theervice requestes subsequent choice The main functionalities of each actor in the dynamics of
of service providerin a way independent of the match foundnediation systems are as follows:
by the matchmaker. The matchmaker has one weak pointyy 5 serice provideradvertises its services to match-
each agent needs to be smart enough to form a query and makervia WSDL-URI:

evaluate how to choose among alternategvice providers) he matchmakesstores this information in an hash table
this features being not always present in MAS systems. and notifies the new services to the QoS certification
The coordination model describing dependencies and inter- aythority;

actions between the matchmaker and the other agents is calleg) the QoS certification authoritycontacts theservice
matchmaking [7] When an agent publisheS a service, the provider and verifies the quality service;

matchmaker records the name of the agent in his knowledges) theQoS certification authoritgertifies the service to the
base together with the description of offered service according matchmakewia an XML document;

to the ontology used during the communication act. In this 5) a service requesteasks matchmakerto find a service
way, when an agent requests a service, the matchmaker looks provider that provides the best services;

in his knowledge base for a server capable of satisfying theg)
request gervice matching Then the agent requesting service
directly interacts with the chosen server in order to get the
desired service and datsefvice gatheringso avoiding a pos-
sible bottleneck in data transmission or a possible interruption

of the matchmaker activity, as described in Figure 1. 7)

thematchmakeprocesses the request within his knowl-
edge base (collection of information on services and
service providersand it yields either some information
regarding theservice provideror possibly the result of
the application of the requested service;

the service requestesend the request (service input) to

the selectedervice provider
8) after the executing of service, tlservice providere-

; 2 Requejs:‘f for Service | turns the result (service output) to teervice requester
Requestes R Reply Provider Matelimakor This model, while looking extremely simple at first sight,
Agents Names ‘ is instead a rather complex one mainly because the Web is an
4: Request fo 1. Advertise, | open system, with plenty of information, subject to continuous
Service Unadvertise changes of available resource location, heterogeneity and con-
. SEnIEES tents. The complexity of the model can increase when different
5: Reply Resul Provider user groups and different MAS come into play because each
of Service has its own goal which may be in conflict with those of the
Service T Service others.
Gathering Matching The choice of integrating matchmaking with a QoS autho-

rization component is a consequence of matchmaking being
well suitable to the scenario proposed by the case study, whose
features are distributed systems into which agents come in and
out and the offering of multiple answers with the possibility

Fig. 1. Matchmaking coordination model [4]

baldoni
152

152

« Privacy captures the legal conditions of using the re-

source;

« Updatingis the attendance of the resource updating;

o Uptiming is the maximum length of time between two

resource failures;

_ « Timingis the daily time of resource activity;

6. Response « Speedys the measurement of the execution time;

« Browsingis the measurement of the human easiness to

| Publish find a resource;

7. Request « Popularity is the number of active consumers;

_ﬂ S L e L’ T Each quality aspect above defined is quantitative measured
on the basis of several parameters not listed in this work, but
available in [14], [15]. While the domain-dependent quality

Fig. 2. The MAS architecture extended with the QoS certification authorigspects are described in the Section IV-A dedicated to the

case study quality model.
dOur system draws a distinction among three matching
levels:

l Service requestes U

_‘Qns certification authnrityﬂ

5. Request
2. Notify

Matchmaker

4. Certify

3. Verfy

for each agent to keep control of its choices. The propose

matchmaker limits the choice among alternative.
Exact match is the highest degree of matching and takes

B. The Proposed Quality Model place when requests are satisfied by the server with
a percentage higher than 90%.

Plug-in match takes place when a service more general than
the requested one is supplied but that can be used
instead of the ideal requested service. This kind of
matching happens when requests are satisfied with a

When a user looks for a service (resource, tool, etc), the
system ideally should fetch the service exactly matching the
one requested. It is practically unlikely that such a service
be available and hence a service with “sufficiently similar

features” is fetched. percentage between 10 and 90%.

What do we mean by “sufficiently similar’? : .
. . . . Relaxedmatch is the lowest degree of matching and takes
In its strongest meaning a service offered in the network and a - .
place when requests are satisfied by the server with

requested service are “sufficiently similar” when they exactly 0
contain the same functionalities. This is a too restrictive a pe'rcentage' lower than 10%.)
definition since the requesting user does not know in advance '€ matching algorithm measures the distance between the
how a service is represented in the network and has an of#flity aspects and the user requirements for a request service.
idea of what the service should do. An acceptable definitidf'® Matching algorithm developed in this work is carried out
of similarity can be one with less constraints so to accept’dthin the QoScertification authorityto support the following
more flexible exactness degree. actions:
Hence localizing services which can be used by the users Supporting the semantic matches in a flexible way on the
despite the existing differences between request and offer basis of existing ontology;
represents a challenge for the system. Metrics measuring the achieving matches with a minimum number of positive
distance between request and offer can be of help to the user false matches and negative false ones.
in making a deliberate choice [13]. e encouraging correct registrations and requests that take
As above mentioned, the proposed quality model consists of into account the cost of a mismatch due to false declara-
two components, the one describing general quality aspects of tions;
the distributed computational environment where the services carrying out efficient matches that give results in a short
is offered, and the other including quality features of the time.
application domain. In particular, the quality aspects chosenThe main cycle of the matching algorithm is shown in the
for the first component have been derived by analyzing thede below. It can be seen that the requests are compared
Web, and concluding that a qualitative web resource mugith all parameters of the services which are stored in the
provide information to satisfy the following requirements: knowledge base and that the coefficient measuring the degree
« Aim is the purpose for which the resource has beet matching is evaluated for each service.
developed;
« User targetis the list of hypothetical users;
« Reliability is the probability of successfully using a
resource;
« Feasibility is the measurement of the easiness to access
the resource;
« Usability is the measurement of the easiness to use tpe
resource;
« Originality is the degree of correctness of the resource Through our research we have found some general criteria
and its information; for evaluating quality of resources, services or tools. These

match (request){

recordMatch = empty list

forall service in mirror dof
recordMatch.addElement(service, coff)

}

return best(recordMatch);

baldoni
153

154

criteria can be grouped in macro categories as: purpose, umed of advertising any newly offered service on the
target, reliability, privacy, updating, formal aspect adherencether side. TheBioMobyApplicationAgent helps the
interactivity, stability, ease of use and use of and accessuser in the search of the best service among those ad-
established standards. vertised by the BioMobyServiceAgent . Finally, the
BioQualityServiceAgent is the authority that certifies
IV. THE QOS MATCHMAKER IN THE CASE STUDY services according to the quality model defined for the bio-

. . . ical domain.
As a case study we have chosen the biomedical domain 'f%g

its complexity and because from carried out researches come
out thatpqual?{cy of Internet medical information is affected bﬁ‘ The Quality Model for the Biomedical Domain
heterogeneity and dispersion of resources and inaccuracy andihe QoS certification authoritgleveloped in this work used
incompleteness of available information. These factors are wall instance of the quality model introduced in 11I-B. The first
suitable for the definition of a quality model to be integrate@omponent is characterized by the quality aspects of a Web
in a matchmaker architecture. Services (i.eBioMOBY), while the second is characterized by

Defining a quality model means quantifying the parameteifformation introduced by the biomedical domain. The subset
that are typical of the application domain and specifying tHef quality aspects chosen for the first component are:
framework in which the model will be used. We assume to the Reliability based on three parameters: the first one
be in a simplified situation in which biomedical information = assigns a value to the author based on his professional
and services are supplied by information repository which competence, the second allows to find whether the author
are distributed in the network, called MOBY-Central [16] adheres to certified standards and the last allows to find
in our case. Figure 3 shows the components of matchmaker out whether the supplier of service is profit oriented,;

architecture and their interactions. « theOriginality based on two boolean parameters: public-
ity policy, that is whether there are sponsors and official
Qos certication autority service requester agencies financing the resource and fidelity procedure,
| that is the monitoring of consumer surveys:
P ‘ r « thePrivacybased on a boolean parameter that makes sure
il that privacy policies, data security, personal data process-

BioMoby

Application ing (including that of unaware users) are in accordance

Agent 2

with existing laws;
: « theUpdatingbased on a parameter that addresses the time
T period (daily, monthly, yearly) the resource is updated;
s ’ « the Usability based on a parameter that measures the
easiness in using a resource:

Discover Discover Discover ‘
Senvice Service | | T Service . .
o Rgoni2 i \ Finally, by formal aspect concept we mean two strictly

(L) S R -) technical parameters which give a measure of the daily service
service provider, performance:
//

« the Timingthat is a measurement of the time period that
a service is active;
Fig. 3. The matchmaker architecture in the case study « the Speedhat is a measurement of the service execution
time.

The central element, that is tlmeatchmakerrepresents the The matching algorithm, after having analysed the above
knowledge base of the poll of agents involved in the biometisted information and after having made a classification of
ical system (BioMAS). Amatchmakerinteracts with three services, goes on to examining the information made available
separate components (agents): the BioMQ&Yvice provider by biomedical domain.
through which increases the system knowledge base which idn this second part of the model,
used in the discovery of new biomedical services, the QoSe name represents the most important parameter be-
certification authoritysupporting the discovery service and the cause the knowledge of it by the user will cause the
service requestethat carries out the user side application for search necessarily returning the specified service (match

matchmaker

BioMoby
Service

BioQuality
Service
Agent
Agent
% N
4 rd v \
ioMoby

BioMoby BioMoby: B

locating services that satisfy given properties. weight=51);
In details, the BioMAS consists of four kinds of agents: « description made of keywords which will be sought
the BioMobyServiceAgent , which is the system main inside every individual service stored in the knowledge

actor because all other agents refer to it. This agent has three base (match weight=4);

different roles: (i) coordinates all other agents; (ii) manages thee typg has little importance in the model because can
system knowledge base, and (iii) carries out the discovery of only be one of seven kinds (service, retrieval, resolu-
a quality service. Th&ioMobyDiscoverServiceAgent tion, parsing, registration, analysis, NCBI_Blast) (match
is the interface between the biological information repos- weight=2);

itory and the BioMobyServiceAgent with the aims « author, it simply represents his name and does not carry
of discovering the requested service on the one side his credentials with it (match weight=4);

baldoni
154

15t

« input and output they are fundamental parametersnatching algorithm filters the best service.
because the user already knows what he has got and
what he wants to get (match weight=17 and 22); Let us analyse the second example “the doctor then decides
to search the possible interactions among these proteins.” By
A more detailed description of the model of quality can b&aking the following query to BioMOBY with keywords
found in [14], [15]. 'protein’ and ’interact’:

select servicename, url

:)) from service_instance
As explained in Section I, as of today the huge amount of \yhere description like %interact%

information and services in the biomedical domain which are ang description like %protein%

in the Web makes rather difficult to the user to understand

whigh is t.he best service for his qeeds. Our (_:ontribution tRe would get the following results:

solving this problem has been the implementation of a model

based on a qualitative matching algorithm by which it i§ervicename: getinteractions

possible to make the correct choice. Moreover, by the use of url: http://www.pdg.cnb.uam.es/moby
an agent based technology, waiting time and interaction time /cgi-bin/mobyservice

by the user with the system have been considerably reduced

because of the presence of a software assistant. In ordes@svicename: getinteractionsXML

show some preliminary results of the effectiveness of the url: http://www.pdg.cnb.uam.es/moby
proposed model we will consider the two simple examples /cgi-bin/mobyservice
previously shown.

B. Examples

servicename: getinteractingMethods

In the first case “the biomedical researcher decides to use url: - http://www.pdg.cnb.uam.es/moby
the Gene Ontology (GO) annotation to find out the relations /cgi-bin/mobyservice
among genes, biological processes and biochemica! courses\’,’Vh”e, through the middle-agent mediation and use of the
The r_esults we v_vould get from BioMOBY by making the,, 4a| of quality, we obtain:
following query with keywords 'GO’, 'Gene’ and 'Ontology’:
servicename: getinteractions
select servicename, url url: http://www.pdg.cnb.uam.es/moby
from service_instance /cgi-bin/mobyservice
where description like %Gene%
and description like %Ontology%
and description like %G0O%

Also from this second case, it can be seen that the use of
a quality model has the same effect of applying a filter to the
set of possible answers.

are:
) V. RELATED AND FUTURE WORK
servicename: getGoTerm

url: http://mobycentral.cbr.nrc.ca
/cgi-bin/Services/Services.cgi

Many works have been presented in the literature to support
service discovery in the Web environment [3], [4]. Some use
UDDI technology and Web Services, others use the agent
technology, a few just use a mediator. None of these suggests

servicename: getSHoundGODBGetParentOf
url: http://mobycentral.cbr.nrc.ca
/cgi-bin/Services/Services.cgi

servicename: getSHoundGODBGetChildrenOf
url: http://mobycentral.cbr.nrc.ca
/cgi-bin/Services/Services.cgi

While the result obtained by the QoS matchmaker is:

servicename: getGoTerm
url: http://mobycentral.cbr.nrc.ca
/cgi-bin/Services/Services.cgi

the integration of a quality model within the matchmaker
architecture in support to service discovery in a biomedical
domain.

UDDI* (Universal Description, Discovery, and Integration)
has become a de-facto standard for service discovery in the
community of Web Service and it is commonly looked at as
a “yellow pages” service. In the UDDI model services are
localized through their description by the supplier or by the
type of service and both ways of service discovery are built
with a limited number of high level sentences that produce a
rigid scheme. Although UDDI is a de-facto standard, it does
not allow neither a quantitative nor a semantic discovery but

It can be noticed that in the first case the answer algply a keyword based search.
contains addresses which are not meaningful for the maderetsina [3] is an open infrastructure for MAS which is

query forcing the user to a kind of classification or to repeate@dpable of supporting communities (oppure populations) of
trials before singling out the service which best fits his needs.

In the second case, the QoS machmaker, on the bases of tHitp://www.uddi.org

baldoni
155

15€

heterogeneous agents. Service discovery is based on OWL- REFERENCES

S OhtOlOg_ICEll Iangu_age for service funcuona“tY_ descrlpt'on-[l] G. Eysenbach and al., “Towards quality management of medical infor-
The resulting matching process is only a semantic one and not mation on the internet: evaluation, labelling, and filtering of informa-

necessarily of quality. tion,” 1998. . o o
. inke i d d | d b h | [2] T. C. I. . International organization for standardization, “Iso 8402:
DiscoveryLink is a product developed by IBM that al- Quality management and quality assurance.” 1994, vocabulary. 2nd ed.

lows a discovery process on many specialized heterogeneous Geneva: International organization for standardization.

databases by means of a single query that uses specialiZ8dK._Sycara, M. Paolucci, M. van Velsen, and J. Giampapa, “The
Thy It g. 4 . 3; . P df RETSINA MAS infrastructure,”Autonomous Agents and Multi-Agent
wrappers. The resulting system is a rigid one again and forces systemsvol. 7, no. 1-2, pp. 29-48, July—Sept. 2003,

the user to predefined and limited choices without offering4] K. Decker, M. Williams, and K. Sycara, “Matchmaking and brokering,”

either a semantic service discovery or one of quality. in ICMAS-96 May 1996. . . .
[5] M. Wooldridge and N. R. Jennings, “Agent theories, architectures and

e, : . . .
M_yG”d IS a pl|0t project OT UK e-Science that prowdes languages: A survey,” iintelligent Agents, ECAI-94 Workshop on Agent
a middleware open-source Grid developed to supply a virtual Theories, Architectures and LanguagesSpringer-Verlag, 1994, pp. 1—

workbench in bioinformatics domain. Emphasis is placed on_ 39

. J6] N. Jennings and M. Wooldridge, “Application of intelligent agents,” in
the workflow as an integration tool and on the customisatioh Agent Technology: Foundations, Applications, and MarkeBpringer-

and source of data. Resources are considered as services thatverlag, 1998.
can be statically or dynamically combined within a given[Y] K. ycara, M. Paolucci, A. Ankolekar, and N. Srinivasan, “Automated dis-

. . . covery, interaction and composition of semantic web servicksjinal
framework. However also in this product no quality of the o \veh Semanticsiol. 1, no. 1, pp. 27-46, 2003.

offered service is guaranteed. [8] H. Kitano, “Systems biology: A brief overviewSciencevol. 295, pp.

We plan to extend this work in the future by customizing = 1662-1664, march 2002. . o .
N. Cannata, F. Corradini, E. Merelli, A. Omicini, and A. Ricci, “An

requests to target, that is by including in our model 01{9] loqi ; ;
q A get, . y g) agent-based conceptual framework for biological systems simulation,”
quality parameters which are proper of user profile (computer in Fourth International Workshop on Network Tools and Applications in

scientists, biological computer scientists, biologists, etc.). viileo] Biology, Camerino, 2004.
the

| dd f | . d d ib F. Corradini, L. Mariani, and E. Merelli, “An agent-based approach to
also mean to add use of ontology In order to describe tool integration,”Journal of Software Tools Technology Transf2004,

user requests both to verify their validity and to correctly to appear.

describe each service. In fact, GO could also be included in fR&l M. Klusch and K. Sycara, “Brokering and matchmaking for coordination
of agent societies: A survey,” irCoordination of Internet Agents:

quality model to describe the bio-domain. In our case study ogels, Technologies, and Applications. Omicini, F. Zambonelli
GO represents the service description language. M. Klusch, and R. Tolksdorf, Eds. Springer-Verlag, Mar. 2001, ch. 8,

The introduction and quantification of additional certification __ PP- 197-224. =
il helo both th tifyi t and th 'ddlg'zl G. Wiederhold, “Mediators in the architecture of future information
parameters will help bo e certifying agent and the mi " systemsIEEE Computer Systenvol. 25, no. 3, pp. 38 — 49, March

agent to keep their information updated and hence to answer 1992.

even complex requests by giving a service workflow. La&] R.Culmone, G. Rossi, and E. Merelli, “An ontology similarity algorithm

. for bioagent,” in NETTAB Workshop on Agents nd Bioinformatics
but not least, we plan to develop the system in Hefinas Bolognagzooz. P g 4

mobile agent middleware supporting distributed applicatiofst] B. Re, “Un modello di qualita per la scelta di servizi web in am-
and mobile Computing in order to use mobility to Optimize bito biologico - il ruolo del modello di coordinazione,” Master's the-

h fd f d | h ibilti . sis, Laurea in Informatica, Universita di Camerino, a.y. 2003-2004,
the cost of data transfer and evaluate the PossInI tly to iImprove http://dmi.unicam.it/merelli/tesicl26/re.pdf.

the performance of the matchmaker. [15] C. Ercoli, “Un modello di qualita per la scelta di servizi web
in ambito biologico - il ruolo del middleware,” Master's the-
sis, Laurea in Informatica, Universita di Camerino, a.y. 2003-2004,
ACKNOWLEDGEMENTS http://dmi.unicam.it/merelli/tesicl26/ercoli.pdf.

: ; o : : 6] M. Wilkinson, D. Gessler, A. Farmer, and L. Stein, “The biomoby
We wish to thank Ing. Lucio Forastierl for the mterestlnél project explores open-source, simple, extensible protocols for enabling

discussions that have led us to the development of this work piological database interoperability,” 2003, procedings of the virtual
and Ing. Paolo Romano for having given us useful case studies conference on genomics and bioinormatics. (3):17-27.
for validating the proposed model.

Shttp://www.owl-s.org
Shttp://www.discoveryLink.ibm.com
"http://www.mygrid.org
8http://hermes.cs.unicam.it

baldoni
156

	a7_p0642709.pdf
	Introduction
	The DyLOG language
	A DyLOG implementation

	Visual DyLOG
	The Eclipse project
	The environment
	An example of use

	An OWL ontology for DyLOG
	The DyLOG ontology

	Conclusions and future work
	References

