
dagli Oggetti agli Agenti

Sistemi Complessi e Agenti Razionali

Atti delle giornate di lavoro a cura di:

Matteo Baldoni, Flavio De Paoli,
Alberto Martelli e Andrea Omicini

Torino (Italia), 30 novembre 2004 – 1 dicembre 2004

Organizzato da:

Associazione Italiana per l'Intelligenza Artificiale
Associazione Italiana Tecnologie Avanzate basate su concetti Orientati ad Oggetti

Con il patrocinio del Dipartimento di Informatica e dell'Universita' degli Studi di Torino

http://woa04.unito.it

woa04@di.unito.it

http://www.aixia.it
http://linux.disco.unimib.it/~taboo/TABOO/
http://www.di.unito.it
http://www.unito.it
http://woa04.unito.it
mailto:woa04@di.unito.it
http://woa04.unito.it

PREFAZIONE

Le tecnologie degli agenti stanno assumendo un ruolo centrale non solo nel settore
dell’intelligenza artificiale, ma anche in settori più tradizionali dell’informatica quali l’ingegneria del
software e i linguaggi di programmazione, dove il concetto di agente viene considerato una naturale
estensione di quello di oggetto. L’importanza di queste tecniche è dimostrata anche in ambito industriale
dall’interesse per il loro utilizzo nella realizzazione di strumenti e applicazioni in molteplici aree.

Il presente volume raccoglie gli atti della quinta edizione delle giornate di lavoro “dagli Oggetti
agli Agenti” edizione 2004, dedicata al tema “Sistemi Complessi e Agenti Razionali”. Le giornate di
lavoro sono state organizzate dal gruppo di lavoro “Sistemi ad Agente e Multiagente” dell'Associazione
Italiana per l'Intelligenza Artificiale (AI*IA) e l'Associazione Italiana Tecnologie Avanzate Basate su
Concetti Orientati ad Agenti (TABOO) in collaborazione con il Dipartimento di Informatica
dell'Università degli Studi di Torino, gruppo di lavoro “Logic Programming and Automated Reasoning”. I
venti articoli di questa collezione comprendono sei lavori che, avendo come primo autore uno studente,
hanno partecipato al premio studenti, alla sua prima edizione ed indetto in occasione della prima
miniscuola organizzata in occasione delle giornate di lavoro. Titolo della miniscuola “Agenti e Oggetti @
Work”. L'evento si è svolto nei giorni 29 e 30 novembre e 1 dicembre 2004, presso il Dipartimento di
Informatica dell'Università degli Studi di Torino, enti patrocinanti.

Un particolare ringraziamento va al comitato organizzatore locale, in particolare a Cristina
Baroglio per la realizzazione del sito, allo staff tecnico del Dipartimento di Informatica e a Simone Donetti
per il software OpenChair.

Torino, 4 novembre 2004.

Matteo Baldoni, Flavio De Paoli,
Alberto Martelli e Andrea Omicini

Gli atti delle giornate di lavoro sono pubblicati dalla Pitagora Editrice Bologna, ISBN 88-371-1533-4.

I

COMITATO SCIENTIFICO ORGANIZZATORE

Matteo Baldoni (Univ. di Torino)
Flavio De Paoli (Univ. di Milano – Bicocca)
Alberto Martelli (Univ. di Torino)
Andrea Omicini (Univ. di Bologna – Cesena)

COMITATO ORGANIZZATORE LOCALE

Matteo Baldoni (Univ. di Torino)
Cristina Baroglio (Univ. di Torino)
Alberto Martelli (Univ. di Torino) – Presidente
Viviana Patti (Univ. di Torino)

COMITATO DI PROGRAMMA

Stefania Bandini (Univ. di Milano – Bicocca)
Pietro Baroni (Univ. di Brescia)
Carlo Bellettini (Univ. di Milano)
Fabio Bellifemine (TILab)
Federico Bergenti (Univ. di Parma)
Enrico Blanzieri (Univ. di Trento)
Paolo Bouquet (Univ. di Trento e IRST)
Giacomo Cabri (Univ. di Modena e Reggio Emilia)
Marco Cadoli (Univ. di Roma "La Sapienza")
Giancarlo Cherchi (Univ. di Cagliari)
Marco Colombetti (Politecnico di Milano)
Francesco Donini (Univ. della Tuscia – Viterbo)
Rino Falcone (ISTC-CNR)
Letizia Leonardi (Univ. di Modena e Reggio Emilia)
Marco Mamei (Univ. di Modena e Reggio Emilia)
Sara Manzoni (Univ. di Milano – Bicocca)
Viviana Mascardi (Univ. di Genova)
Emanuela Merelli (Univ. di Camerino)
Rebecca Montanari (Univ. di Bologna)
Maria Teresa Pazienza (Univ. di Roma – Tor Vergata)
Alessandro Ricci (Univ. di Bologna – Cesena)
Giovanni Rimassa (Univ. di Parma)
Corrado Santoro (Univ. di Catania)
Carla Simone (Univ. di Milano – Bicocca)
Eloisa Vargiu (Univ. di Cagliari)
Mirko Viroli (Univ. di Bologna – Cesena)
Giuseppe Vizzari (Univ. di Milano – Bicocca)

DIRETTIVO WOA
Giuliano Armano (Univ. di Cagliari)
Antonio Corradi (Univ. di Bologna)
Flavio De Paoli (Univ. di Milano – Bicocca)
Andrea Omicini (Univ. di Bologna – Cesena)
Agostino Poggi (Univ. di Parma)
Franco Zambonelli (Univ. di Modena e R. Emilia)

II

INDICE DEI LAVORI

Evaluating Trust Among Agents . PAG. 1
GIACOMO CABRI, LUCA FERRARI, LETIZIA LEONARDI

Customer information sharing between e-commerce applications PAG. 5
BARBARA NEGRO, ANGELO DIFINO, FABIO BELLIFEMINE, GIOVANNA PETRONE,
LUCA DI COSTA, MARCO BOTTA, LILIANA ARDISSONO

A Game-Theoretic Operational Semantics . PAG. 13
ARIANNA TOCCHIO, STEFANIA COSTANTINI, ALESSIA VERTICCHIO

On the use of Erlang as a Promising Language to Develop Agent Systems PAG. 22
CORRADO SANTORO, ANTONELLA DI STEFANO

A Multi-Agent System to Support Remote Software Development PAG. 30
MARCO MARI, LORENZO LAZZARI, AGOSTINO POGGI, PAOLA TURCI

GrEASe: Grid Environment based on Agent Services . PAG. 37
ANTONIO BOCCALATTE, ALBERTO GROSSO, CHRISTIAN VECCHIOLA,
SARA FAZZARI, SILVIA GATTO

Design and development of a visual environment for
writing DyLOG programs . PAG. 43
CLAUDIO SCHIFANELLA, LUCA LUSSO, MATTEO BALDONI, CRISTINA BAROGLIO

Using Method Engineering for the Construction of
Agent-Oriented Methodologies . PAG. 51
GIANCARLO FORTINO, ALFREDO GARRO, WILMA RUSSO

A Personal Agent Supporting Ubiquitous Interaction . PAG. 55
GIOVANNI COZZOLONGO, BERARDINA DE CAROLIS, SEBASTIANO PIZZUTILO

Un'applicazione di e-government per la gestione di gare d'appalto
nella Pubblica Amministrazione . PAG. 62
ALBERTO GROSSO, MAURO COCCOLI, ANTONIO BOCCALATTE

Coordinated Change of State for Situated Agents . PAG. 69
GIUSEPPE VIZZARI, STEFANIA BANDINI

Timed Coordination Artifacts with ReSpecT . PAG. 77
MIRKO VIROLI, ALESSANDRO RICCI

Commutation as an emergent phenomenon of residential and industrial
location decisions: from a microeconomic to a MMASS-based model PAG. 86
ALEXANDER KAUFMANN, SARA MANZONI, ANDREAS RESETARITS

Organizations as Socially Constructed Agents in the
Agent Oriented Paradigm . PAG. 93
GUIDO BOELLA, LEENDERT VAN DER TORRE

A Conceptual Framework for Self-Organising MAS . PAG. 100
ANDREA OMICINI, ALESSANDRO RICCI, MIRKO VIROLI,
CRISTIANO CASTELFRANCHI, LUCA TUMMOLINI

III

Engineering Trust in Complex System through Mediating Infrastructures PAG. 110
ALESSANDRO RICCI, ANDREA OMICINI

OWLBeans - From ontologies to Java classes . PAG. 116
MICHELE TOMAIUOLO, FEDERICO BERGENTI, AGOSTINO POGGI, PAOLA TURCI

Spatial Computing: the TOTA Approach . PAG. 126
MARCO MAMEI, FRANCO ZAMBONELLI

Simulation in the textile industry: production planning optimization PAG. 143
GIANLUIGI FERRARIS, MATTEO MORINI

An agent-based matchmaker . PAG. 150
FLAVIO CORRADINI, CHIARA ERCOLI, EMANUELA MERELLI, BARBARA RE

IV

Evaluating Trust Among Agents

GIACOMO CABRI, LUCA FERRARI, LETIZIA LEONARDI
Dipartimento di Ingegneria dell’Informazione – Università di Modena e Reggio Emilia

Via Vignolese, 905 – 41100 Modena – ITALY
Phone: +39-059-2056190 – Fax: +39-059-2056126

E-mail: {cabri.giacomo, ferrari.luca, leonardi.letizia}@unimo.it

Abstract – Agent-based applications are more and more
exploited in the development of distributed systems, with
particular regard to the Internet ones. Even if the
development of agent-based applications is not so difficult
today – thanks to new paradigms and techniques –
security problems are still present. In particular, it is
important to deal with security of the data exchanged
between agents at runtime. In fact, agents are social, and
they interact with other agents in order to carry out
specific tasks. Since interacting agents could be
developed by different programmers, or provided by
different third parties, there is the risk that the interacting
counterpart could act maliciously with the received data.
In this paper we propose an approach based on the
concept of trust, which is more dynamic and adaptable
than security, in order to evaluate if an interaction can be
done or not.
Keywords: Agents, Roles, Interactions, Trust

1. Introduction

In agent-based applications, interactions among
agents are largely exploited in order to use services that
they can provide. This situation leads to a continue
cooperation between agents developed by different
programmers and provided by different vendors,
cooperation that often requires a data exchange. Often, the
interaction with other agents is crucial for the success of
the activities of an agent, so interactions must be carefully
considered in agent-based applications.

In a static black and white world, an agent knows a
priori whether interacting with another agent or not, while
in a dynamic colored world many issues must be
considered at runtime. The traditional approach based on
security is no longer enough in a very dynamic, uncertain
and unpredictable world such as the agents’ one. As a first
issue, a sure authentication may be not so easy to achieve
in a wide environment such as the Internet. Second, the
skill of the counterpart can be an important issue to decide
whether to perform the interaction or not; an authenticated
and secure agent could not provide the exact service
needed, or it can provide the service not in the best way.
In the evaluation of the skill, previous experiences can
help in the decision. These considerations lead to a
concept more flexible than security: trust. During an
interaction between agents, it is important that each
involved part can evaluate the trust that the interaction
will have.

In this paper, we propose a preliminary study on an
evaluation of trust level between two mobile agents,

thanks to which agents will be able to start or reject an
interaction with more confidence.

Our study is related to mobile agents, since they are
an exploited technology in the development of distributed
and Internet-based applications today. Furthermore, since
interactions between agents are often exploited to carry
out a task, and since there are good proposals that model
interactions exploiting the concept of role [1, 4, 5, 6], our
approach explicitly introduces the trust in the assumed
role too.

The paper is organized as follows: section 2
introduces other concepts about trust, section 3 explains
how our approach computes the trust level between
agents, while section 4 details the Java implementation of
our approach. Finally section 5 gives conclusions.

2. About Trust

The concept of trust applied to computer science is
not new, and in fact we can find other studies in [2, 7, 11].
What these studies emphasize is that trust can be the
compound result of trust assigned to different
components, thus it is not possible to evaluate the global
trust before having evaluated each component.
Furthermore, trust depends on not immediately visible
properties, and in particular it is based on the capability of
predicting these properties and of trusting them. Finally,
the trust level of an agent cannot be a fixed property of
the single agent, but it depends also on the other agents
with which it interacts (or have interacted).

The main difference between security and trust is that
the latter is more subjective and context dependent. In
fact, while security is typically set up before the execution
of the application, allowing administrator to change rules
during the application evolution, trust is decided by the
application components themselves. In other words, while
security is typically set up externally from the application,
trust comes from the inside of the application, since it is
evaluated by the running components themselves. Since
trust comes within the application, without requiring
external entities (e.g., administrators), this leads to a
dynamic situation, where the application can take
decisions considering the current environment.

Typically, what happens is that an agent starts an
interaction with another agent only if the latter has a trust
level greater than a threshold, which usually depends on
the goal and the kind of task of the former agent.

It is important to note that building a system based on
trust does not mean to simply apply one (or more)
threshold to system parameters, since this would lead to a
security-based application. To better explain this concept,

baldoni

imagine that an agent trusts another agent if it owns at
least the 80% of a common secret password. This could
mean that the first agent trusts the second at the 80%. But
at a deeper look, this does not represent a trust threshold,
but a security threshold. In fact, in the above situation, it
is like if the common password must be shorter than the
complete one to allow agents to interact, which means
that the security level is lower than the one required with
the complete password. Even if the threshold can be
changed during the application, the situation can be
always reconsidered as a security issue.

From the above example it should be clear that
evaluating trust does not mean to simply apply variable
thresholds. Trust requires other control mechanisms, and,
in particular, the capability to evaluate and change trust
levels autonomously during the application evolution.
Nevertheless, even being able to evaluate and adapt
thresholds during the application does not suffice, and it is
for this reason that trust needs also history. In fact, only
evaluating the trust level over different time instants it is
possible to get a very subjective value.

Trust should always be computed dependently on the
target of the action the agent is doing, since it is not
possible to evaluate trust just related to another agent
without considering also the action to perform. This
means that there could be different trust levels among the
same agents, depending on the actions/interactions they
are doing together. Starting from the above
considerations, it should be clear that the trust
computation should also have a fine grain, depending on
the involved agents and interactions.

Furthermore it is important to note that trust should
not be considered negatively, but positively. In other
words, it is more important to understand which could be
the positive consequences of granting trust to a partner,
rather than the negative ones (or risks) due to a bad
evaluation [7]. In this situation interactions will be
promoted, and not rejected due to a not 100% trust level.

The following section shows the formula we propose
to evaluate trust level between agents.

3. Computing the Trust Level

Since agents are computational entities, they cannot
evaluate the trust as humans do (i.e., based on emotions,
feelings, intuitions, instincts, and so on). In order to allow
agents to evaluate the trust related to other agents or
components in a computational way, we propose the
following formula:

RPHISA

RPHISA
ij cccccScS

cRcPcHIccScAS
T

++++⋅+⋅−
⋅+⋅+⋅+⋅+⋅+⋅⋅−

=
)()1(

)()1(

where Tij represents the trust level of the agent j computed
by the agent i. As detailed in section 1, the global trust
can be evaluated only if all its components have been
evaluated. In the above formula the terms cx represent
weights of the several parameters. They say how much
the agent wants to consider a given parameter in the
evaluation of the trust. The parameters are the following:
� S indicates if the agent is signed or not. The value can

be only 0 or 1, depending on the presence of the
signature(s) of the agent;

� A stands for the authentication of the agent and can
embed both credentials and code type. The former
could be, for example, passwords or secrets useful to
authenticate the agent or its owner. The latter
represents an introspection on the agent code in order
to understand, for example, the base classes used to
build it, or if it contains dangerous instructions, etc.;

� I represents the identity of the signer of the agent (if
present);

� H represents the history of the interactions of the
agent j. The history is important in order to evaluate in
a more subjective way the trust level of j perceived by
i, thus the agent i can understand if agent j has been a
bad agent in the past or not;

� P stands for the previous host of the agent. Since this
work has been done explicitly in the mobile agent
context, we have decided to explicitly insert the
previous host parameter in the formula;

� R represents the trust of the agent j feel by the role
assumed by the agent i. It can be computed with a
formula similar to the above one:

PRHRIRSRAR

PRHRIRSRAR

ccccScS
cPcHIccScAS

R
+++⋅+⋅−

⋅+⋅+⋅+⋅+⋅⋅−
=

)()1(
)()1(

where all the terms and the weights have the same
meaning described above, even if, as also indicated by the
weight subscripts, they are related to the role and not to
the agent itself.

Why there is the need of evaluating trust even of the
assumed role? First of all it is important to recall the fact
that roles are external components to agents, which are
exploited by them during the execution of the application.
The fact that roles are external entities, and the fact that
they are usually tied to the local execution environment
[3], means that agents have no warranties about the piece
of code they are going to exploit. It is for this reason that
the trust level must include also the trust about the role (if
there is one).

It is important to note that S is the only one parameter
that can assume a boolean value, depending on the
presence of the signature(s), while the other can be
between 0 and 1. The weights cx are between 0 and 101,
and this means that the final value of Tij will be always
less or equal to 1:

]1,0[]10,0[];1,0[,,,,};1,0{ ∈⇒∈∈∈ ijx TcRPHIAS
Please note that, as shown in the first formula, when

the agent is not signed (i.e., S=0) the identity term I is not
considered in the computation of the trust level, while
when the agent is signed (S=1), the term of the
authentication A is not considered. In fact, since the agent
is signed, there is no need to authenticate it, but the
signature(s) can be used as authentication as well.

A very important term in the first formula is S, which
represents the history of the actions of the agent j, thus the
agent i can try to understand if the opponent has been fair
or not. The term S is not trivial to calculate, due to the fact
that is not always simple to keep a track of the history of
past actions of each agent, depending on the platform

1 Please note that the trust level Tij will always be normalized,

independently from the range of values the weights cx belongs to. The
choice of the latter range depends on the level of granularity required by
the computation.

baldoni
2

implementation. What an agent can do, in the case that the
platform does not provide support for the history of
actions, is to keep a private track of actions/interactions
with a specific agent, in order to be able to further
evaluate the term S when needed. For example, an agent
can progressively compute S with the following simple
count:

Xagentwithnstransactiodonetotally
XagentwithnstransactiodoneysuccesfullS

_____=

while the weight cs should become greater as the
successful transactions are recent or not.

All the capitalized terms in the first and second
formulas represent parameters that are fixed for all agents,
but what makes the formulas subjective is the use of
weights cx. In fact, while an agent should not change
values of the parameters, it can change values of weights,
in order to adapt the computation of the trust level to its
execution environment.

3.1. Considerations about the Formula
It is important to note that the formula can be used to

compute trust even if not all terms are available. For
example, in some implementations the history (H) could
not be present, thus agents have to compute the trust level
with a “partial” formula. Of course, the use of an
uncomplete formula will produce less reliable results,
since the space of possible result values is shrinked.

Another important thing to note is that, even if “trust”
is not the same of “security”, as already written, the
formula is partially based on a set of security terms (like
A and I), since we believe that first of all trustness should
imply also security (but not vice versa).

Finally, please note that the choice of weights is in
charge of the agent (and its developer), since the agent
must evaluate by itself how much important are the
information about the different interacting entity.

4. A Java Implementation

In order to ease the use of the first formula we have
implemented a set of Java classes that Java agents can
exploit. This section gives a presentation of this set of
classes as first, and then briefly shows an application
developed using IBM Robocode, which exploits the
above classes.

4.1. Java Classes to Compute the Trust Level
All the classes are contained in a single package,

it.unimo.brain.trust. It is important to note that,
in order to grant a high flexibility in the computation of
the trust level, almost all classes are abstract.
Nevertheless, in order to give developers a library ready
to use, we provided a subpackage, called impl, which
contains default implementations of the main abstract
classes.

Since the Tij is a sum of terms, each one composed of
other sums or multiplications of a weight and a
capitalized term, we introduced the base class Term (see
Figure 1), which represents the result of a capitalized term
and its weight. In this way it is quite simple to compute
the whole formula, since developers have just to add each

term, while the terms will compute themselves
transparently.

Figure 1 Main classes of the Java implementation.

Before it can be used, a term must be initialized, that
means it must be able to compute the right value. For this
reason we provided an interface, Initializer, which has
been specialized for each term in order to load the right
values. For example, in the case of the computation of H,
the initializer must contain a table of known host and the
values for the trust for each of them. To make all the
formulas more flexible, we provided also a factory class
that gives the current implementation of each term. The
agent is just in charge of calling the method getTerm of
the factory with the constant that identifies the term. The
following piece of code shows an example of the
initialization and use of the S term:

// get a new initializer for F
Initializer init = new SignatureInitializer();
// get the Term from the factory
Term S = TermFactory.getTerm(S_TERM);
// initialize the term
S.initialize(init,agent.getClass().getName());
. . .
// use the term
float weight = ...;
float val_S = S.getValue(weight);

It is important to note that the initialization does not
provide the weight used in the formula, and this is to
obtain a more dynamic system. In fact, since weights
adapt the formula to the current context, and since they
must be personalized for each agent, they must be
provided at the moment of the computation, i.e., when the
getValue method is called.

4.2. Exploiting the Formula in Robocode
In order to prove the usability of the first formula and

of its Java implementation, we have tested it in an
application developed using the IBM Robocode game
platform [8, 9, 10]. Robocode is a Java platform used to
implement simple Java games (see Figure 2), where
developers can program robots (represented as tanks) that
battle each other.

We have chosen this particular platform for two main
reasons. First of all the scenario is very similar to the one
of agents, and in fact, robots are free to move and interact
each other, in a cooperative or competitive way.
Furthermore, robots can cheat and can be cheated, and in
this situation the computation of trust gain more
importance. The second reason is that the use of
Robocode gives developers a concrete visible evolution of
the application, that means it is possible to understand
how robots trust each other simply watching the battle.
This is useful in particular in didactic experiences.

baldoni
3

Figure 2 The Robocode battle-of-trust.

In the developed application, there is a particular robot
that evaluates the trust levels between itself and the other
robots, killing those it does not trust. This leads to a
situation where only trusted robots survive.

Of course, in this simulation a few parameters of the
first formula have just been set to the default values, since
they do not have a specific meaning. For example, since
the robots execute in the same host, the H parameter has
been set to a value depending on the team they belong, in
order to simulate the provenience from different hosts.

Conclusions

In this paper we proposed a preliminary study for trust
evaluation in agent interactions. Unlike other approaches,
ours explicitly takes care of mobility and of the
exploitation of roles in interactions.

Our approach is based on a formula, which allows
agents to compute the trust level as composed of different
components that include the history of previous
interactions, in order to allow a complete evaluation.
Thanks to the use of weights in the formula, which can be
adapted for the current context, the formula is suitable for
different situations and agents. This allowed us to develop
a set of Java classes which can be exploited to compute
the formula value (i.e., the trust level) in Java agent
applications. We applied the formula also to other
scenarios, similar to those of agents, in order to
demonstrate that is quite general and can be easily
adapted to different applications.

Future work includes a better evaluation of each
component of the formula, in order to understand if they
are complete or must be extended. Furthermore, a
standardization of the computation of the history will help
in the computation of trust.

Acknowledgments: Work supported by the Italian MIUR
and CNR within the project "IS-MANET, Infrastructures
for Mobile ad-hoc networks", and by the MIUR within
the project "Trust and law in the Information Society.
Fostering and protecting trust in the market, in the
institutions and in the technological infrastructure".

References

[1] D. Baumer, D. Riehle, W. Siberski, M. Wulf, “The
Role Object Patterm”, Pattern Languages of
Programming conference, 1997, Monticello,
Illinois, USA

[2] P. A. Buhler, M. N. Huhns, “Trust and
Persistence”, IEEE Internet Computing, April
2001, p. 85-87

[3] G. Cabri, L. Ferrari, L. Leonardi, “The Role Agent
Pattern: a Developers Guideline”, in Proceedings
of the 2003 IEEE International Conference on
System, Man and Cybernetics, 5-8 October 2003,
Washington D.C., U.S.A.

[4] G. Cabri, L. Leonardi, F. Zambonelli, “Separation
of Concerns in Agent Applications by Roles”, in
Proceedings of the 2nd International Workshop on
Aspect Oriented Programming for Distributed
Computing Systems (AOPDCS 2002), at the
International Conference on Distributed
Computing Systems (ICDCS 2002), Wien, July
2002

[5] G. Cabri, L. Leonardi, F. Zambonelli, “Modeling
Role-based Interactions for Agents”, The
Workshop on Agent-oriented methodologies, at
the 17th Annual ACM Conference on Object-
Oriented Programming, Systems, Languages, and
Applications (OOPSLA 2002), Seattle,
Washington, USA, November 2002

[6] G. Cabri, L. Leonardi, F. Zambonelli,
“Implementing Role-based Interactions for
Internet Agents”, 2003 International Symposium
on Applications and the Internet, Orlando (USA),
January 2003.

[7] R. Falcone, O. Shehory, “Tutorial 12 – Trust
delegation and autonomy: foundations for virtual
societies”, Autonomous Agents & Multiagent
Systems (AAMAS2002), Bologna, Italy, July 2002

[8] IBM Robocode Ufficial Site
http://robocode.alphaworks.ibm.com/home/home.h
tml

[9] IBM Robocode - API Documentation
http://robocode.alphaworks.ibm.com/docs/robocod
e/index.html

[10] Sing Li, “Rock 'em, sock 'em Robocode!”, paper
available on line at http://www-
106.ibm.com/developerworks/java/library/j-
robocode/

[11] J. Seigneur, S. Farrell, C. Jensen, E. Gray, Y.
Chen, “End-to-end Trust Starts with Recognition”,
Proceedings of the First International Conference
on Security in Pervasive Computing, Boppard,
Germany, March 2003

baldoni
4

Customer Information Sharing between
E-commerce Applications

Liliana Ardissono, Marco Botta
Luca Di Costa, Giovanna Petrone

Dipartimento di Informatica
Universit̀a di Torino

Corso Svizzera 185, Torino, Italy
Email: {liliana, botta, giovanna}@di.unito.it

Fabio Bellifemine, Angelo Difino
Barbara Negro

Telecom Italia Lab
Multimedia Division

Via Reiss Romoli, 274 - Torino, Italy
Email: {Fabio.Bellifemine, Angelo.Difino,

Barbara.Negro}@tilab.com

Abstract— The management of one-to-one business interaction
is challenged by the latency in the acquisition of information
about the individual customer’s preferences. Although sharing
this type of information would empower service providers to
personalize the interaction with new customers since the first
connection, this idea can be hardly applied in real cases if the
service provider cannot protect the data it has acquired from
competitors and select the trusted parties from which it wants
to receive information.

As a solution, we propose a framework supporting the con-
trolled sharing of customer information between e-commerce
applications. Our framework includes two main components: 1)
a Trust Management System (running off-line with respect to the
information sharing service), which enables the service provider
administrator to specify restrictions on the service providers to
be considered as trusted parties; 2) a User Modeling Agent,
which manages the propagation of customer data between service
providers, given their trust relationships. The User Modeling
Agent also takes care of combining the customer information
provided by the trusted parties in order to generate an overall
view of the customer preferences.

I. I NTRODUCTION

Various techniques have been applied in Web-based stores
and electronic catalogs to personalize the recommendation
of products; see [1], [2], [3], [4]. For instance, collaborative
filtering [5] steers the recommendation of goods by analyzing
the similarities in the purchase histories of different people.
Moreover, content-based filtering (e.g., see [6]) recommends
goods having properties that the individual customer preferred
in the past. In all cases, the customer’s behavior has to be
observed for some time in order to acquire a user model
describing her preferences. Thus, a delay occurs before the
service provider application personalizes the interaction in an
effective way.

Indeed, the preference acquisition process can be speeded up
if the service providers exchange their customer information
with one another. For instance, if two book sellers trust each
other, they might share the user models describing their cus-
tomers in order to increase the knowledge about the common
customers and to extend the set of visitors they can handle as
known ones. In Business to Customer e-commerce, several
service providers already exploit their own user modeling
systems to analyze clickstream data and locally manage their

customers’ profiles. For these providers, the main purpose of
sharing customer information with other (trusted) partiesis
that of acquiring information about unknown customers (first
time visitors) or recently acquired customers, whose profiles
are not yet complete.

In this paper, we propose a framework supporting a
controlled propagation of customer information among e-
commerce applications. The framework includes a Trust Man-
agement System that enables the administrators of individual
service providers to specify their trust relationships with other
providers and to examine the set of service providers eligible
for information sharing, possibly modifying it by adding and
removing individual service providers. Moreover, the frame-
work includes a User Modeling Agent that coordinates the
exchange of customer information according to the network of
declared trust relationships: when a service provider requests
information about a customer, the User Modeling Agent
merges the information provided by the trusted parties intoa
user model ready to be exploited for personalization purposes.

From the viewpoint of trust management, our framework
enables the service provider administrator to select partners
for information sharing both at the individual level and at the
class level (on the basis of their features). More generally, our
framework has the following advantages:

• Service providers are supported in the information shar-
ing by a trusted third party (the User Modeling Agent).

• Service providers do not need to modify the core of their
applications when they register for information sharing.
In fact, each application may continue to exploit its own
personalization system: the application may personalize
the interaction with an individual customer by exploiting
its local user model, the model provided by the User
Modeling Agent, or it may integrate the two models.

• A service provider not equipped with its own user model-
ing system may question the central User Modeling Agent
when it needs information about a customer and exploit
the returned information for personalization purposes.

In this paper, we will focus on the Trust Management System,
which provides the basis for the customer information propa-
gation, and we will only sketch the main aspects of the User

baldoni

User Modeling Agent

Application 1 Application 2

Application 3 Application 4

customer
DB

customer
DB

customer
DB

customer
DB

service
provider
DB

user
model
DB

customer
preference
ontology

umc

umcumc

umc

Fig. 1. Framework Architecture.

Modeling Agent. The rest of this presentation is organized
as follows: Section II outlines some basic issues concerning
customer information sharing between heterogeneous applica-
tions. Section III describes the architecture of our framework
and the regulation of the propagation of information from
service provider to service provider. Section IV describesthe
management of trust relationships between service providers.
Section V compares our proposal to related work. Section VI
discusses possible extensions to our work and closes the paper.

II. BACKGROUND

In the development of a service supporting customer infor-
mation sharing between applications the following issues are
relevant:

1) In the propagation of the information, privacy prefer-
ences have to be taken into account [7], [8]. For instance,
a customer might want to make her personal data avail-
able only to the service providers she is interacting with,
she might allow the propagation to providers belonging
to restricted categories, such as book sellers, or she
might restrict the propagation of her personal data to
service providers conforming to privacy policies [9].

2) Ontology mapping issues have to be addressed in order
to enable the propagation of information in an open
environment.

3) The information collected by each application has to be
propagated to other applications according to specific
trust relationships. For instance, a service provider may
impose accessibility restrictions on the information it
collects, or it may be interested in receiving information
from selected sources. For instance, a book seller might
want to share information only with other book sellers
and to ignore data acquired by music sellers. Moreover,
it might not want to share information with some par-
ticularly untrusted book sellers.

The issues described in the first two items above are addressed
in initiatives that are proposing standard solutions to be
adopted by the applications. For instance, the Platform for
Privacy Protection initiative of the W3C Consortium (P3P,

[9]) is defining a standard representation language for the
specification of privacy preferences and privacy management
policies. The ultimate goal is to enable the specification of
privacy preferences at the customer side (e.g., in the user
agent of a Web browser) and the automated verification of
the acceptability of the policies adopted by the web sites the
user is visiting.

As far as the binding task is concerned (item 2 above),
this is very a complex issue and has usually been addressed
by adopting ad hoc solutions. However, the current attempts
to solve this issue tend to propose standard ontologies for
the representation of user information and preferences, with
the goal to make applications exploit a uniform representation
language for the description of their users. Specifically, in the
P3P proposal, a user information ontology has been defined to
describe basic customer data such as contact addresses, socio-
demographic information and clickstream data. Moreover, in
order to enable service providers to declare the kind of user
preference they want to collect, the ontology can be extended
with additional concepts. This means that standard preference
ontologies can be developed for the main sales domains,
similar to the representation of products in the RosettaNet
initiative [10]. Furthermore, in the research about Semantic
Web, complex ontologies are being proposed to represent rich
user preference information; e.g., see [11], [12].

In the rest of this paper, we will focus on the third issue,
which has been relatively unexplored. For simplicity, we will
describe the user preferences in a trivial<feature, value>
representation language, as the focus of this presentation
is in the controlled propagation of information, not on the
kind of exchanged data. Moreover, given the trend towards
the standardization of ontologies, we will assume that the
User Modeling Agent adopts a general ontology and that
the applications registered for information sharing adopta
subset of that ontology, without handling ontology mapping
issues. Finally, we will assume that customers do not impose
any restrictions on the propagation of their personal data
although we believe that our framework can be extended
to manage privacy preferences by conforming to the P3P

baldoni
6

Customer preferences:
Books:
history: (Int:[0,1], Confidence:[0,1]);
science: (Int:[0,1], Confidence:[0,1]);
scienceFiction: (Int:[0,1],Confidence:[0,1]);
literature: (Int:[0,1], Confidence:[0,1]);
...

Music:
rock: (Int:[0,1], Confidence:[0,1]);
jazz: (Int:[0,1], Confidence:[0,1]);
disco: (Int:[0,1], Confidence:[0,1]);
...

Fig. 2. Portion of the Customer Preference Ontology.

platform specifications without major problems.

III. A RCHITECTURE OF OURCUSTOMER INFORMATION

SHARING FRAMEWORK

Before describing the Trust Management System, it is worth
sketching the architecture of the customer information sharing
service which controls the propagation of information between
registered service providers.

We have designed a User Modeling Agent devoted to
coordinating the propagation of information between service
providers, by taking their mutual trust relationships into
account. The architecture supports the cooperation between
heterogeneous applications, that may (may not) exploit a local
user modeling component for the management of the customer
profiles. Our User Modeling Agent is also responsible for
reconciling the information provided by the service providers,
by merging the alternative user models in order to generate the
preference information needed by each individual application.

Figure 1 shows the high-level architecture of our framework.
The figure shows a scenario where four service providers have
registered for information sharing. Each application has alocal
database (customer DB) storing its own customer information
and may exploit a local user modeling component (umc) to
manage the user models. The local user modeling component
is shown as a small box within the application rectangle; in the
example, three applications have their own component (plain
boxes), while one application (application 2) only exploits the
preference information provided by the User Modeling Agent
(dashed box).

Thecustomer preference ontologydefines the representation
of preferences adopted in the User Modeling Agent and in the
registered applications. As the User Modeling Agent must be
able to integrate the information retrieved from differentser-
vice providers, the ontology is organized in subparts describing
the customer preferences in different domains, e.g., the sales of
books, music, and services such as insurance agencies. Figure
2 shows a portion of the ontology related to the books and
music sales domains. For each concept:

• The preference is represented as an interest degree that
takes real values in [0, 1]. The 0 value denotes total lack
of interest, while 1 denotes maximum interest.

• The confidence degree describes the reliability of the
estimated interest: it is a real number in [0, 1], where

0 denotes total lack of confidence (no evidence about the
preference is available) and 1 denotes absolute confidence
in the estimation.
The confidence degree enables the User Modeling Agent
to correctly integrate the information provided by the
applications. In fact, each application is likely to provide
evidence about few user preferences, leaving the other
unknown and this is represented by setting the confidence
to 0.

Similar to the approach adopted in other application domains
(e.g., TV recommenders [13], [14]), the ontology is organized
in a hierarchical way, as a tree of concepts, which supports
a rather straighforward propagation of the interest and confi-
dence information between concepts.

At the core of the architecture, theUser Modeling Agent
manages the registered applications. The agent exploits a
service provider DBstoring information about the applications
registered for customer information sharing. As describedin
the following section, a registration service (the Trust Man-
agement System) enables service providers to join the set of
registered applications and to specify trust relationships with
the other service providers. The User Modeling Agent exploits
these relationships to constrain the propagation of customer
information within the pool of registered applications.

When an applicationSP invokes the User Modeling Agent
to acquire the preferences of a customerC, the agent selects
the trusted applications and requestsC ’s user models. Then,
the agent synthesizes the customer preferences, it generates
the user model including the information needed bySP and
sends the information toSP . The exchange of data between
service providers and User Modeling Agent is carried out by
means of SOAP messages storing the user models.

In order to merge the user preferences collected by differ-
ent providers, the identifiers selected by the customer when
registering for the various services have to be related to one
another. As the identification of the customer across different
applications is a very complex issue, global identifiers have
been proposed, e.g., in the Microsoft Liberty Alliance project
[15]. In our work, we adopt the global identifier approach:
the User Modeling Agent maintains a centraluser model DB
storing, for each customer, the identification data she entered
when she registered at a service provider’s site. In the absence
of a global identifier (e.g., for customers who did not accept
a global passport and who registered for a service before
it registered for information sharing), multiple identities are
treated as different customers.

IV. T RUST MANAGEMENT

The trust relationships are specified by the service provider
administrators when they register for customer information
sharing and are stored in theservice provider DBmanaged
by the Trust Management System and exploited by the User
Modeling Agent at information propagation time.

Similar to policy-based approaches [16], we adopted a
concise and declarative representation of trust relationships
based on the specification of service provider features and of

baldoni
7

Fig. 4. Trust Management System: Introduction of Information about a Service Provider.

conditions on the propagation of data. However, we adopted
an explicit trust management technique, based on the analysis
of trusted party lists, instead of automatically providingaccess
certificates. The reason is that, in an open e-commerce environ-
ment, the set of service providers having the right to receive the
information collected by a service provider cannot be defined
by means of necessary and sufficient conditions. More specif-
ically, restriction conditions can be defined to select groups of
entities eligible for information sharing. However, a one-by-
one analysis is needed to revise the groups according to the
requirements of the individual service provider, who may want
to exclude candidates for business purposes. Notice that the
evaluation of trust at the instance level is important not only
because the customer information is very precious, but also
because its dissemination is regulated by severe privacy rules
that make both the service provider (as collector of personal
data) and the middle agent(s) supporting information sharing
responsible for any misuse of such data. Thus, each service
provider administrator must be enabled to inspect and modify
(by overriding general feature-based trust relationships) the

Identification data:
ID: SP1;
Name: BookLand;
URL: http://www.bookLand.com;
...

Categorization: bookSeller;
Features:

NumberOfSubscribers: 3000;
...

Trust relationships:
TAKE: {(bookSeller OR movieSeller) AND

nrOfSubscribers>1000, 1), ...}
NOT-TAKE: {musicSeller, ...}
GIVE: {bookSeller OR movieSeller, ...}
NOT-GIVE: {insuranceAgent, ... }

Fig. 3. Sample Service Provider Descriptor.

list of parties to which the information sharing framework
propagates the data.

A. Description of Service Providers

Each service provider is described by the following data,
stored in a table of theservice provider DB(see Figure 3 for
a sample descriptor):

1) Identification data: name, address, social security number,
. . .
2) Categorization: each service provider is classified in one
or more categories. A taxonomy specifies the service provider
types handled by the User Modeling Agent; e.g.,bookSeller,
musicSellerand insuranceAgent.
3) Features: number of subscribers, Quality of Service, . . .
4) Trust relationships. These relationships are stored in
separate fields, each one including one or more (alternative)
relationships, separated by commas:

• TAKE: Conditions for the selection of the applications
from which the service provider wants to receive cus-
tomer information and degree of trust in the information.

– The conditions are well-formed boolean expressions
and may include categories and restrictions on the
values of the service provider features.

– The degree of trust is a real value in (0,1]. The
value 1 denotes absolute trust, while values near to
0 denote lack of trust, i.e., the provider ignores the
information coming from those providers.

• NOT-TAKE: Conditions for the selection of the appli-
cations from which the service provider does not want
to receive information. These conditions have the same
format as the previous ones but the trust degree is omitted
because it is by default equal to 0.

• GIVE: Conditions imposed by the service provider on
the dissemination of customer information to other ser-
vice providers. These conditions are well-formed boolean

baldoni
8

Fig. 5. Trust Management System: Definition of Trust Relationships.

expressions and may include categories and restrictions
on the values of the service provider features.

• NOT-GIVE: Conditions for the selection of applications
to which the service provider does not want to deliver its
own customer information. The conditions have the same
format as theGIVE ones.

Notice that by definingTAKEandNOT-TAKErelationships,
the service provider assesses the usefulness and the quality of
the preference estimates that might be provided by the other
applications. For instance, theTAKE field of the descriptor
of Figure 3 specifies that theBookLand service provider
only trusts the information provided by book sellers and
movie sellers having at least 1000 subscribers. Moreover, the
NOT-TAKE field specifies that no feedback about customer
preferences has to be taken from music sellers.

B. Management of the Service Provider Descriptors

The descriptor of a service provider is filled in by its
administrator at registration time. In order to facilitatethis
activity, we have developed a Trust Management System that
offers a graphical user interface for the introduction of the
features of the service under specification and the conditions
of the trust relationships. This system stores informationabout
all the registered service providers and manages the network
of trust relationships by summarizing them, in order to support
an efficient propagation of information between applications.

Figure 4 shows a portion of the user interface of the
Trust Management System, concerning the introduction of
information about an individual service provider. At the right
side, the screenshot shows a portion of the registration form
(”Nome” - name; ”Subscribers”, ”Anni in internet” - years of
activity in internet, etc.). At the left side, a window shows
the list of the registered service providers. Figure 5 shows
another page, supporting the definition of trust relationships.
The service provider administrator is guided in the definition
of trust conditions that specify which applications can usethe

customer information provided by the service under specifi-
cation.1 In particular, the system enables the administrator to
include/exclude specific categories of applications, require a
minimum/maximum number of customers, or number of years
of activity in internet, and include/exclude specific marketing
areas. Similar pages are generated to support the definitionof
conditions on the retrieval of customer information from other
service providers. The system assists the administrator inthe
specification of trust relationships by performing consistency
checks on the defined trust conditions. For instance, the same
condition cannot be specified both in theGIVE and theNOT-
GIVE fields.

Given the trust relationships specified by the administrator
(GIVE, NOT-GIVE, TAKEand NOT-TAKEfields of the de-
scriptor), the Trust Management System generates three trust
relationship lists,GIVE-IND, NOT-GIVE-INDandTAKE-IND,
by analyzing the descriptors of the other service providers
(e.g., see Figure 6). Specifically:

• The GIVE-IND list is generated by selecting the service
providers that satisfy at least oneGIVE condition, that
do not satisfy anyNOT-GIVEcondition and that do not
trust any untrusted service provider (i.e., the transitive
closure of theGIVE-IND relationship does not include
any untrusted provider).

• The NOT-GIVE-IND is generated by subtracting the ap-

1We assume that the service provider administrator fills in the forms by
providing correct data. The provision of false identities is a legal problem
that cannot be handled at the technical level.

ID: SP1;
Trust relationships:

TAKE-IND: {(SP2, 1), (SP10, 0.5), (SP45, 0), ...}
GIVE-IND: {SP2, SP10, ...}
NOT-GIVE-IND: {SP3, SP8, ...}

Fig. 6. Trust Relationships between Individual Service Providers.

baldoni
9

TABLE I

SUMMARY OF TRUST RELATIONSHIPS FORINFORMATION SHARING.

TRUST TABLE
Destination Source Filter

SP1 SP2 1.0
SP1 SP3 0.0
SP1 SP4 0.6
SP2

plications in theGIVE-IND list from the complete set of
registered applications.

• The TAKE-IND list includes all the registered service
providers and specifies, for each one, the level of trust
in the customer information they provide. This is a real
number in [0, 1] and has the same meaning adopted in the
TAKE field of the descriptor. Untrusted service providers
have a 0 trust level.
The level of trust associated to service providers is
computed as follows: each service provider that satisfies
at least oneTAKE condition, does not satisfy anyNOT-
TAKE condition and does not trust any service provider
satisfying aNOT-TAKEcondition has level equal to the
minimum value associated to the provider by means of
the TAKE conditions. All the other service providers
receive a level of trust equal to 0. For instance, consider
the TAKE andNOT-TAKEconditions reported in the de-
scriptor ofSP1in Figure 3. A service provider classified
both as abookSellerand movieSellerwould receive a
0 level of trust because it satisfies a condition reported
in the NOT-TAKEfield. Notice that these conditions are
evaluated in a pessimistic way (minimum value) because
they are associated to the quality and usefulness of the
customer information that is going to be received by a
service provider. If some characteristics of an application
have the potential to introduce noisy data, or irrelevant
data, the quality of its contribution is reduced.

The generation of these lists is aimed at presenting details
about the trusted and untrusted applications registered for
customer information sharing. By exploiting the Trust Man-
agement System, the administrator of a service providerSP
may inspect and modify (also by overriding the trust relation-
ships that have been defined) the lists of service providers
receiving information fromSP or providing information to
SP . Therefore, the administrator may periodically check the
set of registered service providers and update the lists to
include and/or exclude new applications. This is importantfor
two reasons: first, the administrator needs to treat individual
service providers in a special way (e.g., to trust a provider
belonging to a generally untrusted category and vice versa).
Second, as time passes, the set of registered applications may
change: other service providers may modify their descriptors
(a book seller might start to sell music, as well) and new
service providers may register.

C. Summarizing Trust Relationships

Although theGIVE-IND, NOT-GIVE-INDand TAKE-IND
lists provide complete information about the trust relationships
between pairs of service providers, they fail to support the
efficient propagation of the user models at run-time. In fact,
each time the User Modeling Agent has to propagate the
customer information from a service providerSPj to another
oneSPi, the agent should check:

• whetherSPi satisfies theGIVE restrictions specified by
SPj , and

• to which extentSPi is trusting the information provided
by SPj (trust level inSPi’s TAKE-IND restrictions).

In order to support the efficient propagation of information
between service providers, we have decided to pre-compile
the trust relationships: in theservice provider DBa TRUST
table summarizes the trust relationships existing betweenall
the registered service providers; see Table I. The table abstracts
from the details of theGIVE and TAKE relationships, which
represent unilateral viewpoints on the propagation of informa-
tion, and describes the weight of the information provided by
the various applications in the generation of the user model
for each service provider. More specifically, in the table:

• The Destinationcolumn represents the service provider
receiving the information.

• The Source column denotes the service provider that
should provide the information.

• The Filter column includes real values in [0, 1] and
specifies to which extent the information provided by
the source application must be taken into account when
integrating the customer’s preferences to be sent to the
destination application. As usual, if the filter takes a value
close to 1, this means that the information provided by the
source has to be propagated to the destination. Moreover,
if the filter is 0, no information has to be propagated.2

The TRUST table is generated and revised off-line by our
Trust Management System. The revision process is launched
periodically, in order to update the table according to the
changes in the pool of registered service providers; e.g., new
registrations, removals, changes in the descriptors.

D. Run-time Customer Information Sharing

The idea behind customer information sharing is that, when
an applicationSPi invokes the User Modeling Agent to
retrieve information about a customerC ’s preferences, the
Agent exploits theTRUSTtable to select the service providers
to be contacted. Only the applications whose filter is positive
are considered in the generation of the user model and the
value of the filter is exploited to merge the preference estimates
provided by the applications. Specifically, the User Modeling
Agent should retrieveC ’s preferences from the other registered
applications according to the following principles:

2The filter takes the 0 value if the destination application isin the NOT-
GIVE-IND list of the source or if the level of trust between destination and
source in theTAKE-IND list is 0. Otherwise, the filter takes the trust level
specified in theTAKE-IND list and thus corresponds to how strongly the
destination application trusts the quality of information provided by the source.

baldoni
10

1) The bidirectional trust relationships betweenSPi and
the other applications stored in theTRUSTtable guide
the identification of the subset of applications to be
considered by the User Modeling Agent and specify
SPi’s trust in the provided information (Filter field of
the table).

2) Within the set of selected applications, only those having
C as a registered customer have to be considered.

3) The fact thatC has registered in an applicationSPj does
not mean thatSPj has already acquired any preference
information aboutC.

In order to take the first two factors into account, the User
Modeling Agent consults theTRUSTtable to select a set of
candidate applications and it queries theuser model DBto
identify the applications that haveC as a registered customer.
The agent exploits theFilter information stored in theTRUST
table to tune the influence of their customer information in
the generation of the user model. The trust level has to be
taken into account when combining the contribution of the
applications to the generation of the model. Ideally, the trusted
applications should stronfly influence the generation of the
user model, while the less trusted ones should marginally
influence the process.

As far as the third factor is concerned, the contribution to
the generation of the user model carried by each application
A must be also tuned according to the confidence ofA in
the provided information (confidence degree assigned by the
application, given the amount of evidence about the customer
at disposal). As specified in thecustomer preference ontology,
each customer preference has an associated confidence degree,
describing the reliability of the information, i.e., whether there
is evidence about the provided information or not.

We have selected a weighted addition formula to combine
the information about the customer preferences provided by
the applications invoked by the User Modeling Agent. For
each requested preferenceP , the agent combines the interest
estimates provided by the trusted applicationsSPj as follows:
Int P = [

∑n

j=1
MIN(trustij , confj) ∗ Int PSPj

]/δ (i)

whereδ =
∑n

j=1
MIN(trustij , confj)

In the formula:
• Int P is the interest value forP generated by the User

Modeling Agent, given the contribution of the invoked
service providers;

• n is the number of invoked applications;
• trustij represents how stronglySPi trustsSPj (i.e., it

is theFilter associated toSPj in SPi’s TRUSTtable);
• confj denotes the confidence associated to the interest

by SPj ;
• δ is applied to normalizeInt P in [0, 1].

For each invoked applicationSPj , the contribution to the
computation of the interest value forP is thus weighted
according toSPi’s trust level inSPj and toSPj ’s confidence
in the estimated preference. The minimum of the two values
is exploited to define the impact of the estimate according to
a Fuzzy AND.

The formula (i) enables the User Modeling Agent to merge
the information provided by the various applications according
to the service providers’ requirements, but also on the basis
of a subjective evaluation of the reliability of the provided
information. As confidence values are associated to individual
preferences, they may change from invocation to invocation,
depending on the observations of the customer behavior car-
ried out by the applications.

V. D ISCUSSION ANDRELATED WORK

Some policy-based approaches [16] have been proposed
to manage the trust relationships between applications and
to regulate the access to shared resources and data. For
instance, the framework described by Kagal and colleagues
[17] supports the automatic and distributed management of
access rights to resources and information. The framework
is implemented in a language supporting the specification of
deontic concepts, such as rights and prohibitions to perform
actions. Suitablesecurity agentsapply the defined policies to
grant or cancel access and delegation rights to groups of agents
in a controlled way, by delivering certificates.

Indeed, the purpose of our work differs from Kagal et al.’s
work [17], [18], in relation to the type of rights we aim at
regulating.

• Kagal et al. control different types of actions that the
applications may perform on the resources, such as “read-
ing”, “writing”, “executing” a file. Instead, we are only
concerned with “reading” rights.

• At the same time, however, our framework enables the
applications to define restrictions on the type of infor-
mation they want to receive and controls the information
flow accordingly.

VI. CONCLUSIONS ANDFUTURE WORK

We have presented a framework for customer information
sharing that supports the controlled propagation of information
among service providers. Our framework includes a regis-
tration service (the Trust Management System) exploited by
service providers in order to join the pool of applications shar-
ing information with one another. Moreover, the framework
includes a User Modeling Agent that controls the information
flow between applications and reconciles the information pro-
vided by the various service providers in order to generate the
preference information needed by the requesting application.

We have developed a proof-of-concept implementation of
the customer information sharing framework that supports the
service provider administrator in the introduction of infor-
mation about service providers and trust relationships. The
framework is based on Java and uses JDBC technology to
connect to the database where the trust information is stored
in the corresponding tables.

Our framework handles bidirectional trust relationships to
address the fact that service providers may want to:

• control the dissemination of information by imposing
restrictions on the service providers that will receive data;

baldoni
11

baldoni

• impose restrictions on the service providers from which
they want to receive information, in order to filter out
irrelevant information sources available through the in-
formation sharing service.

As already specified, we have left the management of the
customers’ privacy preference aside, assuming that the cus-
tomers do not impose restrictions on the dissemination of their
personal data. In our future work, we will extend our proposal
to the treatment of customer preferences, which can be done
without major architectural changes. Specifically, takingthe
P3P specifications into account, theuser model DBhandled
by the User Modeling Agent could be extended to store
the individual customer’s privacy preferences. Moreover,the
overall service should require that, at registration time,the
service providers publish their own P3P privacy policies. Hav-
ing this information available, the User Modeling Agent could
propagate the customer information between applications by
taking into account not only the trust relationships, but also
possible constraints imposed by the individual customer.

In our future work we will analyze the ontology issues
concerning the binding between the service providers’ lo-
cal representations of the customer information and the one
adopted in the customer information sharing service. Our goal
is the development of an ontology binding tool supporting
the administrator of a service provider to define the corre-
spondences between the customer preferences defined in the
application and those exploited by the main user model for
information sharing.

In our future work we will also study the possibility of
distributing the information sharing service for efficiency and
reliability purposes. For instance, an interesting solution to
study is a distributed User Modeling Agent in the line of
peer-to-peer sharing networks, where the applications directly
contact other trusted applications to gather customer profile
information.

REFERENCES

[1] P. Resnick and H. Varian, Eds.,Special Issue on Recommender Systems.
Communications of the ACM, 1997, vol. 40, no. 3.

[2] J. Fink and A. Kobsa, “A review and analysis of commercial user
modeling servers for personalization on the World Wide Web,”User
Modeling and User-Adapted Interaction, Special Issue on Deployed
User Modeling, vol. 10, no. 2-3, pp. 209–249, 2000.

[3] M. Maybury and P. Brusilovsky, Eds.,The adaptive Web. Communi-
cations of the ACM, 2002, vol. 45, no. 5.

[4] R. Burke, “Hybrid recommender systems: survey and experiments,” User
Modeling and User-Adapted Interaction, vol. 12, no. 4, pp. 289–322,
2002.

[5] M. O’Connor, D. Cosley, J. Konstan, and J. Riedl, “PolyLens: a
recommender system for groups of users,” inProc. European Confer-
ence on Computer Supported Cooperative Work (ECSCW 2001), Bonn,
Germany, 2001.

[6] D. Billsus and M. Pazzani, “A personal news agent that talks, learns and
explains,” inProc. 3rd Int. Conf. on Autonomous Agents (Agents ’99),
Seattle, WA, 1999, pp. 268–275.

[7] A. Kobsa, “Personalized hypermedia and international privacy,” Com-
munication of the ACM, vol. 45, no. 5, pp. 64–67, 2002.

[8] A. Kobsa and J. Schreck, “Privacy through pseudonymity inuser-
adaptive systems,”ACM Transactions on Internet Technology, vol. 3,
no. 2, pp. 149–183, 2002.

[9] W3C, “Platform for Privacy Preferences (P3P) Project,”
http://www.w3.org/P3P/.

[10] “RosettaNet ebusiness standards for the Global SupplyChain,”
http://www.rosettanet.org/RosettaNet/Rooms/DisplayPages/LayoutInitial.

[11] UbisWorld, “Ubiquitous User, Modeling for Situated Interaction,”
http://www.u2m.org/.

[12] D. Heckmann, “A specialised representation for ubiquitous computing,”
in Proc. Workshop on User Modelling for Ubiquitous Computing,
Johnstown, PA, 2003, pp. 26–28.

[13] L. Ardissono, C. Gena, P. Torasso, F. Bellifemine, A. Chiarotto,
A. Difino, and B. Negro, “Personalized recommendation of TV pro-
grams,” inLNAI 2829. AI*IA 2003: Advances in Artificial Intelligence.
Berlin: Springer Verlag, 2003, pp. 474–486.

[14] L. Ardissono, C. Gena, P. Torasso, F. Bellifemine, A. Difino, and
B. Negro, “User modeling and recommendation techniques for person-
alized Electronic Program Guides,” inPersonalized Digital Television.
Targeting Programs to Individual Users. Kluwer Academic Publishers,
2004.

[15] Liberty Alliance Developer Forum, “Liberty alliance project specifica-
tions,” http://www.projectliberty.org/specs/, 2004.

[16] M. Sloman, “Policy driven management for distributed systems,”Journal
of Network and Systems Management, vol. 2, no. 4, pp. 333–360, 1994.

[17] L. Kagal, S. Cost, T. Finin, and Y. Peng, “A policy language for pervasive
systems,” inProc. 4th IEEE Int. Workshop on Policies for Distributed
Systems and Networks, Lake of Como, Italy, 2003.

[18] L. Kagal, T. Finin, and A. Joshi, “A policy based approach to security
for the Semantic Web,” inProc. 2nd Int Semantic Web Conference
(ISWC2003), Sanibel Island, FL, 2003.

baldoni
12

A Game-Theoretic Operational Semantics for the
DALI Communication Architecture

Stefania Costantini Stefania Costantini Alessia Verticchio
Universit̀a degli Studi di L’Aquila

Dipartimento di Informatica
Via Vetoio, Loc. Coppito, I-67010 L’Aquila - Italy
{stefcost,tocchio }@di.univaq.it

Abstract— In this paper we present the communication ar-
chitecture of the DALI Logic Programming Agent-Oriented
language and we discuss its semantics. We have designed a
meta-level where the user can specify, via the distinguished
tell/told primitives, constraints on communication or even a
new protocol. Moreover, the user can define meta-rules for
filtering and/or understanding messages via applying ontologies
and commonsense/case-based reasoning. Declaratively and proce-
durally, these forms of meta-reasoning are automatically applied
by a form of implicit, logical reflection. Operationally, we define
a transition system based on a dialog game syntax. Thus, our
operational semantics provides a formal link between the dialog
locutions and the DALI semantic mechanisms. We embed the
DALI/FIPA locutions and protocol within a framework that filters
and interprets messages, without resorting to the definition of
”mental states” of the agent. The locutions we consider include
the relevant FIPA-compliant primitives, plus others which we
believe to be needed in a logic programming setting.

I. I NTRODUCTION

Interaction is an important aspect of Multi-agent systems:
agents exchange messages, assertions, queries. This, depend-
ing on the context and on the application, can be either in
order to improve their knowledge, or to reach their goals, or
to organize useful cooperation and coordination strategies. In
open systems the agents, though possibly based upon different
technologies, must speak a common language so as to be able
to interact.

However, beyond standard forms of communication, the
agents should be capable of filtering and understanding mes-
sage contents. A well-understood topic is that of interpreting
the content by means of ontologies, that allow different
terminologies to be coped with. In a logic language, the
use of ontologies can be usefully integrated with forms of
commonsense and case-based reasoning, that improve the
“understanding” capabilities of an agent. A more subtle point
is that an agent should also be able to enforce constraints
on communication. This requires to accept or refuse or rate
a message, based on various conditions like for instance the
degree of trust in the sender. This also implies to be able to
follow a communication protocol in “conversations”. Since the
degree of trust, the protocol, the ontology, and other factors,
can vary with the context, or can be learned from previous

We acknowledge support by theInformation Society Technologies
programme of the European Commission, Future and Emerging
Technologiesunder the IST-2001-37004 WASP project.

experience, in a logic language agent should and might be
able to perform meta-reasoning on communication, so as to
interact flexibly with the “external world.”

This paper presents the communication architecture of the
DALI agent-oriented logic programming language [2] [3],
and the operational semantics of this architecture. DALI is
an enhanced logic language with fully logical semantics [4],
that (on the line of the arguments proposed in [7]) integrates
rationality and reactivity, where an agent is able of both
backwards and forward reasoning, and has the capability to
enforce “maintenance goals” that preserve her internal state,
and “achievement goal” that pursue more specific objectives.
An extended resolution and resolution procedure are provided,
so that the DALI interpreter is able to answer queries like in
the plain Horn-clause language, but is also able to cope with
different kinds of events.

In this paper we also present the operational semantics of the
communication architecture that we present. Actually, we have
defined a full operational semantics for the DALI language,
which has been a basis for implementing the DALI system
and is being used for developing model-checking tools for
verifying program properties. For providing the operational
semantics of the DALI communication architecture, following
[8] and the references therein, we define a formal dialogue
game framework that focuses on the rules of dialogue, regard-
less the meaning the agent may place on the locutions uttered.
This means that we formulate the semantics of communication
locutions as steps of a dialogue game, without referring to the
mental states of the participants. This because we believe that
in an open environment agents may also be malicious, and
falsely represent their mental states. However, the filter layer
of the DALI communication architecture (discussed below)
allows an agent to make public expression of its mental states,
and other agents to reason both on this expression and on their
own degree of belief, trust, etc. about it.

The DALI communication architecture specifies in a flexible
way the rules of interaction among agents, where the various
aspects are modeled in a declarative fashion, are adaptable to
the user and application needs, and can be easily composed.
DALI agents communicate via FIPA ACL [6], augmented with
some primitives which are suitable for a logic language. As
a first layer of the architecture, we have introduced a check
level that filters the messages. This layer by default verifies
that the message respects the communication protocol, as well

baldoni

as some domain-independent coherence properties. The user
can optionally add other checks, by expanding the definition
of the distinguished predicatestell/told. Several properties can
be checked, however in our opinion an important role of the
filter layer is that of making it explicit which assumption
an agent makes about the mental states of the other agents,
their reliability, their skills, how much they can be trusted,
etc. If a message does not pass the check, it is just deleted.
As a second layer, meta-level reasoning is exploited so as to
try to understand message contents by using ontologies, and
forms of commonsense reasoning. The third layer is the DALI
interpreter.

The declarative and procedural semantics (not treated here)
are defined as an instance of the general frameworkRCL
(Reflective Computational Logic) [1] based on the concept of
reflection principle as a knowledge representation paradigm
in a computational logic setting. Application of both the
filter layer and the meta-reasoning layer are understood as
application of suitable reflection principles, that we define
in the following. RCL then provides a standard way of
obtaining the declarative and procedural semantics, which can
be gracefully integrated with the semantics of the basic DALI
language [4].

The paper is organized as follows. We start by shortly
describing the main features of DALI in Section II and the
communication architecture in Section III. Then, we face the
Operational semantics in Section IV. In order to make it clear
the usefulness and usability of the proposed architecture, we
present an example in Section V. Finally, we conclude with
some concluding remarks.

II. T HE DALI LANGUAGE

DALI [2] [4] is an Active Logic Programming language
designed for executable specification of logical agents. A
DALI agent is a logic program that contains a particular kind
of rules, reactive rules, aimed at interacting with an external
environment. The environment is perceived in the form of
external events, that can be exogenous events, observations,
or messages by other agents. In response, a DALI agent can
perform actions, send messages, invoke goals. The reactive
and proactive behavior of the DALI agent is triggered by
several kinds of events: external events, internal, present and
past events. It is important to notice that all the events and
actions are timestamped, so as to record when they occurred.
The new syntactic entities, i.e., predicates related to events
and proactivity, are indicated with special postfixes (which
are coped with by a pre-processor) so as to be immediately
recognized while looking at a program.

The external events are syntactically indicated by the postfix
E. When an event comes into the agent from its “external
world”, the agent can perceive it and decide to react. The
reaction is defined by a reactive rule which has in its head
that external event. The special token:>, used instead of: −,
indicates that reactive rules performs forward reasoning. The
agent remembers to have reacted by converting the external
event into apast event(time-stamped). The set of past events

in a way constitutes the set of the new beliefs that the agent
has collected from her interaction with the environment.

Operationally, if an incoming external event is recognized,
i.e., corresponds to the head of a reactive rule, it is added into
a list called EV and consumed according to the arrival order,
unless priorities are specified.

The internal events define a kind of “individuality” of
a DALI agent, making her proactive independently of the
environment, of the user and of the other agents, and allowing
her to manipulate and revise her knowledge. An internal event
is syntactically indicated by the postfixI, and its description is
composed of two rules. The first rule contains the conditions
(knowledge, past events, procedures, etc.) that must be true so
that the reaction, specified in the second rule, may happen.

Internal events are automatically attempted with a default
frequency customizable by means of directives in the initial-
ization file. The user’s directives can tune several parameters:
at which frequency the agent must attempt the internal events;
how many times an agent must react to the internal event
(forever, once, twice,. . .) and when (forever, when triggering
conditions occur, . . .); how long the event must be attempted
(until some time, until some terminating conditions, forever).

When an agent perceives an event from the “external
world”, it does not necessarily react to it immediately: she has
the possibility of reasoning about the event, before (or instead
of) triggering a reaction. Reasoning also allows a proactive
behavior. In this situation, the event is called present event
and is indicated by the suffixN.

Actions are the agent’s way of affecting her environment,
possibly in reaction to an external or internal event. In DALI,
actions (indicated with postfixA) may have or not precondi-
tions: in the former case, the actions are defined by actions
rules, in the latter case they are just action atoms. An action
rule is just a plain rule, but in order to emphasize that it is
related to an action, we have introduced the new token:<,
thus adopting the syntaxaction :< preconditions. Similarly
to external and internal events, actions are recorded as past
actions.

Past events represent the agent’s “memory”, that makes her
capable to perform future activities while having experience
of previous events, and of her own previous conclusions. Past
events are kept for a certain default amount of time, that can
be modified by the user through a suitable directive in the
initialization file.

III. DALI C OMMUNICATION ARCHITECTURE

A. The Architecture

The DALI communication architecture (Fig.1) consists of
three levels. The first level implements the DALI/FIPA com-
munication protocol and a filter on communication, i.e. a set
of rules that decide whether or not receive or send a message.
The second level includes a meta-reasoning layer, that tries
to understand message contents, possibly based on ontologies
and/or on forms of commonsense reasoning. The third level

baldoni
14

consists of the DALI interpreter.

Fig. 1. The communication architecture of a DALI agent

The DALI/FIPA protocol consists of the main FIPA primi-
tives, plus few new primitives which are peculiar of DALI.

In DALI, an out-coming message has the format:

message(Receiver, primitive(Content, Sender))

that the DALI interpreter converts it into an internal form,
by automatically adding the missing FIPA parameters, and
creating the structure:

message(receiver address, receiver name,
sender address, sender name,
language, ontology,
primitive(Content, sender name))

Using this internal structure, an agent can include in the
message the adopted ontology and the language. When a
message is received, it is examined by a check layer composed
of a structure which is adaptable to the context and modifiable
by the user. This filter checks the content of the message,
and verifies if the conditions for the reception are verified.
If the conditions are false, this security level eliminates the
supposedly wrong message. The DALI filter is specified by
means of meta-level rules defining the distinguished predicates
tell and told.

Whenever a message is received, with content partprimi-
tive(Content,Sender)the DALI interpreter automatically looks
for a correspondingtold rule, which is of the form:

told(Sender, primitive(Content)) : −
constraint1, . . . , constraintn.

where constrainti can be everything expressible either
in Prolog or in DALI. If such a rule is found, the inter-
preter attempts to provetold(Sender, primitive(Content)).
If this goal succeeds, then the message is accepted, and
primitive(Content)) is added to the set of the external events
incoming into the receiver agent. Otherwise, the message is
discarded.

Example: the proposal to perform an action is acceptable if the
agent is specialized for the action and the Sender is reliable
(this suggests that this model allows one to integrate into the
filtering rules the concept the degree of trust).

told(Sender agent, propose(Action, Preconditions)) : −
not(unreliableP (Sender agent)),
specialized for(Action).

Symmetrically to told rules, the messages that an agent
sends are subjected to a check viatell rules. There is, however,
an important difference: the user can choose which messages
must be checked and which not. The choice is made by setting
some parameters in the initialization file. The syntax of atell
rule is:

tell(Receiver, Sender, primitive(Content)) : −
constraint1, . . . , constraintn.

For every message that is being sent, the interpreter auto-
matically checks whether an applicabletell rule exists. If so,
the message is actually sent only upon success of the goal
tell(Receiver, Sender, primitive(Content)).

Example: thetell rule authorizes the agent to send the mes-
sage with the primitiveinform if the receiver is active in the
environment and is presumably interested to the information.

tell(Agent To, Agent From, inform(Proposition)) : −
active in the world(Agent To),
specialized(Agent To, Specialization),
related to(Specialization, Proposition).

The FIPA/DALI communication protocol is implemented by
means a piece of DALI code including suitabletell/told rules.
This code is contained in a separate file,communication.txt,
that each DALI agent imports as a library, so that the com-
munication protocol can be seen an “input parameter ”of the
agent. As mentioned, whenever an incoming message passes
the told check, its contentprimitive(Content, Sender) is
treated as an external eventprimitive(Content, Sender)E.
If it corresponds to a DALI/FIPA locution, then it is managed
by predefined reactive rules (included incommunication.txt)
that behave according to the protocol. Ifprimitive is the
distinguished primitivesend message, then Content is in-
terpreted as an external eventContentE which is sent to the
agent, in the sense that no predefined reactive rule is defined,
and thus the agent has to react herself to this event.

Each DALI agent is also provided with a distinguished
procedure calledmeta, which is automatically invoked by the
interpreter in the attempt of understanding message contents.
This procedure includes by default a number of rules for cop-
ing with domain-independent standard situations. The user can
add other rules, thus possibly specifying domain-dependent
commonsense reasoning strategies for interpreting messages,
or implementing a learning strategy to be applied when all
else fails.

Example: below are the default rules that apply the equiva-
lences listed in an ontology, and possibly also exploit symme-
try of binary predicates:

baldoni
15

meta(
Initial term, F inal term, Agent Sender) : −
clause(agent(Agent Receiver),),
functor(Initial term, Functor, Arity), Arity = 0,
((ontology(Agent Sender, Functor, Equivalent term);
ontology(Agent Sender, Equivalent term, Functor));
(ontology(Agent Receiver, Functor, Equivalent term);
ontology(Agent Receiver, Equivalent term, Functor))),
F inal term = Equivalent term.

meta(
Initial term, F inal term, Agent Sender) : −
functor(Initial term, Functor, Arity), Arity = 2,
symmetric(Functor), Initial term = ..List,
delete(List, Functor, Result list),
reverse(Result list, Reversed list),
append([Functor], Reversed list, F inal list),
F inal term = ..F inal list.

Since the FIPA/DALI protocol is implemented by means
of a piece of DALI code, and the link between the agent
and the interpreter sending/receiving messages is modeled
by the reflection principles specified above, the semantics of
DALI communication is now complete. However, in the next
section we propose an operational semantics that specifies in
a language/independent fashion how the FIPA/DALI protocol
works.

B. Related Approaches

The problem of a secure interaction between the agents is
also treated in [9], [5]. However, [9] defines a system (Moses)
with a global law for a group of agents, instead of a set of
local laws for every single agent as in DALI. Moreover, in
Moses there is a special agent, calledcontroller, for every
agent, while in DALI it is necessary to define a filter for each
agent, defining constraints on the communication primitives.
Our definition of tell/told rules is structurally different from the
Moses approach: each law in Moses is defined as a prolog-
like rule having in the body both the conditions that match
with a control state of the object and some fixed actions that
determine the behavior of the law. In DALI, the told/tell rules
are the constraints on the communication and do not contain
actions. The behavior (and in particular the actions) performed
by an agent are determined by the logic program of the agent.
Another difference is that the DALI filter rules can contain past
events, thus creating a link between the present communication
acts and the experience of the agent. A particularity of the
Minsky law-governed system is that is possible to update
on-line the laws [10]. In DALI, presently it is possible to
change the rules locally by varying the name of the file that
contains the tell/told rules but in the future we will improve
our language by allowing an agent to modify even filter rules.

Santoro in [5] defines a framework for expressing agent
interaction laws by means of a set of rules applied to each
ACL message exchanged. Each rule has a prefixed structure
composed by precondition, assignment and constraint where
the precondition is a predicate on one or more fields of the
message which triggers the execution of the assignment or the
checking of the constraint. The constraint is a predicate which
specifies how the message meeting the precondition has to be
formed, and it is used to model the filtering function. The rules

consider some specific fields of a message like the name of
agents, the performative name, language, ontology, delivery
mode and content. We think that the approach followed in
DALI is only apparently similar. The Agent Communication
Context (ACC) in JADE is applied only to outcoming mes-
sages, while in DALI we submit to the filter both the received
messages and the sent messages. The structure of a DALI filter
rule is different and more flexible: in ACC the rule specifies
that if the preconditions are true, some fields of the message
must be defined by the assignments in the body; in DALI,
the body of a filter rule specifies only the constraints for the
acceptance/sending of a message. Moreover, the constraints in
DALI do not refer to specific fields. They can be procedures,
past events, beliefs and whatever is expressible either in DALI
or in Prolog. Therefore, even though both the approaches
use the concept of communication filter, we think that there
are notable differences also due to ability of Prolog to draw
inferences and to reason in DALI with respect to java.

IV. OPERATIONAL SEMANTICS

The operational semantics that we propose in this Section
follows the approach of [8] (see also the references therein).
We define a formal dialogue game framework that focuses on
the rules of dialogue, regardless the meaning the agent may
place on the locutions uttered. This means, we reformulate
the semantics of FIPA locutions as steps of a dialogue game,
without referring to the mental states of the participants. This
approach has its origin in the philosophy of argumentation,
while approaches based on assumptions about the mental
states of participants build on speech-act theory. This because
we believe that in an open environment agents may also be
malicious, and falsely represent their mental states. However,
as we have seen the filter layer of the DALI communication
architecture allows an agent to make public expression of
its mental states, and other agents to reason both on this
expression and on their own degree of belief, trust, etc. about
it.

The rules of the operational semantics show how the state of
an agent changes according to the execution of the transition
rules. We define each rule as a combination of states and laws.
Each law links the rule to interpreter behavior and is based on
the interpreter architecture.

We have three kinds of laws: those that model basic
communication acts; those describing the filter levels; those
that modify the internal state of the agent by adding items to
the various sets of events. In order to make it clear how we
express the formal link between the agent actual activity and
the semantic mechanisms, we adopt some abbreviations:

• Agx to identify the name of the agent involved by the
transition;

• SAgx or NSAgx to identify the state before and after the
application of laws.

• Lx to identify the applied law.

We adopt the pair< Agx, SAgx
> to indicate a link between

the name of an agent and her state. The state of a DALI agent
is defined as a triple:SAgx ≡< PAg, ISAg, ModeAg >

baldoni
16

wherePAg is the logic program,ISAg is the internal state and
Mode is a particular attribute describing what the interpreter
is doing. Hence, we can introduce the following equivalence:
< Agx, SAgx >≡< Agx, < PAg, ISAg, ModeAg >>

The internal state of an agent is the tuple
< E, N, I,A, G, T, P > composed by the sets of, respectively,
external events, present events, internal events, actions,goals,
test goals and past events.

Moreover, we denote byNPAg the logic program modified
by the application of one or more laws and byNISAg the
internal state modified. We distinguish the internal state IS
from the global state S because we want to consider separately
the influence of the communication acts on the classes of
events and actions within the agent. The semantic approach
we describe in this paper is based on the framework of
(labeled)transition rules. We apply them in order to describe
the interactive behavior of the system. Each transition rule is
described by two pairs and some laws. Starting from the first
pair and by applying the current laws, we obtain the second
pair where some parameters have changed (e.g., name, internal
state or modality).

First, we introduce the general laws that modify the pairs.
We start with the transitions about the incoming messages,
by showing the behavior of the communication filter level.
Next we show the semantic of meta-level and finally the
communication primitives. For lack of space, we just consider
some of them.

• L0: The receivemessage(.)law:
Locution: receive message(
Agx, Agy, Ontology, Language, Primitive)
Preconditions: this law is applied when the agentAgx finds
in the Tuple Space a message with her name.
Meaning: the agent Agx receives a message from
Agy(environment, other agents,...). For the sake of simplicity
we consider the environment as an agent.
Response: the interpreter takes the information about the
language and the ontology and extracts the name of sender
agent and the primitive contained in the initial message.

• L1: The L1 told check true(.) law:
Locution:told check true(Agy, P rimitive)
Preconditions: the constraints of told rule about the name of
the agent senderAgy and the primitive must be true for the
primitive told checktrue.
Meaning: the communication primitive is submitted to the
check-level represented by the told rules.
Response:depends on the constraints of told level. If the
constraints are true the primitive can be processed by the next
step.

• L2 : The L2 understood(.) law:
Locution: understood(Primitive)
Preconditions:in order to process the primitive the agent must
understand the content of the message. If the primitive is
sendmessage, the interpreter will check if the external event
belongs to a set of external events of the agent. If the primitive
is propose, the interpreter will verify if the requested action is
contained in the logic program.
Meaning: this law verifies if the agent understands the message.
Response:the message enters processing phase in order to
trigger a reaction, communicate a fact or propose an action.

• L3 : The L3 apply ontology(.) law:
Locution: apply ontology(Primitive)
Preconditions: in order to apply the ontology the primi-
tive must belong to set of locutions that invoke the meta-
level(sendmessage,propose,executeproc,queryref,is a fact).

Meaning: this law applies, when it’s necessary, the ontologies
to the incoming primitive in order to understand its content.
Response:the message is understood by using the ontology of
the agent and properties of the terms.

• L4: The L4 send messagewith tell(.) law:
Locution:send msg with tell(Agx, Agy, P rimitive)
Preconditions: the precondition for L4 is that the primitive
belongs to set of locutions submitted to tell check.
Meaning: the primitive can be submitted to the constraints in
the body of tell rules.
Response:the message will be sent to the tell level.

• L5: The L5 tell check(.) law :
Locution: tell check(Agx, Agy, P rimitive)
Preconditions:the constraints of tell rule about the name of the
agent receiverAgx, the agent senderAgy and the primitive are
true for L5.
Meaning: the primitive is submitted to a check using the
constraints in the tell rules.
Response: the message will either be sent to addressee
agent(L5).

• Lk: The add X(.) law:
Locution: add X(.)
where
X ∈ {internal event, external event, action,
message, past event}
Preconditions:the agent is processing X.
Meaning: this law updates the state of the DALI agent adding
an item to corresponding set to X.
Response:the agent will reach a new state. The stateSAg of
the agent will change in the following way.
k=6 and X=internalevent:
SAg =< PAg, < E, N, I, A, G, T, P >, Mode >
NSAg =< PAg, < E, N, I1, A, G, T, P >, Mode > where
I1 = I ∪ Internal event.
k=7and X=externalevent:
SAg =< PAg, < E, N, I, A, G, T, P >, Mode >
NSAg =< PAg, < E1, N, I, A, G, T, P >, Mode > where
E1 = E ∪ external event.
k=8 and X=action:
SAg =< PAg, < E, N, I, A, G, T, P >, Mode >
NSAg =< PAg, < E, N, I, A1, G, T, P >, Mode > where
A1 = A ∪ Action or A1 = A \ Action if the communication
primitive is cancel.
k=9 and X=message:
SAg =< PAg, < E, N, I, A, G, T, P >, Mode >
NSAg =< PAg, < E, N, I, A1, G, T, P >, Mode > where
A1=A∪Message. In fact, a message is an action.
k=10 and X=pastevent:
SAg =< PAg, < E, N, I, A, G, T, P >, Mode >
NSAg =< PAg, < E, N, I, A, G, T, P1 >, Mode > where
P1 = P ∪ Past event.

• L11: The L11 check cond true(.) law:
Locution: check cond true(Cond list)
Preconditions: The conditions of thepropose primitive are
true.
Meaning: this law checks the conditions inside thepropose
primitive.
Response:the proposed action will either be executed.

• L12: The update program(.) law:
Locution: update program(Update)
Preconditions:No preconditions.
Meaning: this law updates the DALI logic program by adding
new knowledge.
Response:the logic program will be updated.

• Lk: The processX law:
Locution: processX(.)
where
X ∈ {send message, execute proc, propose,
accept proposal, reject proposal}

baldoni
17

Preconditions:The agent calls the primitive X.
Meaning and Response:We must distinguish according to the
primitives:
k=13 and X=send message: this law calls the external event
contained in the primitive. As response the agent reacts to
external event.
k=14 and X=execute proc:this law allows a procedure to
be called within the logic program. As response the agent
executes the body of the procedure.
k=15 and X=propose: If an agent receives apropose, she can
choose to do the action specified in the primitive if she accepts
the conditions contained in the request. The response can be
eitheraccept proposal or reject proposal.
k=16 and X=accept proposal: An agent receives an
accept proposal if the response to a sent propose is yes.
As response the agent asserts as a past event the acceptance
received.
k=17 and X=rejectproposal: An agent receives a
reject proposal if the response to a sent proposal is
no. In response, the agent asserts as a past event the refusal.

• L18: The L18 action rule true(.) law:
Locution: action rule true(Action)
Preconditions:The conditions of the action rule corresponding
to the action are true.
Meaning: In a DALI program, an action rule defines the
preconditions for an action.This law checks the conditions
inside the action rule in the DALI logic program.
Response:the action will be executed.

We now present the operational semantics of the DALI
communication. The following rules indicate how the laws
applied to a pair determine, in a deterministic way, a new
state and the corresponding behavior of the agent.

DALI communication is asynchronous: each agent
communicates with other’s one in such a way that she is not
forced to halt its processes while the other entities produce
a response. An agent inwait mode can receive a message
taking it from the Tuple Space by using the law R0. The
global state of the agent changes passing from thewait mode
to receivedmessagemode: the message is entered in the
more external layer of the communication architecture.

R0 : < Ag1, < P, IS, wait >>
L0−→

< Ag1, < P, IS, received messagex >>

The L1 law determines the transition from the
receivedmessagemode to told mode because it can be
accepted only if the corresponding told rule is true.

R1 : < Ag1, < P, IS, received messagex >>
L1−→

< Ag1, < P, IS, toldx >>

If the constraints in the told rule are false, the message cannot
be processed. In this case, the agent returns in the wait mode
and the message do not affect the behavior of the software
entity because the message is deleted. The sender agent is
informed about the elimination.

R2 : < Ag1, < P, IS, received messagex >>
not(L1)→

< Ag1, < P, IS, wait >>

When a message overcomes the told layer, it must be
understood by the agent in order to trigger, for example, a
reaction. If the agent understands the communication act, the
message will continue the way.

R3 : < Ag1, < P, IS, toldx >>
L2→

< Ag1, < P, IS, understoodx >>

An unknown message forces the agent to use a meta-
reasoning level, if the L3 law is true.

R4 : < Ag1, < P, IS, toldx >>
not(L2),L3→

< Ag1, < P, IS, apply ontologyx >>

The meta-reasoning level can help the agent to understand
the content of a message. But only some primitives can use
this possibility and apply the ontology. Instead going inwait
mode we can suppose that the agent will call a learning
module but up to now we do not have implemented this
functionality.

R5 : < Ag1, < P, IS, toldx >>
not(L2),not(L3)→

< Ag1, < P, IS, wait >>

After the application of the ontology, if the agent
understands the message, she goes in theunderstood mode.

R6 : < Ag1, < P, IS, apply ontologyx >>
L2→

< Ag1, < P, IS, understoodx >>

If the L2 law is false, the message cannot be understood
and the agent goes inwait mode.

R7 : < Ag1, < P, IS, apply ontologyx >>
not(L2)→

< Ag1, < P, IS, wait >>

A known message enters in the processing phase and the
internal state of the agent changes because an item can be
added to internal queues of events and actions. The logic
program can change because we can add some facts using
the confirm primitive.

R8 : < Ag1, < P, IS, understoodx >>
L6,L7,L8,L9→

< Ag1, < NP, NIS, processx >>

When an agent sends a message, the L4 law verifies that it
must be submitted to tell level. In this rule we suppose that
the response is true.

R9 : < Ag1, < P, IS, sendx >>
L4→

< Ag1, < P, IS, tellx >>

If the response is false, the message is immediately sent and
the queue of the messages(actions) changes.

R10 : < Ag1, < P, IS, sendx >>
not(L4),L9→

< Ag1, < P, NIS, sentx >>

If the constraints of tell level are satisfied, the message is
sent.

R11 : < Ag1, < P, IS, tellx >>
L5,L9→

< Ag1, < P, NIS, sentx >>

A message sent by the agentAg1 is received by the agent
Ag2 that goes inreceived message mode.

R12 : < Ag1, < P, IS, tellx >>
L5→

< Ag2, < P, IS, received messagex >>

baldoni
18

If the message do not overcome the tell level because the
constraints are false, the agent returns inwait mode.

R13 : < Ag1, < P, IS, tellx >>
not(L5)→

< Ag1, < P, NIS, wait >>

This last rule shows how, when a message is sent, the
corresponding action becomes past event.

R14 : < Ag1, < P, IS, sentx >>
L10→

< Ag1, < P, IS, wait >>

The DALI primitive send message: by using this locution a
DALI agent is able to send an external event to the receiver.

< Ag1, < P, IS, processsend message >>
∧i=6,7,8,10,12Li→

< Ag1, < NP, NIS, wait >>
According to the specific reactive rule, several sets of events
can change. In fact, in the body of rule we can find actions
and/or goals. Since the external event will become a past event,
the sets of external and past events must be updated. After
processing the reactive rule the interpreter goes inwait mode.
< Ag1, < P, IS, processsend message >>

L13,L9→
< Ag1, < P, NIS, sendprimitive >>

In the body of rule there could be some messages that the
agent must send.

The FIPA primitive propose: this primitive represents the
action of submitting a proposal to perform a certain action,
given certain preconditions.
< Ag1, < P, IS, processpropose >>

L15,L11,L9→
< Ag1, < P, NIS, sendaccept proposal >

This transition forces an agent receiving thepropose
primitive to answer with accept proposal if the
conditions included in the propose act are acceptable.
< Ag1, < P, IS, sendaccept proposal >>

L8,L9→
< Ag1, < P, NIS, sendinform >

When an agent accepts the proposal, then she performs
the action. In this case the internal state of agent
changes by adding the action. Finally, the agent
communicates to the proposer that the action has been

done. < Ag1, < P, IS, sendaccept proposal >>
L9→

< Ag1, < P, NIS, sendfailure >

If the action cannot be executed, then the
agent sends a failure primitive to the proposer.
< Ag1, < P, IS, processpropose >>

L15,not(L11),L9→
< Ag1, < P, NIS, sendreject proposal >>

If the conditions in the propose are unacceptable, the
response can be only areject proposal.

V. A N EXAMPLE OF APPLICATION OF THEDALI
COMMUNICATION FILTER

We will now demonstrate how the filter level works by
means of an example, that demonstrates how this filter is
powerful enough to express sophisticated concepts such as
updating the level of trust. Trust is a kind of social knowledge
and encodes evaluations about which agents can be taken as

reliable sources of information or services. We focus on a prac-
tical issues: how the level of Trust influences communication
and choices of the agents.

We consider as a case-study a cooperation context where
an ill agent asks her friends to find out a competent specialist.
When the agent has some particular symptoms, she calls a
family doctor that recommends her to consult a lung doctor.
The patient, through a yellow pages agent, becomes aware
of the names and of the distance from her city of the two
specialists, and asks her friends about them. The patient has a
different degree of trust on her friends and each friend has a
different degree of competence on the specialists. Moreover,
the patient is aware of the ability of the friends about medical
matters: a clerk will be less reliable than a nurse. In this
context we experiment the communication check level joining
the potentiality of tell/told rules and the trust concept. We
suppose that the ill agent receives a message only if she has a
level of trust on the sender agent greater than a fixed threshold:

told(Ag, send message()) : −
trustP (, Ag, N), N > threshold.

We can adopt a similar rule also for the out-coming mes-
sages. Now we discuss the trust problem by showing the more
interesting DALI rules defining the agents involved in this
example. The cooperation activity begins when the agentAg
becomes ill and communicates her symptoms to doctor. If
these symptoms are serious, the doctor advises the patient to
find out a competent lung doctorM . If the agent knows a
specialistSp and has a positive trust valueV1 on her, she
goes to lung doctor, else asks a yellow page agent.

consult lung doctorE(M) :>
clause(agent(Ag),),
choose if trust(M, Ag).

choose trust(, Ag) : −
clause(i know lung doctor(Sp),) ,
trustP (Ag, Sp, V1), V1 > 0,
go to lung doctorP (Sp).

choose trust(M, Ag) : −
messageA(yellow page,
send message(search(M, Ag), Ag)).

The yellow page agent returns to patient, by means of the
inform primitive, a list of the lung doctors. Now the patient
must decide which lung doctor is more competent and reliable.
How can she choose? She asks her friends for help.

take information about(Sp) : −
clause(lung doctor(Sp),).

take information aboutI(Sp) :>
clause(agent(Ag),),
messageA(friend1,
send message(what about competency(Sp, Ag), Ag)),
messageA(friend2,
send message(what about competency(Sp, Ag), Ag)).

Each friend, having the information
competent(lung doctorx, V alue) about the ability of
the specialists, sends an inform containing the evaluation of
the competency.

what about competencyE(Sp, Ag) :>
choose competency(Sp, Ag).

baldoni
19

choose competency(Sp, Ag) : −
clause(competent(Sp, V),),

messageA(Ag,
inform(lung doctor competency(Sp, V), friendx)).

choose competency(Sp, Ag) : −
messageA(Ag,
inform(dont know competency(Sp), friendx)).

The patient is now aware of the specialist and friend’s
competency and has a value of trust on the friends consolidated
through the time. Moreover she knows the distance of the
specialists from her house. Using a simple rule that joins
those parameters, she assigns a value to each advice:
specialist evaluation(lung doctorx, friendy, V alue).

The ill agent will choice the lung doctor in the advice
having the greaterV alue and will go to the specialist:
follow adviceA(Friend), go to lung doctorA(Sp).

Will he be cured? After some time the patient will re-
consider her health. If she does not have any symptom
(temperature, thorax pain, cough, out of breath), she increases
the trust on the friend that has recommended the lung doctor
and sets the trust on that specialist a smallest value:

cured(Sp, Friend) : −
go to lung doctorP (Sp),
follow adviceP (Friend),
not(temperatureP),
not(thorax painP),
not(coughP),
not(out of breathP).

curedI(Sp, Friend) :>
clause(agent(Ag),),
trustP (Ag, Friend, V), V1 is V + 1,
drop pastA(trust(Ag, Friend, V)),
add pastA(trust(Ag, Friend, V 1)),
assert(i know lung doctor(Sp)),
set pastA(trust(Ag, Friend, V), 100),
add pastA(trust(Ag, Sp, 1)),
drop pastA(go to lung doctor()).

The actionsdrop past, add past and set past are typical
commands of DALI language useful to manage the past events:
drop past/add past deletes/adds a past event whileset past
sets the time of the memorization of a past event. If she is
still ill, she decreases the trust value on the friend that has
recommended the lung doctor:

no cured(Sp) : −
go to lung doctorP (Sp), temperatureP.

no cured(Sp) : −
go to lung doctorP (Sp),
thorax painP.

no cured(Sp) : −
go to lung doctorP (Sp), coughP.

no cured(Sp) : −
go to lung doctorP (Sp),
out of breathP.

no curedI() :>
clause(agent(Ag),),
follow adviceP (Am),
trustP (Ag, Am, V), V >= 1, V1 is V − 1,
drop pastA(trust(Ag, Am, V)),
set pastA(trust(Ag, Am, V 1), 1000),
add pastA(trust(Ag, Am, V 1)),
drop pastA(go to lung doctor()).

The decrement of the trust value of a friend can affect
the check level of communication, thus preventing the send-
ing/receiving of a message to/from that friend. This happens
if the trust on the agent is less than the trust’s threshold
specified in the body of a told/tell rule. In this case, the patient
communicates to the friend that the incoming message has
been eliminated by using an inform primitive:

send message to(friend,
inform(send message
(what about competency(
lung doctor, patient), patient),
motivation(refused message), patient), italian, [])

wheresend message(what about competency(
lung doctor, patient), patient) is the

eliminated message, with the motivation
motivation(refused message).
In our system, the level of trust can change dynamically. In
this way it is possible that an agent is excluded from the
communication because of a too low value of trust, and she
is readmitted later since the value increases, due either to her
subsequent actions or to other agents pleading her case.

We face the problem of trust with a simple approach,
where cooperating DALI agent adopt some parameters such
as trust and competency, and update then dynamically. In the
future, we intend to explore this area by adopting more formal
approaches to model these concepts.

VI. CONCLUDING REMARKS

In this paper we have described an operational semantics of
communication for the DALI language which is not based
on assumptions on mental states of agents, which in real
interaction can be in general uncertain or unknown. Instead,
we consider each locution as a move of a game, to which
the other agents may respond with other moves, according
to a protocol. Each locution of course provided information,
and thus influences the state of the receiving agent. This
kind of formalization is made possible as the DALI language
provides a communication architecture (of course coped with
in the semantics) that provides a filter layer where an agent
can explicitly describe her own mental attitudes and the
assumptions she mades about the other agents. We have shown
the usability of the architecture by means of an example. A
future direction of this research is that of experimenting formal
models of cooperation and trust.

REFERENCES

[1] J. Barklund, S. Costantini, P. Dell’Acqua e G. A. Lanzarone,Reflection
Principles in Computational Logic, Journal of Logic and Computation,
Vol. 10, N. 6, December 2000, Oxford University Press, UK.

[2] S. Costantini. Towards active logic programming. In A. Brogi and
P. Hill, editors, Proc. of 2nd International Workshop on component-
based Software Development in Computational Logic (COCL’99),
PLI’99, (held in Paris, France, September 1999), Available on-line,
URL
http://www.di.unipi.it/
brogi/ResearchActivity/COCL99/proceedings/index.html.

baldoni
20

[3] S. Costantini. Many references about DALI and
PowerPoint presentations can be found at the
URLs: http://costantini.di.univaq.it/pubblsstefi.htm and
http://costantini.di.univaq.it/AI2.htm.

[4] S. Costantini and A. Tocchio,A Logic Programming Language for Multi-
agent Systems, In S. Flesca, S. Greco, N. Leone, G. Ianni (eds.),Logics
in Artificial Intelligence, Proc. of the 8th Europ. Conf., JELIA 2002,
(held in Cosenza, Italy, September 2002), LNAI 2424, Springer-Verlag,
Berlin, 2002.

[5] A. Di Stefano and C. Santoro Integrating Agent Communication
Contexts in JADE, Telecom Italia Journal EXP, Sept. 2003.

[6] FIPA. Communicative Act Library Specification, Technical Report
XC00037H, Foundation for Intelligent Physical Agents, 10 August 2001.

[7] R. A. Kowalski, How to be Artificially Intelligent - the Logical Way,
Draft, revised February 2004, Available on line, URL
http://www-lp.doc.ic.ac.uk/UserPages/staff/rak/rak.html.

[8] P. Mc Burney, R. M. Van Eijk, S. Parsons, L. Amgoud,A Dialogue Game
Protocol for Agent Purchase Negotiations, J. Autonomous Agents and
Multi-Agent Systems Vol. 7 No. 3, November 2003.

[9] N. H. Minsky and V. Ungureanu,Law-governed interaction: a coor-
dination and control mechanism for heterogeneous distributed systems,
ACM Trans. Softw. Eng. Methodol.,2000,ACM Press.

[10] N. H. Minsky The Imposition of Protocols Over Open Distributed
Systems, IEEE Trans. Softw. Eng.,1991,IEEE Press.

[11] J. M. Serrano, S. Ossowski.An Organisational Approach to the Design
of Interaction Protocols, In: Lecture Notes in Computer Science, Com-
munications in Multiagent Systems: Agent Communication Languages
and Conversation Policies, LNCS 2650, Springer-Verlag, Berlin, 2003.

[12] E.C. Van der Hoeve, M. Dastani, F. Dignum, J.-J. Meyer,3APL
Platform, In: Proc. of the The 15th Belgian-Dutch Conference on
Artificial Intelligence(BNAIC2003), held in Nijmegen, The Netherlands,
2003.

baldoni
21

baldoni

baldoni

baldoni
23

baldoni

baldoni
24

baldoni

baldoni
25

baldoni

baldoni
26

baldoni

baldoni
27

baldoni

baldoni
28

baldoni

baldoni
29

baldoni

Abstract—In this paper, we present a Web and multi-agent

based system to support remote students and programmers
during common projects or activities based on the use of the Java
programming language. This system, called RAP (Remote
Assistant for Programmers), associates a personal agent with each
user. A personal agent helps its user to solve problems proposing
information and answers, extracted from some information
repositories, and forwarding answers received from other “on-
line” users, that were contacted because their personal agents
recommend them as experts in that topic. To be able to
recommend their users, personal agents build and maintain a
profile of them. This profile is centered on user’s competences and
experience and is built by extracting information through both
the code she/he wrote and the positive answers the user gave to
other users. A first prototype of the system is under
implementation in Java by using the JADE multi-agent
development framework. This prototype will be tested in practical
courses on JADE shared among students of some American Latin
and European Universities inside the European Commission
funded project “Advanced Technology Demonstration Network
for Education and Cultural Applications in Europe and Latin
America”.

Index Terms—Cooperative systems, multi-agent systems,
intelligent tutoring systems.

I. INTRODUCTION

INDING relevant information is a longstanding problem
in computing. Conventional approaches such as

databases, information retrieval systems, and Web search
engines partially address this problem. Often, however, the
most valuable information is not widely available and may not
even be indexed or cataloged. Much of this information may
only be accessed by asking the right people. The challenge of

Manuscript received September 27, 2004. This work is partially supported

by the European Commission through the contract “@lis Technology Net
(ALA/2002/049-055)” and by “Ministero dell'Istruzione, dell'Università e
della Ricerca" through the COFIN project ANEMONE.

M. Mari is with DII, University of Parma, Parco Area delle Scienze 181A,
43100, Parma, Italy (phone: +39 0521 905712; e-mail: mari@ce.unipr.it).

L. Lazzari is with DII, University of Parma, Parco Area delle Scienze
181A, 43100, Parma, Italy (phone: +39 0521 905712; e-mail:
lazzari@ce.unipr.it).

A. Negri is with DII, University of Parma, Parco Area delle Scienze 181A,
43100, Parma, Italy (phone: +39 0521 905712; e-mail: negri@ce.unipr.it).

A. Poggi is with DII, University of Parma, Parco Area delle Scienze 181A,
43100, Parma, Italy (phone: +39 0521 905728; e-mail: poggi@ce.unipr.it).

P. Turci is with DII, University of Parma, Parco Area delle Scienze 181A,
43100, Parma, Italy (phone: +39 0521 905708; e-mail: turci@ce.unipr.it).

finding relevant information then reduces to finding the
”expert” whom we may ask a specific question and who will
answer that question for us. However, people may easily get
tired of receiving banal questions or different times the same
question, therefore, who needs help for solving a certain
problem, should look for documents related to the problem
and then eventually look for a possible expert on the topic.

This kinds of problems are very relevant in the software
development because of the wide variety of software solutions,
design patterns and libraries makes hard to take the best
decision in every software development phase, and a developer
can’t always have the required expertise in all fields.

In this paper, we present a multi-agent based system, called
RAP (Remote Assistant for Programmers), that integrated
information and expert searching facilities for communities of
student and researchers working on related projects or work
and using the Java programming language. In the following
section, we describe the RAP system, the current state of its
implementation and some preliminary evaluation results, then
we introduce related work and, finally, we give some
concluding remarks and present some our future research
directions to improve the RAP system.

II. THE RAP SYSTEM

RAP (Remote Assistant for Programmers) is a system to
support communities of students and programmers during
shared and personal projects based on the use of the Java
programming language. RAP associates a personal agent with
each user which helps her/him to solve problems: proposing
information and answers extracted from some information
repositories, and forwarding answers received by “experts” on
the topic selected on the basis of their profile. A personal
agent also maintains a user profile centered on her/his
competences and experience built through the positive answers
given to other users and by extracting information through the
code she/he has written.

A. System Agents
The system is based on seven different kinds of agents:

Personal Agents, Code Documentation Managers, Answer
Managers, User Profile Managers, Email Manager, Starter
Agent and Directory Facilitators.

A Multi-Agent System to Support Remote
Software Development

Marco Mari, Lorenzo Lazzari, Alessandro Negri, Agostino Poggi and Paola Turci

F

baldoni

Personal Agents are the agents that allow the interaction
between the user and the different parts of the system and, in
particular, between the users themselves. Moreover, this agent
is responsible of building the user profile and maintaining it
when its user is “on-line”. User-agent interaction can be
performed in two different ways: when the user is active in the
system, through a Web based interface; when it is “off-line”
through emails. Usually, there is a personal agent for each on-
line user, but sometimes personal agents are created to interact
with “off-line” users via emails.

User Profile Managers are responsible of maintaining the
profile of “off-line” users and of activating personal agents
when it is necessary that they interact with their “off-line”
users via emails.

Code Documentation Managers are responsible of
maintaining code documentation and of finding the appropriate
“pieces of information” to answer the queries done by the
users of the system.

Answer Managers are responsible of maintaining the
answers done by users during the life of the system and of
finding the appropriate answers to the new queries of the users.
Besides providing an answer to a user, this agent is responsible
of updating the score of the answer and forwarding the vote to
either the personal agent or the user profile manager for
updating the profile of the user that performed such an answer.

Email Managers are responsible for receiving emails from
“off-line” users and forwarding them to the corresponding
personal agents.

Starter Agents are responsible for activating a personal
agent when either a user logs on or another agent request it.

Directory Facilitators are responsible to inform an agent
about the address of the other agents active in the system (e.g.,
a personal agent can ask about the address of all the other
personal agents, of the code documentation managers, etc.).

Figure 1 gives a graphical representation of a RAP platform
and the interactions of personal agents and of the directory
facilitator with the other agents of the platform. Note that a
RAP platform can be distributed on different computation
nodes and that a RAP system can be composed of different
RAP platforms connected via Internet. Moreover, in figure 1
groups of three users or agents means that there can be one or
more users and agents. Finally, in A RAP system there is a
directory facilitator for each platform.

B. System Behavior
A quite complete description of the behavior of the system

can be given showing the scenario where a user asks
information to its personal agent to solve a problem in its code
and the personal agent finds one (or more) “pieces of
information” that may help her/him. The description of this

Web Server

Off-line users

Directory Facilitator

Personal Agents

Code Documentation
Managers

Answer Managers

User Profiles
Managers

Mail Manager

Mail Server

On-line users

Starter Agent

Fig. 1. RAP platform architecture.

baldoni
31

scenario can be divided in the following steps:
1) Select answer types
2) Submit a query
3) Find answers
4) Rate answer

Select answer types: the user can receive information
extracted from code documentation, answers extracted from
the answer repositories and new answers sent by the other
users of the system. Therefore, before submitting the query,
the user can select the types of answers (one or more) she/he
likes to receive.

Submit a query: the user, through its user interface,
provides the query to its personal agent. In particular, the user
can query either about a class or an aggregation of classes for
implementing a particular task or about a problem related to
her/his current implementation. The query is composed of two
parts. The first part (we call it “annotation”) identifies the
context of the query and can contains keywords provided by a
system glossary and/or the identification of classes and/or
methods in a univocal way (i.e., the user needs to specify the
complete package name for a class and adds the class name for
a method). The second part contains the textual contents of the
query.

Find answers: the personal agents perform different actions
and interact with different agents to collect the various types of
answers.

For getting code documentation, the personal agent asks the
directory facilitator about all the code documentation
managers. After receiving this information, the personal agent
forwards the query to all these agents. These agents search
“pieces” of code documentation related to the query and send
them to the personal agent associating a score with each
“piece”.

For getting answers from the answer system repositories, the
personal agent asks the directory facilitator about all the
answer managers. After receiving this information, the
personal agent forwards the query to all these agents. These
agents search answers related to the query and send them to
the personal agent associating a score with each answer.

The reception of new answers from the system users is a
more complex activity and its description can be divided in
four further steps (Figure 2 shows the UML interaction
diagram describing these phases):

3.1) Find experts
3.2) Receive experts rating
3.3) Select experts

Personal Agent A

User A

:query(question)

Directory Facilitator

:requestAddresses()

Personal Agent B

:query(question)

User B

[is expert]:getRate():sendRates(rates)

:sendRate(rate)

:sendRatesList()

:selectUsers()

:confirm()

:query(question)

[accept]:answer()

:sendAnswer()

User A

Fig. 2. UML interaction diagram describing how works to allow a user to ask a question and then receive the relative question from an “expert”.

baldoni
32

3.4) Receive answers
Find experts: the personal agent asks the directory

facilitator about the other active personal agents (i.e., the
personal agents of the user that are “on-line”) and all the user
profile managers of the system (i.e., the agents managing the
profile of the users that are not “on-line”). After receiving this
information, the personal agent forwards the query to these
personal agents together to the user profile managers.

Receive expert rating: all these agents (personal agents and
user profile managers) compute the rating of their users to
answer to this query on the basis of the query itself and of the
user profile. The agents that compute a positive score (i.e., its
user may give an appropriate answer to the query) reply to the
querying personal agent with the rating of its user (in the case
of a personal agent) or its users (in the case of user profile
manager).

Select experts: the personal agent divides on-line and off-
line users, orders them on the basis of their rating and, finally,
presents these two lists to its user. The user can select more
than one user and then the personal agent sends the query to
the corresponding personal agents (for the “on-line” users)
and to the corresponding user profile managers (for the “off-
line” users).

Receive answers: the replying personal agents immediately
present the query to their user and forward the answer as soon
as the user provides it. User profile manager activates the
personal agents of the involved users through the starter agent.
These personal agents forward the query to their user via email
and then terminate themselves. Users can answer either via
email or when they log again on the system. In the case of
email, the email manager starts the appropriate personal agent
that extracts the answer from the email and forwards it. When
the querying personal agent receives an answer, it immediately
forwards it to its user.

Rate answers: after the reception of all the queries, or when
the deadline for sending them expired, or, finally, when the
user has already found an answer satisfying its request, the
personal agent presents the list of read answers to its user
asking her/him to rate them. After the rating, the agent
forwards each rating to the corresponding personal agent, code
documentation manager, answer manager or user profile
manager that provides to update the user profile and/or the
answer rating (when a user rates an answer retrieved from the
answer repository, this rating is also used to updated the user
profile of the user that previously proposed the answer). Note
that in the case of rating of users answers, the rating cannot be
known by the user that sent the answer and users that did not
send answers automatically received a negative rating.

C. User and Document Profile Management
In our system, the management of user and document

profiles is performed in two different phases: an initialization
phase and an updating phase. Figure 3 gives a graphical
description of this process.

In order to simplify, speed up and reduce the possibility of
inaccuracy due to people’s opinions of themselves and to

incomplete information, we decided to build the initial profile
of the users and documents in an automated way that, for the
users, is very similar to the one used by Expert Finder system
[21]. Profiles are represented by vectors of weighted terms
whose value are related to the frequency of the term in the
document or to the frequency of the use of the term by the
user. The set of terms used in the profiles is not extracted from
a training set of documents, but corresponds to those terms
included in the system glossary, provided to the users for
annotating their queries, and to the names of the classes and
methods of the Java software libraries used by the community
of the users of the system.

While document profiles are computed by using term
frequency inverse document frequency (TF-IDF) [19] and
profiles weighted terms correspond to the TF-IDF weight, each
user profile is built by user’s personal agent through the
analysis of the Java code she/he has written. In this case, the
weight of the terms in the profile corresponds to the frequency
is not the TF-IDF weight, but the real frequency of the term in
the code of the user (i.e., term frequency is not weighted on the
basis of the frequency of the term in the code written by all the
users). We used this approach for different reasons. First, we
speed up and reduce the complexity of building user profiles.
As a matter of fact, TF-IDF algorithm can be easily used in a
centralized system where all the profiles and the data to build
them are managed. Our context is more complex: the system is
distributed, only the personal agent can access to the software
of its user, for privacy and security reasons, and the profiles
are maintained by the corresponding personal agents or by
possibly different user profile managers when the personal
agent is not alive. The second and most important reason is
that the profile built by personal agents is only the initial user’s
profile. And it will be updated when the user writes new
software and especially when the user helps other users
answering their queries.

The updating of user and document profiles is done in three
cases: i) a user asks about a problem and then rates some of
the received answers, ii) a new software library is introduced
in the ones used by the community or some new terms are
introduced in the system glossary, and iii) a user writes new
software.

In the first case, there are three possible behaviors according
to the source of the answer (user, document repository or
answer repository).

If the answer comes from a user, on the basis of the received
rating her/his profile is updated, of course, only the part
concerning the terms involved in the query annotation.
Moreover, if the rating is positive, the answer is added to the
answer repository and its profile is built from the query
annotation and the rating of the answer.

If the answer comes from the document repository and the
rating is positive, the answer is added to the answer repository,
its profile is the original document profile updated by the
rating of the answer.

Finally, if the answer comes from the answer repository and

baldoni
33

the rating is positive, the part of the answer profile related to
the terms involved in the query annotation is updated on the
basis of the received rating. Moreover, in the case that this
positive rated answer comes from a user and not from the
document repository, also the part of the user profile related to
the terms involved in the query annotation is updated on the
basis of the received rating. Finally, the query corresponding
to such positive rated answer is added in the repository (i.e.,
the answer was good for one or more previous queries, but
also for the current one; queries are ordered by answer rating).

We decided to avoid the use of negative rates for updating
the profile of the answers in the answer repository. In fact, if
an answer is in the repository, it means that at least a user
considered useful to solve her/his problem; therefore, if later
on this answer received a negative rate it does only means that
the answer is not appropriate for the last query, but it is still
appropriate for the previous queries for which it received
positive rates.

When a new software library is introduced in the list of
libraries used by the users of the system or some new terms are
introduced in the system glossary, all the document and user
profiles must be updated. While document profiles are rebuilt
on the basis of the new complete set of terms, user profiles are
updated adding the weighted terms corresponding to the new
term, of course with a weight equal to their frequency in the
software written by the user.

Finally the user’s profile is updated, adding only the new
weighted terms, even when the user writes new software.

D. System Implementation and Experimentation
A first prototype of the RAP System is under development

by using JADE [3]. JADE (Java Agent Development
framework) is a software framework to aid the realization of
agent applications in compliance with the FIPA specifications
for interoperable intelligent multi-agent systems [6]. JADE is
an Open Source project, and the complete system can be
downloaded from JADE Home Page [9].

Given the distributed nature of JADE based agent systems, a
RAP system can be distributed on a set of agent platforms
connected usually via Internet and situated in different parts of
the world. Each agent platform can be distributed on different
computation nodes and is connected to a Web server, for
allowing direct interactions with the users, and to a mail
server, for allowing email interactions with the users. In each
agent platform there is a unique starter agent and email agent,
but there might be more than one user profile manager, code
documentation manager, answer manager. This usually
happens when the agent platform is distributed on different
nodes in order to cope with performance issues due to the
number of the users to be managed. Furthermore, distribution
of a RAP platform on different computation nodes and agents
replication can be introduced for reliability reasons (in this
case, agents manage copies of data) too. Finally, there can be
one or more directory facilitators. In the case of more than one
directory facilitator, these agents build a hierarchical map of
the agents of the system; therefore, when an agent is created,

the only information it needs to know is simply the address of
the main (root) directory facilitator.

A large part of the first prototype of the system has been
completed. In particular, the subsystem supporting interactions
among personal agents and the interaction between each pair
of personal agent and “on-line” user has been completed. This
subsystem has been used with success by a small set of
students, connected by different labs or from their house, for
the development JADE software within some course works. In
these activities, students could formulate queries annotating it
with terms extracted from a glossary derived from the Sun
“Glossary of Java Related Terms” [20] and class and method
names extracted from Java and JADE source code.

Moreover, we have evaluated the system with a simulation.
We have asked 10 queries on Java programming to 10 students
with experience in Java programming, but with advanced
experience on different application fields and software
libraries. Of course, the 10 queries were defined in order to put
in the light the difference in the knowledge of the students
involved. Then, we have evaluated the part of the RAP system
involving only user interactions (no document and answer
repository). A personal agent is responsible to perform the 10
queries and other 10 personal agents to provide the answers
written by the different students. The evaluation has concerned
mainly the comparison of the ordered list (built ordering
experts on the basis of their profiles) provided by the querying
agent to its user with an ordered list of the answers we did
before performing the simulation. The simulation was
reiterated a number of times equal to the possible orders of the
query and the users profiles were reset each simulation. The
initial user’s profile was built on the basis of the content of the
answers associated with this virtual user. Clearly, it cannot be
considered a simulation of the real behavior of the system, but
the obtained results have encouraged us in the completion of
the system. In fact, the differences between the personal agent
ordered list and our a priori ordered list decreases during the
evaluation process and for the last query we have had an
average error of the 5%.

As from the end of this year, the final RAP system will be
tested in practical courses on JADE shared among students of
some American Latin and European Universities inside the
European Commission funded project “Advanced Technology
Demonstration Network for Education and Cultural
Applications in Europe and Latin America (@lis Technology
Net)” [1]. Moreover, the system will be used by students and
researchers, involved in the ANEMONE project [2], for
cooperating in the realization of agent-based software.

III. RELATED WORK

In the last years a lot of work has been done in the fields of
document and expert recommendation and in the development
of tools and systems for supporting e-learning and, in
particular, computer programming activities.

With the advent of the Web, document recommendation
systems are become one of most important area of both

baldoni
34

research and application of information technologies. All the
most important proposed systems are applied to the
recommendation of Web pages and are not specialized for
computer programming documents, but usually allow the
customization for different subjects. GroupLens is the first
system that used collaborative filtering for document
recommendation [18]. This system determinates similarities
among users and then is able to recommend a document to a
user on the basis of the rating of similar users on the
recommend document. Syskill &Webert is a system with the
goal of helping users distinguishing interesting Web pages on
a particular topic from uninteresting ones [16]. In particular,
this system recommends document to a user on the basis of
her/his user profile that it builds and updates by using user’s
evaluations of the interestingness of the read documents.
Adaptive Web Site Agent is an agent-based system for
document recommendation [17]. This system works on the
documents of a Web site and recommends documents to
visitors integrating different criteria: user preferences for the
subject area, similarity between documents, frequency of
citation, frequency of access, and patterns of access by visitors
to the web site.

Several prior systems support expertise recommendations.
Vivacqua and Lieberman [21] developed a system, called
Expert Finder, that recommends individuals who are likely to
have expertise in Java programming. This system analyzes
Java code and creates user profiles based on a model of
significant features in the Java programming language and
class libraries written by the user. User profiles are then used
to assist novice users in finding experts by matching her/his
queries with user profiles. A group of researchers at MITRE
has also developed an expertise recommendation system called
Expert Finder [11],[12]. This system finds experts by
performing a query over a MITRE wide corporate database
that includes information about 4500 MITRE employees. The
entries in the database are manually maintained by each
individual employee. After performing the query, the system
filters the results and presents a list of employees who are
likely to have some expertise in the queried topic. Expertise
Recommender is another system that recommend people who
are likely to have expertise in a specific area [13],[14]. A user
garners recommendation from ER by picking a relevant
identification heuristic, selecting a matching technique, and
entering a description or terms related to a problem. Then, the
system responds with a list of individuals who are likely to
have expertise with the problem and who are a good social
match for the person making the request. In this system, user
profiles are built by processing user‘s day-to-day work
products. MARS is a referral system based on the idea of
social network [13]. This system is fully distributed and
includes agents who preserve the privacy and autonomy of
their users. These agents build a social network learning
models of each other in terms of expertise (ability to produce
correct domain answers), and sociability (ability to produce
accurate referrals), and take advantage of the information

derived from such a social network for helping their users to
find other users on the basis of their interests.

A lot of work has been also done in the development of
tools and systems for supporting e-learning and, in particular,
computer programming activities. Hazeyama and Osada
realized a system for collaborative software engineering
education [7]. This system provides both generic collaboration
services, useful in all the different phases of students course
project, and services dedicated to a specific phase of such a
project. In fact, the system offers a bulletin board subsystem
and a notification service used by students and teachers along
all the project, and, for example, provides a subsystem
supporting students code inspection process: this subsystem
provides a tool that allows to a teacher the annotation of
students code with comments, and manages the interaction
between the teacher and the students in the different phases of
the inspection process (i.e., code submission, teacher
feedback, updated code submission, etc.). WBT (Web Based
Teaching) is an agent based collaborative learning support
system providing community Web services [8]. The system is
centered on a Web site containing teaching materials for
computer programming practice and an electronic bulletin
board system for question answering to assist students during
their programming practice activities. In this system agents
have the duty of distributing questions to the teacher or to “on-
line” students that previously answered to similar questions.
Mungunsukh and Cheng proposed an agent based learning
support system for novice programmers in a distance-learning
environment [15]. This system is dedicated to the learning of
the VLB programming language and its activity can be divided
in two phases: student observation and student support. In the
first phase, the system attempts to understand students’
behavior by observing their typing events, behaviors on
different purpose of web browser of lessons, tasks and
examples, error types made by students and debugging events
on a programming editor. After the acquisition of information
about the activities of the students, the system supports
students with relevant information as, for instance, related
examples and lessons for the problems they are working on,
and problems which have similar solutions. I-MINDS is a
multi-agent system that enables students to actively participate
in a virtual classroom rather than passively listening to lectures
in a traditional virtual classroom [10]. This system is based on
three kinds of agents: teacher agents, student agents and
remote proxy agents. Teacher agents interact with teachers and
are responsible for: i) disseminating information to student
agents and remote proxy agents, ii) maintaining student
profiles and, on the basis of these profiles generating
individual quizzes and exercises, iii) filtering students
questions, and iv) managing classroom sessions progress.
Student agents support the interaction with the teacher,
maintain the profiles of the other students to identify potential
“helpers” and, when it is necessary, solicits answers from such
“helpers”. Remote proxy agents support the interaction with
the teacher and other students when a student is connected

baldoni
35

with a low-speed internet connection (e.g., they filters
messages to reduce the traffic). Guardia Agent is an agent-
based system aimed at supporting students working on team
projects [22]. This system is based on agents, one for each
student, that autonomously monitor the progress of a group
project, suggest new ways in which the students can act to
improve the progress of the project (e.g., a new allocation of
tasks), and enhance the communication between members of
the group.

IV. CONCLUSIONS

In this paper, we present a system called RAP (Remote
Assistant for Programmers) with the aim of supporting
communities of students and programmers during shared and
personal projects based on the use of the Java programming
language. RAP associates a personal agent with each user and
this agent maintains her/his profile and helps her/him to solve
problems proposing information and answers extracted from
some information repositories, proposing “experts” on these
problems and then forwarding their responses.

RAP has similarities with WBT [8], I-MINDS [10] and, in
particular, with the Expert Finder system [21]. In fact, both
these three systems provide agents that recommend possible
“helpers”. However, none of them provides the integration of
different sources of information (experts, answers archive and
code documentation), and none of them integrates in the user
profile information about user‘s day-to-day work products with
information obtained from the answers the user provided to the
other users of the system.

A first prototype of the RAP System is under development
by using JADE [3],[9], a software framework to aid the
realization of agent applications in compliance with the FIPA
specifications for interoperable intelligent multi-agent systems
[6]. A large part of the first system prototype has been
completed and some tests have been already done. In
particular the tests regarding the recommendation of experts
have shown encouraging results.

The RAP system will be used in some practical courses on
JADE by students of the partners of the “@lis Technology
Net” project and by students and researchers, involved in the
ANEMONE project [2], for cooperating in the realization of
agent-based software. Moreover, the RAP system will be used
as a service of the Collaborator system [5]. Collaborator is a
system that provides a shared workspace supporting the
activities of virtual teams through a set of services as, for
example, chat and multimedia interaction, meeting scheduling
and synchronous sharing of applications [4].

After the completion, experimentation of the first prototype,
we plan to try to improve the quality of both document and
expert recommendation by applying and then comparing the
most considered recommendation techniques and, eventually,
trying their integration.

REFERENCES
[1] @LIS Technet Home Page (2003). Available from http://www.alis-

technet.org.
[2] ANEMONE Home Page (2003). Available from

http://aot.ce.unipr.it:8080/anemone.
[3] Bellifemine, F., Poggi, A., Rimassa, G.: Developing multi-agent systems

with a FIPA-compliant agent framework.. Software Practice and
Experience, 31, (2001) 103-128.

[4] Bergenti, B., Poggi, A., Somacher, M.: A Collaborative Platform for
Fixed and Mobile Networks. Communications of the ACM, 45(11),
(2002) 39-44.

[5] Bergenti, B., Poggi, A., Somacher, M., Costicoglou, S.:
COLLABORATOR: A collaborative system for heterogeneous networks
and devices. In. Proc. International Conference on Enterprise System
(ICEIS03), Angers, France (2003) 447-480.

[6] FIPA Specifications (1996). Available from http://www.fipa.org.
[7] Hazeyama, A., Nakako, A., Nakajima, S., Osada, K.: Group Learning

Support System for Software Engineering Education - Web-based
Collaboration Support between the Teacher Side and the Student
Groups. In Proc. Web Intelligence 2001, Maebashi City, Japan, (2001)
568-573.

[8] Ishikawa, T., Matsuda, H., Takase, H.: Agent Supported Collaborative
Learning Using Community Web Software. In Proc. International
Conference on Computers in Education, Auckland, New Zealand,
(2002) 42-43.

[9] JADE Home Page (1998). Available from http://jade.tilab.com.
[10] Liu, X., Zhang, X. Soh, L., Al-Jaroodi, J., Jiang, H.: I-MINDS: An

Application of Multiagent System Intelligence to On-line Education. In
Proc. IEEE International Conference on Systems, Man & Cybernetics,
Washington, D.C., (2003) 4864-4871.

[11] Mattox, D., Maybury, M. and Morey, D.: Enterprise Expert and
Knowledge Discovery. The MITRE Corporation, McLean, VA, (2000).
Available from
http://www.mitre.org/support/papers/tech_papers99_00/maybury_enterp
rise/maybury_enterprise.pdf

[12] Maybury, M., D'Amore, R. and House, D.: Awareness of Organizational
Expertise. The MITRE Corporation, MacLean, VA (2000). Available
from
http://www.mitre.org/support/papers/tech_papers99_00/maybury_aware
ness/maybury_awareness.pdf

[13] McDonald, D.W.: Evaluating expertise recommendations. In Proc. of
the 2001 International ACM SIGGROUP Conference on Supporting
Group Work, Boulder, CO, (2001) 214-223.

[14] McDonald, D.W.: Recommending collaboration with social networks: a
comparative evaluation. In Proc of the Conference on Human Factors in
Computing Systems, Ft. Lauderdale, FL, (2003) 593-600.

[15] Mungunsukh, H., Cheng, Z.: An Agent Based Programming Language
Learning Support System. In Proc. International Conference on
Enterprise System (ICEIS02), Auckland, New Zealand, (2002) 148-152.

[16] Pazzani, M., Billsus, D.: Learning and revising user profiles: The
identification of interesting web sites. Machine Learning, vol. 27,
(1997) 313–331.

[17] Pazzani, M., Billsus, D.: Adaptive Web Site Agents. Autonomous
Agents and Multi-Agent Systems, 5, (2002) 205–218.

[18] Resnick, P., Neophytos, I., Mitesh, S., Bergstrom, P., Riedl, J.:
GroupLens: An open architecture for collaborative filtering of netnews.
In Proc. Conference on Computer Supported Cooperative Work, Chapel
Hill, (1994) 175-186.

[19] Salton, G.: Automatic Text Processing. (1989), Addison-Wesley.
[20] Sun Java Glossary (2004). Available from

http://java.sun.com/docs/glossary.html.
[21] Vivacqua, A. and Lieberman, H.: Agents to Assist in Finding Help. in

Proc. ACM Conference on Human Factors in Computing Systems (CHI
2000), San Francisco, CA, (2000) 65-72.

[22] Whatley J.: Software Agents for Supporting Student Team Project
Work. In Proc. International Conference on Enterprise System
(ICEIS04), Porto, Portugal, (2004) 190-196.

baldoni
36

Abstract— This paper presents an agent-based infrastructure

for grid computing called GrEASe (Grid Environment based on
Agent Services). Grids are typically complex, heterogeneous, and
highly dynamic environments, and agent technology can satisfy
the basic requirements of this kind of contexts. GrEASe is
organized as a two layer structure: the lower one providing the
resource independent functionalities and the upper one providing
all the grid-specific services. All the features of the grid
infrastructure have been modeled with the multi-behavioral
agent model of the AgentService programming framework. This
platform is also the runtime environment for the multi-agent
system associated with each grid node.

Index Terms— Grid Computing, Multi-Agent Systems

I. INTRODUCTION
ESOURCE sharing is nowadays an important issue, not
only because it offers many advantages in distributed

computing, but also because data sharing is becoming more
and more useful in many fields. Resources can be classified in
three different groups: data, services, and computational
power. By following this classification we can distinguish
three types of grids [1]. Data Grids manage huge collections
of geographically distributed data, which can be generated in
many different ways: data streams are daily sent from
satellites for weather forecasts and climatic changes analysis;
large collections of data generated from scientific experiments
allow geographically distributed researchers to collaborate to
the same research project. Service Grids provide services that
could not be obtained from a single platform: streaming
multimedia services or collaborative applications.
Computational Grids provide the aggregate power of a
collection of processors spread over the network as a unique,

Manuscript received October 25 2004
A. Boccalatte is with Department of Communication, Computer and

Systems Sciences, University of Genova, 16145 Genova Italy (phone: +39-
010-353-2812; e-mail: nino@ dist.unige.it).

A. Grosso is with Department of Communication, Computer and Systems
Sciences, University of Genova, 16145 Genova Italy (phone: +39-010-353-
2284; e-mail: nino@ dist.unige.it).

C. Vecchiola is with Department of Communication, Computer and
Systems Sciences, University of Genova, 16145 Genova Italy (phone: +39-
010-353-2284; e-mail: nino@ dist.unige.it).

S. Fazzari was with Department of Communication, Computer and Systems
Sciences, University of Genova, 16145 Genova Italy.

S. Gatto was with Department of Communication, Computer and Systems
Sciences, University of Genova, 16145 Genova Italy.

big processor. Grids are an economic and efficient way to
compute, since they bring to the end user an incredible set of
resources with a relatively low cost.

A Grid infrastructure is a complex and high dynamical
environment: multiple, heterogeneous, and distributed
resources need to be managed and accessed by means of a
uniform interface. Real applications need also a customized
interaction according to the different privileges of the users.
The depicted scenario can certainly benefit from Agent
technology [2]. Agents are autonomous software entities with
some level of intelligence; agents work better if they belong to
a community such as a multi-agent system (MAS) [3]. Agents
act in a distributed manner, cooperate, compete, and negotiate
to solve a problem or to perform a task. These features make
the agents an interesting technology to implement Grid
infrastructures.

In this paper GrEASe, an agent-oriented architecture which
provides services in a Grid is described. GrEASe is
implemented by the use of the AgentService programming
platform [4].

A brief overview on agent technology and multi-agent
systems is provided in Section II and how this technology can
be applied to grid computing is explained. Section III includes
the description of AgentService programming platform.
Section IV the describes the features of GrEASe, while
Section V presents an interesting use case of such architecture
followed by a possible application of GrEASe to a real
scenario. Conclusions follow in Section VI.

II. AGENTS TECHNOLOGY AND GRID COMPUTING

A. Agents and Multi-Agent systems
A software agent is an autonomous software entity able to

expose a flexible behavior. Flexibility is obtained by means of
reactivity, pro-activity and social ability [3]. Reactivity is the
ability to react to environmental changes in a timely fashion
while pro-activity is the ability to show a goal directed
behavior by taking the initiative. Social ability, that is the
ability to interact with peers by means of cooperation,
negotiation, and competition, is one of the most important
features of agent oriented programming: agents do their best
when they interoperate. Interaction is obtained by arranging
agents in communities called multi-agent systems (MAS) [3].
MAS are generally decentralized open systems with
distributed control and asynchronous computation: they

GrEASe: Grid Environment based on Agent
Services

Antonio Boccalatte, Alberto Grosso, Christian Vecchiola, Sara Fazzari, Silvia Gatto

R

baldoni

provide a context for agents’ activity with the definition of
interaction and communication protocols. In addition they are
scalable, fault-tolerant, reliable, and designed for reuse.

An abstract architecture specification of a generic multi-
agent system has been proposed by the Foundation of
Intelligent Physical Agents (FIPA), an international
organization that promotes standards for agent technologies.
The proposed architecture [6] is implemented by different
multi-agent systems and has been taken as reference model in
the comparison of different implementations of MAS.

B. Agents and Grid Computing
Agent technology has been a useful approach in different

contexts: air traffic management [5], biologic systems
modeling and simulation [7], workflow management [8], and
on-line auction systems [9]. Moreover, different fields of
computing have taken advantages from the agent oriented
approach such as scheduling systems, collaborative smart
agendas [10], information filtering [11], and soft-bots [12].
Agents are reliable components to build more flexible and fail
safe systems, since autonomy and reactivity allow recovering
from fault conditions. This is certainly necessary in high
critical scenarios like air traffic management, but it is also a
desirable in the case of grid computing. The social ability,
such as cooperation, competition and negotiation, is equally
fundamental in grids.

Grids are intrinsically distributed and complex systems, as
they may require more than one step to provide a resource to a
client. Interactions between nodes can change during time in
order to make use of resources available at run time. Each
node belonging to a grid needs to keep availability of the
resources offering and benefits of a certain degree of
autonomy and flexibility. Agent technology has been designed
to model high dynamic and complex systems [13] and can
fulfill many of the requirements related to the development of
a grid infrastructure. By using agent technology, users and
administrators of the resulting system can have a more
friendly and understandable interface to interact with.

Some projects have already proved that the agent oriented
approach could be an interesting solution in the field of Grid
Computing.

A4, acronym for “Agile Architecture and Autonomous
Agent” is a methodology for grid’s resource managing. This
approach, described in depth in [14] [15], is based on a
flexible architecture, able to rapidly adapt to dynamic
environmental changes. Agents are homogeneous and settled
in a hierarchical structure, they have capabilities of service
discovery and service advertisement.

MyGrid [16] is a Grid project which provides a
collaborative environment for biologists working and living in
different countries. The architectural design is based on agents
and exploits their autonomy and their capability to implement
complex interactions through negotiation messages in a
generic Agents Communication Language (ACL). MyGrid
relies on SoFAR (Southampton Framework for Agent
Research) [17], that constitutes the agent oriented

infrastructure used by MyGrid.
The Bond Agent System [18] is based on the JADE

framework [19] and extends it by providing specific agent
behaviours that abstract the concept of grid services.

The agent-oriented approach can take many advantages to
field of Grid Computing. In particular it offers a flexible and
high level approach that is, at the same time, powerful enough
to handle all the different aspects of grid environments. Grids
are dynamics by nature and agents have been modeled in
order to get aware of the context in which they are situated
and to dynamically interact with peers. Agents are also high
level interfaces for humans, if compared to objects, and
system designers can easily deal with them and organize the
entire distributed system in a more clear way. All the
presented projects rely on these features of agency and also
GrEASe takes benefits from them by the means of the
AgentService programming platform.

III. THE AGENTSERVICE PROGRAMMING PLATFORM
AgentService [4] is a multi-agent system development

framework that provides a complete support to agent design,
implementation, and management with a full run-time
environment for agents scheduling, control and monitoring.

The framework has been developed with an extremely
modular architecture in order to be customizable and portable
over different architectures and operating systems. Modules
cover:

• the storage subsystem (repository of all templates
used to create agents in the platform);

• the persistence subsystem;
• the messaging subsystem;
• the logging subsystem.

Additional modules can be loaded into the platform in order
to enrich and customize the platform services.

AgentService allows the definition of real, autonomous, and

persistent agents. Agents have a multi-behavioral activity and
organize their knowledge base in a set of persistent data
structures shared among the different activities. Agents are
scheduled and executed within the AgentService platform that
provides them a set of services as defined by the FIPA2000
specification [6]:

• Agent Management System (AMS);
• Directory Facilitator (DF);
• Message Transport Service (MTS).

The agent model implemented in AgentService is based on
the use of behaviors and knowledge. Behaviors include
decisions and computational tasks; they dynamically
determine the agent activity and influence its state.

Knowledge objects define the agent’s knowledge base and
consist of a set of shared data structures that can be persisted
in order to preserve the agent’s state and that are modified by
the activity of Behavior objects.

baldoni
38

AgentService provides to the developer a set of Agent
Programming eXtensions (APX) [20] specifically designed to
simplify the development and the implementation of agent
oriented applications; they are a set of templates modeling the
implementation of agents, behaviors and knowledge,
represented as types in a C#-based programming language.

IV. GREASE ARCHITECTURE

A. Overall Overview
GrEASe (Grid Environment based on Agent Services) is an

agent oriented infrastructure for grid computing. GrEASe
architecture is structured in two layers: the lower one
providing the basic services common to every grid, the upper
one providing grid-specific functionalities. Both layers have
been modeled by using an agent-oriented approach.

Figure 1 – Structure of a GrEASe node

B. The Lower Layer: Basic Infrastructure
The lower layer provides the basic grid functionalities

classified as follows:
• node management: grids are dynamic

environments where nodes can subscribe and
unsubscribe at run-time. General information
about the node status need to be accessed in order
to provide the necessary interfaces to monitor and
maintain the entire grid;

• resource querying and discovery: nodes can query
and find resources by using a distributed
dispatching system spread all over the nodes;

• authentication: users that access the resources need
to be authenticated, since different policies are
applied depending on the identity of the requestor;

• transport services: dispatch and receipt of the
information and data.

The design and implementation of the lower layer led to the
definition of different types of agents: NodeManager,
Dispatcher, Authenticator, and Carrier.

NodeManager is the maintainer of the node and performs
all the management operations. Three different behaviours
have been designed in order to accomplish all the tasks of the
NodeManager:

• node subscription and un-subscription from the
Grid;

• monitoring services and information about the
status of the node and of the resources;

• resource allocation and monitoring.
Dispatchers agents are spread all over the nodes and

implement the resource querying and discovery process: each
node has an instance of this type of agent. Dispatcher
essentially forwards a request for a resource to the neighbor
nodes, and waits for a response; at the same time it handles
incoming requests from other dispatcher agents. Dispatcher is
critical for performance of the resource search process and can
support different search algorithms by simply changing the
relevant behaviors.

Carrier agents implement the general file transfer service
between nodes: agents inside the node instruct Carrier to send
a file or are notified by the Carrier of an incoming file transfer
for them. Different protocols (e.g. ftp protocol, or its secure
version) can transparently be used to implement file transfer
service, by defining the corresponding behaviors and selecting
the most fitting ones for the specific context.

Authenticator agents are responsible of the user
authentication process. The user profile is evaluated in order
to grant:

• access to the grid system;
• access to the specified resource by applying the

right policy.
Authenticator implements a two-level authentication

strategy: first the credentials provided by the user are checked
for the access to the grid system; then the availability of the
resource is granted on the basis of the successful validation of
the authorization criteria.

C. The Upper Layer: Grid-specific Components
Different types of grids are defined according to the

different types of resources they share: processor-cycles,
documents and data in general, or services. Therefore, specific
requirements need to be fulfilled according to the different
grid types. Resources of data-grids should be accessed at the
same time by multiple clients. Conversely, in a computational-
grid resources can be assigned only to a single client at time
since the same processor cycles cannot be shared between
multiple users.

The upper layer of the GrEASe architecture takes care of all
the peculiar features related to the specific type of the chosen
grid. The upper layer is defined by all those agents that strictly
interact with the resources belonging to the grid and hosted in
the node. For example let’s define agents’ behaviors
according to the requirements of Computing Grids: the
submission of a task to a node for computing means not only
the transfer of the executable code of the task, but also the
transfer of the requested input and output data. In addition, if
tasks are not monolithic it may be convenient to monitor their
progress. These functionalities can be encapsulated by the
implementation of specific run-time behaviors, one for

baldoni
39

handling the task execution, another for monitoring task
progress. A similar approach can be adopted for Data and
Service Grids.

V. GREASE IN ACTION
In order to see how GrEASe agents interact to provide a

grid service the process of resource querying and discovery
will be briefly described.

Figure 2 shows an instance of the AgentService platform
running on each grid node (two expanded) that schedules
resource agents and infrastructure agents. A client application
asks NodeManager of the nearest node by providing user
credentials to access the grid. NodeManager forwards the
credentials to the co-located Authenticator and waits for
feedback. Authenticator verifies the user credentials and in
case of success sends an approval message to the user and
notifies the NodeManager, which updates the user login
status.

Figure 2 – Resource querying process

Once authenticated the users asks the NodeManager for a

given resource. The NodeManager checks the resource
availability on its node: if the resource is found it notifies the
user, and following the user’s confirmation, it instructs Carrier
to dispatch the resource; if the resource is not available in the
node, NodeManager forwards the request to the co-located
Dispatcher who will distribute the request to others Dispatcher
agents across the network, according to the selected resource
search algorithm. Every Dispatcher reports the query to its
NodeManager and the same process described before applies.
If no resources are found in the grid, a time-out function
associated to the query makes the query inactive. If more than
one node answers that the resource is available, the user asks
to send only the first answering node. All the messages across
the nodes use the address provided by Directory Facilitator.

Knowledge objects used in this process are:
• Grid topology by Dispatcher;
• User credentials by Authenticator;
• Resource availability by NodeManager;
• Logged users by NodeManager.

The architecture of GrEASe is flexible enough to handle all

the different scenarios of Grid Computing. An interesting
application of GrEASe can be found in the modeling and the
simulation of the peer-to-peer (p2p) nets for sharing data: such
networks can be considered a sort of Data Grids:

• they provide to the end user a huge volume of data
that is spread all over the network;

• the end user access all the data available in the
network and the this access is independent from
the physical location of data;

• nodes of the net can act either as servers for other
nodes or as clients that feed data.

There are some aspects that make Data Grids different from
peer-to-peer networks:

• peer-to-peer networks do not implement
sophisticated access control techniques and do not
have refined user profiles;

• peer-to-peer networks normally provide many
different copies of the same data and do not worry
about the synchronization of the different copies.

These aspects make peer-to-peer networks only less
complex than Data Grids.

By the use of GrEASe it is possible to model each node of
the network with an installation of the AgentService platform
that runs the agents defined by the GrEASe architecture. The
NodeManager will be responsible for the local resources of
the node, while the Dispatcher and Carrier will be
programmed in order to interact with peers also by using the
most known p2p protocols: in this way the nodes of the
GrEASe architecture can easily be integrated with the already
existing p2p networks. Since peer-to-peer networks normally
have simple user policies the Authenticator will provide only
the basic functionalities of authentication when needed.

In peer-to-peer networks resources normally refer to simple
files and for this reason there is no need to define particular
agents that represents the resources inside the platform. The
upper layer will be configured with particular agents:

• if the node is attached to an end user the upper
layer will require a user-agent that handles the user
requirements and control the behavior of the node
for the user;

• in the case of the node is intended to measure and
monitor the traffic that flows through it a special
agent can be designed to track all this kind of
information and report it to the user;

The introduction of the agents into the upper layer is rather
simple because agents rely on the platform services to perform
their activity: by querying the Directory Facilitator can
dynamically discover the NodeManager; each agent uses the

baldoni
40

message based system provided by the MTS to interact with
the other agents and they can easily interact with the other
“citizens” of the platform once they know the ontology that
NodeManager, Dispatcher, Carrier, and Authenticator support.
These ontologies are made available to each agent by the
platform through the Directory Facilitator.

The architecture provided with GrEASe, the services
offered by the AgentService platform, and the approach
defined with the agent-oriented paradigm, allow a quick and
not difficult implementation of the described example. In fact,
designers can better concentrate on the peculiar aspects of the
example rather than define the overall infrastructure and the
programming model needed to implement the example.

VI. CONCLUSION AND FUTURE WORK
Agent technology and in particular agent oriented

decomposition has played a key role in the design and the
implementation of GrEASe. The division of the tasks to the
different types of agents has led to a flexible and customizable
architecture. Interaction between agents is done with clean
and fixed interfaces defined by the messages they exchange
and this allows loose coupling among the different
components.

The approach taken with GrEASe is different from the ones
adopted by the other similar projects like A4 and the Bond
Agent System: while A4 leverages on a hierarchical structure
used to organized the resources in the grid, GrEASe adopts a
two-level architecture that separates the features common to
all the grid types from the features peculiar to the specific grid
type. Moreover, GrEASe is not tied, as in the case of the Bond
Agent System, to a strong BDI architecture but the use of
AgentService allows a more open environment.

The architecture provided with GrEASe, the services
offered by the AgentService platform, and the approach
defined by the agent-oriented paradigm offer to developers a
basic set of functionalities. In particular, the agent oriented
approach and the fact that agents live inside a multi-agent
system that relies on the services of a platform, are an
important abstraction on which the GrEASe architecture is
founded. GrEASe exploits the services of AgentService in
order to deliver to the developer an high-level tool to model
real applications in the field of Grid Computing. A simple
example has been discussed in order to show to the user that
the approach promoted by GrEASe can be an interesting
solution.

Currently GrEASe implements the resource search and
delivery in the three common grid types: Data, Computational
and Service. The most natural expansion of future
development is to allow the interaction between GrEASe and
other existing legacy grids. In this case AgentService will be
used to shape Interface Agents to access legacy grids in
accordance to their individual established rules.

REFERENCES
[1] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid.

Enabling Scalable Virtual Organizations”, International Journal of
Supercomputer Applications, 2001.

[2] N.R. Jennings, and M. Wooldridge “Agent-Oriented Software
Engineering”, Proceedings of the 9th European Workshop on Modelling
Autonomous Agents in a Multi-Agent World : Multi-Agent System
Engineering (MAAMAW-99), 1999.

[3] G. Weiss, Multi-agent Systems – A Modern Approach to Distributed
Artificial Intelligence, G. Weiss Ed., Cambridge, MA, 1999.

[4] A. Boccalatte, A. Gozzi, and A. Grosso, “Una Piattaforma per lo
Sviluppo di Applicazioni Multi-Agente”, WOA 2003: dagli oggetti agli
agenti – sistemi intelligenti e computazione pervasiva, Villa Simius,
Italy, September 2003.

[5] A. S. Rao, M. P. Georgeff, and D. Kinny, “A Methodology and
Modelling Technique for Systems of BDI Agents Agents Breaking
Away”, Proceedings of the Seventh European Workshop on Modelling
Autonomous Agents in a Multi-Agent World, (MAAMAW’96), published
by Springer as Lecture Notes in Artificial Intelligence 1038, 1996.

[6] “FIPA Abstract Architecture Specification”, FIPA standard SC00001L,
http://www.fipa.org/specs/fipa00001/SC00001L.pdf.

[7] H. Van Dyke Parunak, “Go to the Ant: Engineering Principles from
Natural Multi-Agent Systems”, Forthcoming in Annals of Operations
Research, special issue on Artificial Intelligence and Management
Science.

[8] R. Sacile, E. Montaldo, M. Coccoli, M. Paolucci, and A. Boccalatte,
“Agent-based architectures for workflow management in
manufacturing”, SSGRR 2000, L’Aquila I, Aug. 2000.

[9] C. Beam, and A. Segev, “Automated Negotiations: A Survey of the State
of the Art”, Wirtschaftsinformatik, Vol. 37-3, 1997, pp. 263-268.

[10] B. P. C. Yen, “Agent-based Distributed Planning and Scheduling in
Global Manufacturing”, in Proc. of the thrid Annual International
Conference on Industrial Engineering Thories, Applications and
Practice, Hong Kong, December, 2000

[11] P. Maes, and A. Moukas, “Amalthaea: An Evolving Multi-Agent
Information Filtering and Discovery System for the WWW”, Journal of
Autonomous Agents and Multi-Agent Systems, vol. 1, no. 1, 1998, pp.
59-88.

[12] O. Etzioni, and D. Weld, “A Softbot-Based Interface to the Internet”,
Communications of the ACM, 37, 7, 1994.

[13] M. Wooldridge, “Intelligent Agents”, in Multi-agent Systems – A
Modern Approach to Distributed Artificial Intelligence, G. Weiss Ed.,
Cambridge, MA, 1999, pp. 27-78.

[14] J. Cao, D. P. Spooner, J. D. Turner, S. A. Jarvis, D. J. Kerbyson, S.
Saini, and G. R. Nudd, “Agent-Based Resource Management for Grid
Computing”, in Proc. of the 2nd IEEE/ACM International Symposium
on Cluster Computing and the Grid (CCGRID’02), 2002.

[15] J. Cao, D. J. Kerbyson, G. R. Nudd, “Performance Evaluation of an
Agent-Based Resource Management Infrastructure for Grid Computing”,
in Proc. of 1st IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGrid '01), Brisbane, Australia, May 2001.

[16] L. Moreau, S. Miles, C. Goble, M. Greenwood, V. Dialani, M. Addis, N.
Alpdemir, R. Cawley, D. De Roure, J. Ferris, R. Gaizauskas, K. Glover,
C. Greenhalgh, M. Greenwood, P. Li, X. Liu, P. Lord, M. Luck, D.
Marvin, T. Oinn, N. Paton, S. Pettifer, M. V Radenkovic, A. Roberts, A.
Robinson, T. Rodden, M. Senger, N. Sharman, R. Stevens, B. Warboys,
A. Wipat, and C. Wroe, “On the Use of Agents in a BioInformatics
Grid”, in Proc. of the Third IEEE/ACM CCGRID'2003 Workshop on
Agent Based Cluster and Grid Computing, Sangsan Lee, Satoshi
Sekguchi, Satoshi Matsuoka, and Mitsuhisa Sato ed., Tokyo, Japan, May
2003, pp 653-661.

[17] L. Moreau, N. Gibbins, D. DeRoure, S. El-Beltagy, W. Hall, G. Hughes,
D. Joyce, S. Kim, D. Michaelides, D. Millard, S. Reich, R. Tansley, and
M. Weal, “SoFAR with DIM Agents: An Agent Framework for
Distributed Information Management”, in Proc. Of The Fifth
International Conference and Exhibition on The Practical Application of
Intelligent Agents and Multi-Agents, Manchester, UK, Apr 2000, pp.
369–388

[18] M.A. Khan, S.K.Vaithianathan, K. Sivoncic, and L. Boloni, “Towards
an Agent Framework For Grid Computing”, CIPC-03 Second
International Advanced Research Workshop on Concurrent Information
Processing and Computing, Sinaia, Romania, 2003.

baldoni
41

[19] F. Bellifemmine, G. Rimassa, and A. Poggi, “JADE – A FIPA compliant

Agent Framework”, in Proc. of the 4th international Conference and
Exhibition on The Practical Application of Intelligent Agents and Multi-
Agents, London, 1999.

[20] A. Boccalatte, C. Vecchiola, and M. Coccoli, “Agent Programming
Extensions relying on a component based platform”, in Proc. of the 2003
IEEE International Conference on Information Reuse and Integration,
Las Vegas, NV, October 2003, pp. 24-31.

baldoni
42

Design and development of a visual environment
for writing DyLOG programs

Claudio Schifanella, Luca Lusso, Matteo Baldoni, Cristina Baroglio
Dipartimento di Informatica — Università degli Studi di Torino

C.so Svizzera, 185 — I-10149 Torino (Italy)
Tel. +39 011 6706711 — Fax. +39 011 751603

E-mail: {schi,baldoni,baroglio }@di.unito.it , lussoluca@tiscali.it

Abstract— In this article we present a visual development envi-
ronment for writing DyLOG programs, explaining the motivations
to this work and the main design choices. We will also analyze
the main components of the system and the features offered
to the user. The visual environment encompasses a fully new
implementation of the DyLOG language, where Java is used
instead of Sicstus Prolog, and an OWL ontology that will allow
the use of the language in Semantic Web applications.

I. I NTRODUCTION

Engineering multi-agent systems (MASs) is a difficult task;
one of the ways for achieving the successful industrial de-
ployment of agent technology is to produce tools that support
the developer in all the steps of design and implementation.
Many researchers in the Agent Oriented Software Engineering
(AOSE) community are developing complete environments for
MAS design. Just to mention a few examples, AgentTool [1]
is a Java-based graphical development environment to help
users analyze, design, and implement MASs. It is designed to
support the Multiagent Systems Engineering (MaSE) method-
ology [2], which can be used by the system designer to
graphically define a high-level system behavior. Zeus [3] is
an environment developed by British Telecommunications for
specifying and implementing collaborative agents. DCaseLP
(Distributed CaseLP, [4], [5], [6]) integrates a set of specifi-
cation and implementation languages in order to model and
prototype MASs. In this scenario, the quality of the tools
that the designer can use strongly influences thechoice of
a given specification language. The availability of a visual
environment that is intuitive to use, and simplifies the design
of the agents in the system, can, actually, make the difference.

In this paper we present a visual environment
(VisualDyLOG) for the development ofDyLOG agents.
DyLOG is a logic language for programming agents, based
on reasoning about actions and change in a modal framework
[7], that allows the inclusion, in an agent specification, also
of a set of communication protocols. In ([8]) is proposed
a methodological and physical integration ofDyLOG into
DCaseLP in order to reason about communication protocols.

By using VisualDyLOG, the user can specify in a simple
and intuitive way all the components of aDyLOG program
by means of a visual interface. The adoption of such an
interaction device bears many advantages w.r.t. a text editor [9]

and allows the programmer to work at a more abstract level,
skipping the syntactical details of the language. Moreover, it is
important to notice that the learning curve of logic languages
is usually quite steep: the programming environment supplied
by VisualDyLOG aims also at solving this problem.

An interesting application domain for agents develeoped by
means of these tools is the Web, and in particular in theSeman-
tic Web. Indeed, the web is more and more often considered as
a means for accessing to interactiveweb services, i.e. devices
that can be retrieved, invoked, composed in an automatic way.
To this aim, there is a need for languages that allow web
service specification in a well-defined way, capturing what
the services do, how they do it, which information they need
for functioning and so on, in order to facilitate the automatic
integration of heterogeneous entities. Recently some attempt to
standardize the description of web services has been carried on
(DAML-S [10], OWL-S [11], WSDL [12]). While the WSDL
initiative is mainly carried on by the commercial world, with
the aim of standardizing registration, look-up mechanisms and
interoperability, OWL-S (and previously, DAML-S) is more
concerned with providing greater expressiveness to service
descriptions in a way that can bereasonedabout [13], by
exploiting theaction metaphor. In particular, we can view a
service as an action (atomic or complex) with preconditions
and effects, that modifies the state of the world and the state
of agents that work in the world. Therefore, it is possible
to design agents, which apply techniques for reasoning about
actions and change to web service descriptions for producing
new, composite, and customized services. These researches are
basically inspired by the language Golog and its extensions
[14], [15], [16]. In previous work, we have studied the use of
DyLOG agents in the Semantic Web, and in particular, we
have described the advantages that derive from an explicit
representation of theconversation policiesfollowed by web
services in their description (currently not allowed by OWL-
S). Actually, by reasoning on the conversation policies it is
possible to achieve a better personalization of the service
fruition [17], and it is also possible to compose services [18].
This research line has driven us to the implementation of an
OWL [19] ontology, to be used as an interchange format of
DyLOG programs, with the purpose of simplifying the use
and the interoperation ofDyLOG agents in a Semantic Web

baldoni

context.
The paper is organized as follows. SectionII is a very

brief introduction to the main characteristics of theDyLOG
language. SectionIII describes the developed editing environ-
ment while SectionIV describes the developed OWL ontology
and motivates the choice of the OWL language. Conclusions
follow.

II. T HE DyLOG LANGUAGE

Logic-based executable agent specification languages have
been deeply studied in the last years [20], [21], [15]. In this
section we will very briefly recall the main features ofDyLOG;
the interested reader can find a thorough description of this
language in [22], [23].

DyLOG is a high-level logic programming language for
modeling rational agents, based on a modal theory of actions
and mental attitudes wheremodalitiesare used for representing
actions, while beliefs model the agent’s internal state. It
accounts both forsimple (atomic) andcomplex actions, or
procedures. Atomic actions are either world actions, affecting
the world, or mental actions, i.e. sensing and communica-
tive actions producing new beliefs and then affecting the
agent mental state. Atomic actions are described in terms of
precondition lawsand action laws that, respectively, define
those conditions that must hold in the agent mental state for
the action to be applicable, and the changes to the agent
mental state that are caused by the action execution. Notice
that besides the preconditions to a simple action execution,
some of its effects might depend upon further conditions
(conditional effects). Complex actions are defined through
(possibly recursive) definitions, given by means of Prolog-
like clauses and by action operators from dynamic logic, like
sequence “;”, test “?” and non-deterministic choice “∪”. The
action theory allows coping with the problem of reasoning
about complex actions with incomplete knowledge and in
particular to address the temporal projection and planning
problem in presence of sensing and communication.

Intuitively, DyLOG allows the specification of rational
agents that reason about their own behavior, choose courses of
actions conditioned by their mental state and can use sensors
and communication for obtaining new information. The agent
behavior is given by adomain description, which includes a
specification of the agents initial beliefs, a description of the
agent behavior plus a communication kit (denoted byCKitagi),
that encodes its communicative behavior. Communication is
supported both at the level ofprimitive speech actsand at the
level of interaction protocols. With regards to communication,
a mentalistic approach, also adopted by the standard FIPA-
ACL [24], is taken, where communicative actions affect the
internal mental state of the agent. Some authors [25] have
proposed asocial approachto agent communication [25],
where communicative actions affect the “social state” of the
system, rather than the internal states of the agents. Different
approaches are well-suited to different scenarios.DyLOG is a
language for specifying anindividual, communicating agent,

situated in a multi-agent context. In this case it is natural to
have access to the agent internal state.

We introduce an example that will be used in the rest of
the paper, in order to better explain concepts. More details
are included in the original work [26]. Let us consider
the example of a robot which is inside a room. Two air
conditioning units can blow fresh air in the room and the
flow of the air from a unit can be controlled by a dial.
In the following we report the code of the Simple Action
turn dial(I) that turns the dial of the unitI clockwise from a
position to the next one.Brobot andMrobot are written asB
(belief) andM (dual ofB) for simplicity.

A. A DyLOG implementation

At the basis of the development of theDyLOG programming
environment there is a Java reimplementation of the language
and of its interpreter. The choice of this implementation
language is due to the great diffusion of it, to its well-known
portability, and to the huge amount of available applications
and frameworks.

The first step consisted in the development of thetuDyLOG
package, which implements all theDyLOG constructs, offering
to the programmer a set of classes and interfaces which allow
the creation and editing of programs.tuDyLOG has been built
upon tuProlog [27], a light-weight Prolog engine written in
Java, which allows the instantiation and the execution of Pro-
log programs by means of a minimal interface. In this way, it
is possible to exploit some of the mechanisms, made available
by the tuProlog engine, which are used both inDyLOG and
in Prolog, such asunification. Moreover, tuProlog supports
interactions based on TCP/IP and RMI, a useful feature to
the design of multi-agent systems. The implementation of the
tuDyLOG package is currently being completed by extending
the tuPrologengine so to obtain atuDyLOG inference engine.

The structure of the classes which implement the language
constructs follow the definition of aDyLOG program. A
program is an instance of the classDomainDescription, which
contains instances of the main kinds of program components:
a set of initial observations, a set of actions that define
the behavior of the agent, and a set of communicative ac-
tions. Each of such categories is represented by an adequate
taxonomy, that reproduces the language specifications and
offers a programming interface for operations like creation,
modification, and deletion.

The connecting point betweentuDyLOG and tuProlog is
the classDyLOGStruct, an extension of thetuProlog Struct
class: by means ofDyLOGStructeveryDyLOG construct can
be turned into a correspondingtuProlog structure, with the
possibility of exploiting the afore mentioned mechanisms. In
this case we use a different notation (prefix notation) in order
to meet the internal representation of thetuProlog Structclass.
For example the first Precondition Law mentioned above is
represented in this manner:

possible(turndial(I),if([belief(robot,in front of(I)),

baldoni
44

2(Bin front of(I) ∧ Bcover up(I) ⊃ 〈turn dial(I)〉>)
2(Bflow(I, low) ⊃ [turn dial(I)]Bflow(I, high))
2(Mflow(I, low) ⊃ [turn dial(I)]Mflow(I, high))
2(Bflow(I, high) ⊃ [turn dial(I)]Bflow(I, off))
2(Mflow(I, high) ⊃ [turn dial(I)]Mflow(I, off))
2(Bflow(I, off) ⊃ [turn dial(I)]Bflow(I, low))
2(Mflow(I, off) ⊃ [turn dial(I)]Mflow(I, low))
2(Bflow(I, P) ⊃ [turn dial(I)]B¬flow(I, P))
2(Mflow(I, P) ⊃ [turn dial(I)]M¬flow(I, P))

Fig. 1. The DyLOG code for the simple actionturn dial(I).

belief(robot,coverup(I))]))

III. V ISUAL DYLOG

In this section we will show the main characteristics and
features offered byVisualDyLOG. This environment is devel-
oped in Java using theEclipseplatform [28] and allows the
development of aDyLOG program by means of a graphical
user interface.

A. The Eclipse project

Eclipse is a platform designed for building integrated de-
velopment environments (IDEs) and it represents a proven,
reliable, scalable technology upon which applications can be
quickly designed, developed, and deployed. More specifically,
its purpose is to provide the services necessary for integrating
software development tools, which are implemented as Eclipse
plug-ins. The main characteristic of the design of Eclipse is,
actually, that –except for a small runtime kernel– everything is
a plug-in or a set of related plug-ins: the effect of this choice
is an increase of the software reusability and extendability.
Applications are deployed and distributed as stand-alone tools
using the Rich Client Platform [29], which represents the
smallest subset of Eclipse plug-ins that are necessary to build
a generic platform application with a user interface.

Today Eclipse (originally released by IBM) is one of the
most used platforms for developing applications, it has formed
an independent and open eco-system, based on royalty-free
technology, and it has established a universal platform for tools
integration.

B. The environment

The VisualDyLOG environment is represented in Figure
2. We can distinguish different areas, each characterized by
specific functionalities. With reference to the mentioned figure,
area number (1) (theProgram View) contains a whole view of
the DyLOG program; it shows all the instances of the various
constructs, kind by kind, and it also allows the creation and
deletion of the instances. The area number (2) (Editor View)
shows a visual representation of an instance contained in the
Program View and selected by the user. The property values
of such an instance are reported in theProperties View(area
(4)). By working in the two latter views, the user can edit the
selected instance. Since instances might in some cases be quite
complex, there are situations in which the Editor View might

show just a portion of the selected instance. Nevertheless a
miniaturized overview of the whole instance will always be
available in area number (3) (theOutline View). Last but not
least, log messages are printed in the so calledLog View(area
number (5)).

VisualDyLOG internal architecture is based on the Graphical
Editor Framework (GEF), an Eclipse plug-in. GEF, by exploit-
ing the Model-View-Controller pattern, allows the creation of
a graphical representation, given an existing data model. In
our application, such a model is given by the instances of the
packagetuDyLOG, explained in SectionII-A . In particular, by
means of GEF:
• the graphical representation is modified after a change in

the model has occurred;
• the model is changed by modifying the graphical repre-

sentation of it, exploiting the “event-action” paradigm.
These notions are sketched by Figure3. In Figure4, instead,
the graphical notationused to represent the main language
constructs are shown.

It has been designed so to make the use ofVisualDyLOG
more intuitive: similar constructs are represented by shapes
with the same morphology; such shapes recall flow chart
symbols, contributing to a reduction of the learning process
of new users.

C. An example of use

In this section we will show how to build a Simple Action
by means ofVisualDyLOG; in particular, we will use as an
example theturn dial action, whoseDyLOG definition has
been introduced in SectionII (see Figure1). The first step for
creating a Simple Action consists in selecting the appropriate
category from the Program View, and in assigning to it name
and arity (the Program View also allows the creation of a new
action law for a specific simple action). The new action will
be added to the set of available Simple Actions in the Program
View itself. By means of the Editor View, instead, it is possible
to specify all the characteristics of the action: a working area
is associated to each precondition law and to each action law
that make the just created simple action; each such area can be
selected and worked upon by clicking on a tab at the bottom
of the Editor View. The palette at the right of the Editor View
can be used to insert beliefs and terms in the working area.
In order to edit a component it is necessary to click on the
corresponding graphical representation of it and, then, modify

baldoni
45

Fig. 2. A screenshot of theVisualDyLOG environment: (1) the Program View, (2) the Editor View, (3) the Outline View, (4) the Properties View, and (5)
the Log View.

Fig. 3. GEF interaction model: theModel, in our case thetuDyLOG package, theView and theController, represented by GEF.

Fig. 4. The graphical notation used inVisualDyLOG

its properties by means of the Property View. In Figure5 the
working area used to create and modify the Precondition of
the above mentioned action is shown. In the exampleturn dial
precondition consists of two fluents: the robot must be in front
of the dial (Bin fornt of(I)) and the cover of the dial must
be open (Bcover up(I)). In the figure, they are represented
as light blue ovals. For the sake of simplicity, in theDyLOG
representation of Figure1 the agent name is omitted from the
fluents. In the graphical representation, instead, it is the first
argument of the fluents: since agents have a subjective view of

the world,robot is the agent to believe thatin front of(I)
and cover up(I) in order to execute the action. Notice also
the prefix notation of fluents.

In Figure6 the part of the interface devoted to the handling
of one of the Action Laws is shown. The just described
interaction schema is used also for the creation and editing of
the other constructs of the language, such as complex actions
(Figure7), sensing actions, speech acts, and so forth.

baldoni
46

Fig. 5. Representation of a precondition law: beliefs are represented as light blue ovals, disbeliefs as blue ovals with a red border, terms as red ovals, while
the action name is depicted as an orange rectangle.

Fig. 6. Representation of an action law: the middle line divides preconditions to the effects from the action’s effects themselves.

IV. A N OWL ONTOLOGY FORDyLOG

In parallel with the work aimed at developing a program-
ming environment for the language, we have also developed
an ontology (calledDyLOG Ontology) to be used for Semantic
Web applications and, in particular, in the case of Semantic
Web Services. We have already shown, in previous work, how
the action metaphor and the mechanisms for reasoning about
actions and change can fruitfully be exploited in many Seman-
tic Web application frameworks [30], such as in educational
applications and for the composition of web services. In order
to allow the development of real applications over the web,
there was a need of representingDyLOG programs in a way

that is compatible with the infrastructure of the Semantic Web.
Hence the choice of defining an OWL ontology.

OWL is a Web Ontology language [19], developed by the
W3C community. The main characteristic of this language
w.r.t. earlier languages, used to develop tools and ontologies
for specific user communities is that it is compatible with the
architecture of the World Wide Web, and with the Semantic
Web in particular. In fact, OWL uses URIs (for naming) and
the description framework provided by RDF, and adds the
following capabilities to ontologies: the possibility of being
distributed across many systems, full compatibility with Web
standards for accessibility and internationalization, openess

baldoni
47

Fig. 7. Representation of a ComplexAction.

Fig. 8. The taxonomy of theDyLOG ontology

and extensiblility.
OWL builds on RDF and RDF Schema; it enriches the vo-

cabulary so to allow the description of properties and classes.
Some examples of add-ons are relations between classes
(e.g. disjointness), cardinality (e.g. ”exactly one”), equality,
richer typing of properties, characteristics of properties (e.g.
symmetry), and enumerated classes.

Recently, OWL has been used for defining a set of on-
tologies that can be considered as declarative languages and
specifications for agents (more generally, web services) that

are to be retrieved over the web in an intelligent way, so
that they can interoperate and accomplish a common goal. A
few examples are the OWL-S language [11], for web service
functional description, FIPA OWL [31], an ontology for FIPA
agents and ACL messages, and ConOnto [32], that allows the
description of context aware systems. In the following we will
describe the ontology that we have designed for describing
DyLOG agents in a Semantic Web context.

A. TheDyLOG ontology

As mentioned in the previous section, representingDyLOG
programs by means of ontological terms allows the use of
our language in the development of interoperating agents in a
Semantic Web framework. Another advantage is the possibility
to specify the syntactic constraints of the language directly
within the ontology definition: for instance, a Simple Action
must have one and only one Precondition Law; this constraint
can be specified by imposing a proper restriction to the
cardinality of the corresponding property. A reasoner can be
used for verifying that the syntactic constraints are respected.

For representing aDyLOG program by means of the
ontology it is necessary to start with an instance of class
DomainDescription, which contains the properties for spec-
ifying the behavior, the communication policies and the initial
observations (respectivelybehaviour, ckit and s0). Each such
property is represented by an instance of a class that specifies
all the characteristics of the correspondingDyLOG construct
by means of properties and restrictions imposed to capture the
syntactic constraints. In Figure8 we report the taxonomy of
the ontology, while in Figure9 we present, as an example, the
definition of the classSimple Actionand its properties.

It is interesting to observe that, within aSimple Action
instance, the order of theAction Lawinstances is meaningful

baldoni
48

〈owl:Class rdf:ID=" SimpleAction" 〉
〈rdfs:subClassOf rdf:resource="# Action" /〉
〈rdfs:subClassOf 〉 - 〈owl:Restriction 〉
〈owl:cardinality rdf:datatype="#int" 〉 1 〈/owl:cardinality 〉
〈owl:onProperty 〉
〈owl:ObjectProperty rdf:about="# preconditionLaw"/ 〉
〈/owl:onProperty 〉 〈/owl:Restriction 〉 〈/rdfs:subClassOf 〉
〈rdfs:subClassOf 〉 - 〈owl:Restriction 〉 - 〈owl:onProperty 〉
〈owl:ObjectProperty rdf:about="# actionLawSeq"/ 〉
〈/owl:onProperty 〉
〈owl:maxCardinality rdf:datatype="#int" 〉1〈/owl:maxCardinality 〉
〈/owl:Restriction 〉 〈/rdfs:subClassOf 〉 〈/owl:Class 〉

〈owl:ObjectProperty rdf:ID=" actionLawSeq" 〉
〈rdfs:range rdf:resource="#ActionLawSeq"/ 〉
〈rdfs:domain 〉 - 〈owl:Class 〉 - 〈owl:unionOf rdf:parseType="Collection" 〉
〈owl:Class rdf:about="# SpeechAct"/ 〉
〈owl:Class rdf:about="# SimpleAction"/ 〉
〈/owl:unionOf 〉 〈/owl:Class 〉 〈/rdfs:domain 〉 〈/owl:ObjectProperty 〉

〈owl:ObjectProperty rdf:ID=" preconditionLaw" 〉
〈rdfs:range rdf:resource="#PreconditionLaw"/ 〉
〈rdfs:domain 〉 - 〈owl:Class 〉 - 〈owl:unionOf rdf:parseType="Collection" 〉
〈owl:Class rdf:about="# SpeechAct"/ 〉
〈owl:Class rdf:about="# SimpleAction"/ 〉
〈/owl:unionOf 〉 〈/owl:Class 〉 〈/rdfs:domain 〉 〈/owl:ObjectProperty 〉

〈owl:ObjectProperty rdf:ID=" actionName" 〉
〈rdfs:domain 〉 - 〈owl:Class 〉 - 〈owl:unionOf rdf:parseType="Collection" 〉
〈owl:Class rdf:about="# Action"/ 〉
〈owl:Class rdf:about="# PreconditionLaw"/ 〉
〈/owl:unionOf 〉 〈/owl:Class 〉 〈/rdfs:domain 〉
〈rdfs:range rdf:resource="#ActionName"/ 〉 〈/owl:ObjectProperty 〉

Fig. 9. An excerpt from the OWLDyLOG ontology: definition of simple action.

because it might influence the program execution (like in
prolog). Nevertheless, such an ordering cannot be represented
directly in OWL. To this aim, we have defined an auxiliary
structure (a linked list) that solves the problem. We have relied
on this solution whenever an ordering had to be imposed over
the instances of a given property.

In order to exploit theDyLOG ontology within the environ-
ment described in this article we added totuDyLOG package
functionalities to import and export aDyLOG program in Java
representation to OWL and vice versa. This implementation
uses libraries provided from Jena [33]: a framework, produced
by HP labs, for develop Semantic Web applications.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have describedVisualDyLOG, a graphical
design and programming evironment for the modal logic
languageDyLOG. The project basically relies on two main
choices. On a hand, a fully new, Java implementation of the
DyLOG language has been developed, as an extension of

the tuProlog package. The new package, namedtuDyLOG
actually exploits the basic mechanisms already offered by
tuProlog, such as the methods for unification. The reason
for changing implementation language (an implementation of
DyLOG in Sicstus Prolog is already available) is that Java
is more portable and allows us to exploit applications and
frameworks that are already available, in particular, Eclipse:
a well-known platform for building integrated development
environments. By means of this platform it is easy to develop
applications that can be deployed and distributed as stand-
alone tools. The implementation of the graphical programming
environment is almost complete; what still remains to do is
the re-implementation of theDyLOG engine, which is on the
way. Also the OWL ontology forDyLOG is ready to use
and will be soon tested in a Semantic Web framework. In
fact, we believe that this package will be very useful for
the development of Semantic Web Services and we plan to
use it in cooperation with the University of Hannover in an
e-learning setting: integrating aDyLOG web service in the

baldoni
49

Personal Reader architecture (see [34]).

REFERENCES

[1] AgentTool development system, “http://www.cis.ksu.edu/∼sdeloach/ai/
projects/agentTool/agentool.htm.”

[2] S. A. DeLoach,Methodologies and Software Engineering for Agent Sys-
tems. Kluwer Academic Publisher, 2004, ch. The MaSE Methodology,
to appear.

[3] ZEUS Home Page, “http://more.btexact.com/projects/agents.htm.”
[4] E. Astesiano, M. Martelli, V. Mascardi, and G. Reggio, “From Re-

quirement Specification to Prototype Execution: a Combination of a
Multiview Use-Case Driven Method and Agent-Oriented Techniques,”
in Proceedings of the 15th International Conference on Software En-
gineering and Knowledge Engineering (SEKE’03), J. Debenham and
K. Zhang, Eds. The Knowledge System Institute, 2003, pp. 578–585.

[5] I. Gungui and V. Mascardi, “Integrating tuProlog into DCaseLP to en-
gineer heterogeneous agent systems,” proceedings of CILC 2004. Avail-
able at http://www.disi.unige.it/person/MascardiV/Download/CILC04a.
pdf.gz. To appear.

[6] M. Martelli and V. Mascardi, “From UML diagrams to Jess rules:
Integrating OO and rule-based languages to specify, implement and
execute agents,” inProceedings of the 8th APPIA-GULP-PRODE Joint
Conference on Declarative Programming (AGP’03), F. Buccafurri, Ed.,
2003, pp. 275–286.

[7] M. Baldoni, L. Giordano, A. Martelli, and V. Patti, “Reasoning about
Complex Actions with Incomplete Knowledge: A Modal Approach,” in
Proc. of ICTCS’2001, ser. LNCS, vol. 2202. Springer, 2001, pp. 405–
425.

[8] M. Baldoni, C. Baroglio, I. Gungui, A. Martelli, M. Martelli, V. Mas-
cardi, V. Patti, and C. Schifanella, “Reasoning about agents’ interaction
protocols inside dcaselp,” inProc. of the International Workshop on
Declarative Language and Technologies, DALT’04, J. Leite, A. Omicini,
P. Torroni, and P. Yolum, Eds., New York, July 2004, to appear.

[9] B. Shneiderman,Designing the user interface. Addison-Wesley, 1998.
[10] DAML-S, “http://www.daml.org/services/daml-s/0.9/,” 2003, version

0.9.
[11] OWL-S, “http://www.daml.org/services/owl-s/.”
[12] WSDL, “http://www.w3c.org/tr/2003/wd-wsdl12-20030303/,” 2003, ver-

sion 1.2.
[13] J. Bryson, D. Martin, S. McIlraith, and L. A. Stein, “Agent-based

composite services in DAML-S: The behavior-oriented design of an
intelligent semantic web,” 2002. [Online]. Available:citeseer.nj.nec.
com/bryson02agentbased.html

[14] H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. B. Scherl,
“GOLOG: A Logic Programming Language for Dynamic Domains,”J.
of Logic Programming, vol. 31, pp. 59–83, 1997.

[15] G. D. Giacomo, Y. Lesperance, and H. Levesque, “Congolog, a concur-
rent programming language based on the situation calculus,”Artificial
Intelligence, vol. 121, pp. 109–169, 2000.

[16] S. McIlraith and T. Son, “Adapting Golog for Programmin the Semantic
Web,” in 5th Int. Symp. on Logical Formalization of Commonsense
Reasoning, 2001, pp. 195–202.

[17] M. Baldoni, C. Baroglio, A. Martelli, and V. Patti, “Reasoning about
interaction for personalizing web service fruition,” inProc. of WOA
2003: Dagli oggetti agli agenti, sistemi intelligenti e computazione
pervasiva, G. Armano, F. De Paoli, A. Omicini, and E. Vargiu, Eds.
Villasimius (CA), Italy: Pitagora Editrice Bologna, September 2003.

[18] ——, “Reasoning about interaction protocols for web service compo-
sition,” in Proc. of 1st Int. Workshop on Web Services and Formal
Methods, WS-FM 2004, M. Bravetti and G. Zavattaro, Eds. Elsevier
Science Direct. To appear, 2004, electronic Notes in Theoretical Com-
puter Science.

[19] OWL, “http://www.w3.org/2004/OWL/.”
[20] K. Arisha, T. Eiter, S. Kraus, F. Ozcan, R. Ross, and V. Subrahma-

nian, “IMPACT: a platform for collaborating agents,”IEEE Intelligent
Systems, vol. 14, no. 2, pp. 64–72, 1999.

[21] M. Fisher, “A survey of concurrent METATEM - the language and its
applications,” inProc. of the 1st Int. Conf. on Temporal Logic (ICTL’94),
ser. LNCS, D. M. Gabbay and H. Ohlbach, Eds., vol. 827. Springer-
Verlag, 1994, pp. 480–505.

[22] M. Baldoni, L. Giordano, A. Martelli, and V. Patti, “Programming
Rational Agents in a Modal Action Logic,”Annals of Mathematics and
Artificial Intelligence, Special issue on Logic-Based Agent Implementa-
tion, 2004, to appear.

[23] M. Baldoni, C. Baroglio, A. Martelli, and V. Patti, “Reasoning about
self and others: communicating agents in a modal action logic,” in
Theoretical Computer Science, 8th Italian Conference, ICTCS’2003, ser.
LNCS, C. Blundo and C. Laneve, Eds., vol. 2841. Bertinoro, Italy:
Springer, October 2003, pp. 228–241.

[24] FIPA, “Fipa 97, specification part 2: Agent communication language,”
FIPA (Foundation for Intelligent Physical Agents), Tech. Rep., Novem-
ber 1997, available at:http://www.fipa.org/ .

[25] M. P. Singh, “A social semantics for agent communication languages,”
in Proc. of IJCAI-98 Workshop on Agent Communication Languages.
Berlin: Springer, 2000.

[26] M. Baldoni, L. Giordano, A. Martelli, and V. Patti, “Programming ratio-
nal agents in a modal action logic,” annals of Mathematics and Artificial
Intelligence, Special issue on Logic-Based Agent Implementation. To
appear.

[27] tuProlog Home Page, “http://lia.deis.unibo.it/research/tuprolog/.”
[28] Eclipse platform, “http://www.eclipse.org.”
[29] Eclipse Rich Client Platform, “http://dev.eclipse.org/viewcvs/index.cgi/

∼checkout∼/platform-ui-home/rcp/index.html.”
[30] M. Baldoni, C. Baroglio, and V. Patti, “Web-based adaptive tutoring: An

approach based on logic agents and reasoning about actions,”Journal
of Artificial Intelligence Review, 2004, to appear.

[31] FIPAOWL, “http://taga.umbc.edu/ontologies/fipaowl.owl.”
[32] CONONTO, “http://www.site.uottawa.ca/∼mkhedr/contexto.html.”
[33] Jena Semantic Web Framework, “http://jena.sourceforge.net/.”
[34] N. Henze and M. Herrlich, “The personal reader: a framework for

enabling personalization services on the semantic web,” inProc. of ABIS
2004, 2004.

http://www.cis.ksu.edu/~sdeloach/ai/projects/agentTool/agentool.htm
http://www.cis.ksu.edu/~sdeloach/ai/projects/agentTool/agentool.htm
http://more.btexact.com/projects/agents.htm
http://www.disi.unige.it/person/MascardiV/Download/CILC04a.pdf.gz
http://www.disi.unige.it/person/MascardiV/Download/CILC04a.pdf.gz
http://www.daml.org/services/owl-s/
citeseer.nj.nec.com/bryson02agentbased.html
citeseer.nj.nec.com/bryson02agentbased.html
http://www.w3.org/2004/OWL/
http://lia.deis.unibo.it/research/tuprolog/
http://www.eclipse.org
http://dev.eclipse.org/viewcvs/index.cgi/~checkout~/platform-ui-home/rcp/index.html
http://dev.eclipse.org/viewcvs/index.cgi/~checkout~/platform-ui-home/rcp/index.html
http://taga.umbc.edu/ontologies/fipaowl.owl
http://www.site.uottawa.ca/~mkhedr/contexto.html
http://jena.sourceforge.net/
baldoni
50

Using Method Engineering for the Construction of
Agent-Oriented Methodologies

Giancarlo Fortino, Alfredo Garro, and Wilma Russo
D.E.I.S.

Universit̀a della Calabria
Via P. Bucci, 87030 Rende (CS), Italy

Email: {fortino, garro, russow}@deis.unical.it

Abstract— Great emphasis has been recently given to agent-
oriented methodologies for the construction of complex software
systems. In this paper two approaches for the construction of
agent-oriented methodologies and based on methods integration
are presented:meta-model-drivenand development process-driven.
The former is based on the MAS meta-model adopted by
designers for the development of a MAS for a specific problem
in a specific application domain. The latter is based on the
instantiation of a software development process in which each
phase is carried out using appropriate method fragments and by
the mutual adaptation of the work products coming out from
each phase.

I. I NTRODUCTION

In analysing and building complex software systems, a
number of fundamental techniques for helping to manage
complexity have been devised [3]:

• Decomposition: the basic technique for tackling large
problems by dividing them into smaller, more manageable
chunks, each of which can then be approached in relative
isolation. It helps tackling complexity because it limits
the designer’s scope.

• Abstraction: the process of defining a simplified model
of the system that emphasizes some details or properties,
while suppressing others. It is useful because it limits the
designer’s scope of interest at a given time.

• Organization: the process of defining and managing the
interrelationships between the various system’s compo-
nents. The ability to specify organizational relationships
helps tackling complexity by enabling a number of basic
components to be grouped together and treated as a
higher-level unit of analysis, and by providing a means
of describing the high-level relationships between the
various units.

Recently the agent-oriented approach [13] has been widely
recognized as very suitable for the development of complex
software systems since it fully exploits the techniques listed
above. In particular in the context of complex software sys-
tems:

• the agent-oriented decompositions are an effective way
of partitioning the problem space;

• the key abstractions of the agent-oriented mindset (agents,
interactions, and organizations) are a natural means of
modelling;

• the agent-oriented philosophy for modelling and manag-
ing organizational relationships is appropriate for dealing
with the existing dependencies and interactions.

The development of complex software systems by using the
agent-oriented approach requires suitable agent-oriented mod-
elling techniques and methodologies which provide explicit
support for the key abstractions of the agent paradigm.
Several methodologies supporting analysis, design and imple-
mentation of Multi-Agent Systems (MAS) have been to date
proposed in the context of Agent Oriented Software Engineer-
ing (AOSE) [14]. Some of the emerging methodologies are
Gaia [16], MaSE [7], Prometheus [15], Tropos [4], Message
[5], Passi [6], and Adelfe [2]. Although such methodologies
have different advantages when applied to specific problems
it seems to be widely accepted that an unique methodology
cannot be general enough to be useful to everyone without
some level of customization. In fact, agent designers, for solv-
ing specific problems in a specific application context, often
prefer to define their own methodology specifically tailored
for their needs instead of reusing an existing one. Thus, an
approach that combines the designer’s need of defining his
own method-ology with the advantages and the experiences
coming from the existing and documented methodologies is
highly required.
A possible solution to this problem is to adopt the method
engineering paradigm so enabling designers of MAS to use
phases or models or elements coming from different method-
ologies in order to build up a customized approach for their
own problems [12].
In particular, the development methodology is constructed
by assembling pieces of methodologies (method fragments)
from a repository of methods (method base). The method base
is built up by taking method fragments coming from existing
agent-oriented methodologies (such as Adelfe, Gaia, Message,
Passi, Tropos, etc.) or ad hoc defined methods. Currently
this approach is adopted by the FIPA Methodology Technical
Committee (TC) [20].
It is therefore crucial to define guidelines for methods inte-
gration in order to both construct the methodology (retrieving
the method fragments from the method base and integrating
them) and apply it in the actual development life cycle.
In this direction, the paper proposes two approaches for

baldoni

the construction of agent-oriented methodologies by using
methods integration: (i)meta-model-driven, which is based
on the MAS meta-model adopted by the designer for the
development of a MAS for a specific problem in a specific
application domain; (ii)development process-driven, which is
based on the instantiation of a software development process
in which each phase is carried out using appropriate method
fragments.
The remainder of this paper is organized as follows. In section
II and III the meta-model-driven and the development process-
driven approaches are respectively described. In section IV,
conclusions are drawn and on-going research activities delin-
eated.

II. T HE MAS META-MODEL-DRIVEN APPROACH

A method fragment [18] is a portion of methodology which
is composed of the following parts:

1) A process specification, defined with a SPEM diagram
[21], which defines the procedural aspect of the frag-
ment;

2) One or more deliverables such as AUML/UML diagrams
and text documents [1];

3) Some preconditions which represent a kind of constraint
since it is not possible to start the process specified in
the fragment without the required input data or without
verifying the required guard conditions;

4) A list of elements (which is a part of the MAS meta-
model subsumed by the methodology from which it was
extracted) to be defined or refined through the specified
process;

5) Application guidelines that illustrate how to apply the
fragment and related best practices;

6) A glossary of terms used in the fragment in order to
avoid misunderstandings if the fragment is reused in a
context that is different from the original one;

7) Composition guidelines which describe the con-
text/problem that is behind the methodology from which
the specific fragment is extracted;

8) Aspects of fragment which are textual descriptions of
specific issues such as platform to be used, application
area, etc;

9) Dependency relationships useful to assemble fragments.
It should be noted that not all of these elements are mandatory;
some of them (for instance notation or guidelines) could be
not applicable or not necessary for some specific fragment.

To build his own methodology by exploiting themeta-
model-drivenapproach, the designer must:
• choose or define a MAS meta-model suitable for the

specific problem and/or the specific application domain;
• identify the elements that compose the meta-model of the

MAS under development;
• choose the method fragments that are able to produce the

identified meta-model elements;
• defining a development process characterized by amethod

fragments execution orderon the basis of the relationship

existing among the meta-model elements produced by
each fragment.

Hence, the obtained methodology is able to completelycover
the MAS meta-model for a given problem in a specific
application domain.

*

1

*

Purpose

1 1

Protocol

Input

Protocol

Output

Processing

11

*

1

Protocol

Pre-condition

1

1

*

*

Service Input
1

*

Service Output
1

*

Post-condition

Service

Agent
1 1..*

1

Has in charge

Perception

*

1

*

*

Initiator/Responder

Role

SkillAptitude

11

1..

- knowledge: Ontology

Predicate

ActionConcept

Ontology

Fig. 1. An example MAS meta-model

An example MAS meta model is reported in Figure 1.
Referring to the MAS meta-model of Adelfe, Gaia and Passi
a set of methods fragments that are able to produce a piece of
the MAS meta-model can be chosen. To completely cover the
MAS meta-model selected fragments can be combined and,
if necessary, new fragments can be defined (see Figure 2).
Using this approach, the integration among the fragments is
based on the relationships existing among the elements of the
MAS meta-model. Thus, in order to obtain a completely and
well-defined ad-hoc methodology, a propermethod fragments
execution orderis to be defined.

*

1

*

Purpose

1 1

Protocol

Input

Protocol

Output

Processing

11

*

1

Protocol

Pre-condition

1

1

*

*

Service Input
1

*

Service Output
1

*

Post-condition

Service

Agent
1 1..*

1

Has in charge

Perception

*

1

*

*

Initiator/Responder

Role

SkillAptitude

11

1..

- knowledge: Ontology

Predicate

ActionConcept

Ontology

Produced by an

ad hoc defined

fragment

Produced by the "Agents

Identification"

fragment of PASSI

Produced by the

"Ontology definition"

fragment of PASSI

Produced by the "Identify

and document

the interaction protocols"

fragment of Gaia

Produced by the

"Individuate agent's

aptitudes and skills"

fragment of ADELFE

Produced by the "Develop a

Services Model"

fragment of Gaia

Fig. 2. An example of meta-model-driven methods integration

baldoni
52

On the basis of the relationships shown in figure 2) the
method fragments execution order is the following:

1) the Agents Identification fragment of Passi [19];
2) the concurrent execution of the ad-hoc defined fragment

and the Individuate agent’s aptitudes and skills fragment
of Adelfe [17];

3) the concurrent execution of the Develop a Services
Model fragment of Gaia and the Identify and document
the interaction protocols fragment of Gaia [11];

4) the Ontology definition fragment of Passi [19].

III. T HE DEVELOPMENT PROCESS-DRIVEN APPROACH

The development process-driven approach focuses on the in-
stantiation of a software development process that completely
covers the development of MAS (see Figure 3).

Requirements

Capture
Analysis Design

Analysis

Work products

Design

Work Products
Requirements

Statement

Detailed

Design
Implementation

Detailed Design

Work Products

Simulation

Deployment

Implementation

Work Products

Simulation

Work Products

Deployment

Work Products

Fig. 3. An example of software development process

To build his own methodology by exploiting thedevelop-
ment process-drivenapproach, the designer must:

• choose or define a software development process suitable
for the specific problem and for the specific application
domain;

• instantiate the development process by selecting, for each
phase, suitable method fragments, chosen from agent-
oriented methodologies proposed in the literature or ad-
hoc defined.

An example software development process [8] is reported
in Figure 3. Referring to the development phases specified by
Tropos, Gaia, Passi and by a Statecharts-based methodology
[10], a set of methods fragments that are able to carry out
each phase of the development process are to be chosen.
To completely cover the development process the selected
fragments can be combined and, if necessary, new fragments
can be defined (see Figure 4). Using this approach, the
integration between the fragments is achieved by individuating
and/or defining dependencies among work products produced
by the fragments of the instantiated process. Notice that the
work products produced in a given fragment might constitute
the input for the next fragment provided that they contain all
the in-formation required to its initialization (see Figure 5).

IV. CONCLUSIONS

This paper has proposed two approaches to the integration
of methods fragments:meta-model-drivenand development
process-driven. These approaches are not mutually exclusive;
rather, hybrid approaches containing features of both of them
might be defined as well.

Requirements

Capture
Analysis Design

Analysis

Work products

Design

Work Products
Requirements

Statement

Detailed

Design
Implementation

Detailed Design

Work Products

Simulation

Deployment

Implementation

Work Products

Simulation

Work Products

Deployment

Work Products

Performed by using

method fragments

from TROPOS

Performed by using

method fragments

from Gaia

Performed by using

method fragments

from PASSI Performed by using method fragments

from a Statecharts-based methodology

Fig. 4. Development process-driven methods integration

Acquaintance

Model

Roles

Model

Interactions

Model

Requirements

Statement

Prototypical

Roles Model

Services

Model

Agent

Model

Agent

Interactions

Model

Agent Behaviors

Model

Agent

Classes

Requirements

Capture Analisys Design
Detailed

design
Implementation

Fig. 5. Dependencies among work products of the instantiated process

The meta-model-drivenapproach provides the following ad-
vantage: flexibility for the definition of methodologies and
meta-models of the MAS to be developed. Conversely, it has
some drawbacks:(i) difficulty of integration of different frag-
ments due to different semantics of the meta-model concepts;
(ii) selection and/or definition of the meta-model to adopt for
the specific problem and/or application domain.
The development process-drivenapproach is characterized by
the following advantages: flexibility for the construction of
methodologies by means of the instantiation of each stage of
the development process. On the other hand, the disadvantages
are the following:(i) process rigidity;(ii) low flexibility of
the system meta-model since the meta-model of the adopted
methodology must be used;(iii) adaptation among the work
products which is sometimes difficult to achieve;(iv) choice
and definition of the process to instantiate for the specific
problem and/or application context. On going research activity
is being focused on:

1) definition of adaptation techniques among work products
produced by different methods and/or method fragments;

2) extraction from and definition of method fragments of
already existing methodologies and the mutual adapta-
tion among the defined method fragments. This activity
is being carried out in the context of the FIPA Method-
ology TC;

3) the experimentation of the two presented approaches for
the e-Commerce application domain [9].

REFERENCES

[1] B. Bauer, J.P. Muller, and J. Odell. Agent UML: A Formalism for
Specifying Multiagent Interaction. In Paolo Ciancarini and Michael
Wooldridge, editors,Agent-Oriented Software Engineering, pages 91–
103. Springer-Verlag, Berlin, 2001.

[2] C. Bernon., M.P. Gleizes, G. Picard, and P. Glize. The Adelfe Methodol-
ogy For an Intranet System Design. InProc. of the Fourth International
Bi-Conference Workshop on Agent-Oriented Information Systems (AOIS),
Toronto, Canada, 2002.

baldoni
53

[3] G. Booch. Object-Oriented Analysis and Design with Applications.
Addison Wesley, 1994.

[4] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini.
TROPOS: An Agent-Oriented Software Development Methodology,Jour-
nal of Autonomous Agents and Multi-Agent Systems, 8(3):203–236, 2004.

[5] G. Caire, F. Leal, P. Chainho, R. Evans, F. Garijo, J. Gomez, J. Pavon,
P. Kearney, J. Stark, and P. Massonet. Agent Oriented Analysis using
MESSAGE/UML. InProc. of the 2nd In-ternational Workshop on Agent-
Oriented Software Engineering (AOSE), LNCS 2222. Springer-Verlag,
Berlin, 2002.

[6] M. Cossentino, P. Burrafato, S. Lombardo, and L. Sabatucci. Introducing
Pattern Reuse in the Design of Multi-Agent Systems. In Ryszard Kowal-
czyk, Jorg P. Muller, Huaglory Tianfield, Rainer Unland, editors,Agent
Technologies, Infrastructures, Tools, and Applications for E-Services,
Lecture Notes in Artificial Intelligence (LNAI) volume 2592, pages 107–
120, Springer-Verlag, Berlin Heidelberg, Germany, 2003.

[7] S. A. DeLoach, M. Wood, and C. Sparkman. Multiagent system engi-
neering. International Journal of Software Engineering and Knowledge
Engineering, 11(3):231–258, April 2001.

[8] G. Fortino, A. Garro, and W. Russo. From Modeling to Simulation
of Multi-Agent Systems: an integrated approach and a case study. In
Gabriela Lindemann, Jorg Denzinger, Ingo J. Timm, Rainer Unland,
editors,Multiagent System Technologies, Lecture Notes in Artificial In-
telligence (LNAI) volume 3187, pages 213–227, Springer-Verlag, Berlin
Heidelberg, Germany, 2004.

[9] G. Fortino, A. Garro, and W. Russo. Modelling and Analysis of Agent-
Based Electronic Marketplaces.IPSI Transactions on Advanced Research,
2004, to appear.

[10] G. Fortino, W. Russo, and E. Zimeo. A Statecharts-based Software
Development Process for Mobile Agents.Information and Software
Technology, 46(13):907–921, 2004.

[11] A. Garro, P. Turci, and M.P. Huget. Expressing Gaia Methodology
using Spem. FIPA Methodology TC, working draft v. 1.0/04-03-15,
[http://fipa.org/activities/methodology.html].

[12] B. Henderson-Sellers. Method Engineering for OO Systems Develop-
ment. Communications of the ACM, 46(10), 2003.

[13] N. R. Jennings. An Agent-Based Approach for Building Complex
Software Systems.Communications of the ACM, 44(4), 2001.

[14] J. Lind. Issues in Agent-Oriented Software Engineering. InProc. of the
First International Workshop on Agent-Oriented Software Engineering
(AOSE), LNCS 1957, pages 45–58. Springer-Verlag, Berlin, 2001.

[15] L. Padgham and M. Winikoff. Prometheus: A methodology for devel-
oping intelligent agents. InProc. of the Third International Workshop
on Agent-Oriented Software Engineering (AOSE), LNCS 2585, Springer-
Verlag, Berlin, 2003.

[16] M. Wooldridge, N. R. Jennings, and D. Kinny. The Gaia methodology
for agent-oriented analysis and design.Journal of Autonomous Agents
and Multi-Agent Systems, 3(3):285–312, 2000.

[17] M. P. Gleizes et al. Adelfe fragments, rel.0, March 2004.
[http://www.pa.icar.cnr.it/ cossentino/FIPAmeth/docs/adelfefragmentsv0.pdf]

[18] Method Fragment Definition.FIPA Methodology TC, working draft,
Nov. 2003, [http://fipa.org/activities/methodology.html].

[19] M. Cossentino. PASSI fragments: All
fragments, draft. rel 0.1, Feb. 2004.
[http://www.pa.icar.cnr.it/ cossentino/FIPAmeth/docs/passifragments0 1.zip]

[20] Foundation for Intelligent Physical Agents (FIPA) Specifications.
[http://www.fipa.org].

[21] Software Process Engineering Metamodel Specification, Version 1.0,
formal/02-11-14. Object Management Group Inc. , November 2002.

baldoni
54

Abstract— D-Me (Digital_Me) is a multiagent system

supporting ubiquitous and personal interaction with services
available in active environments. It has been modeled as
composed by two interacting entities: the Environment, in which
various services are available, and a Personal User Agent, his/her
digital “alter ego”. A relation between these two entities is
represented by the task the user intends to perform and the
services the environment can provide for accomplishing user’s
tasks. Then, the personal user agent exploits several knowledge
sources for proactively reminding or executing tasks according to
the current context.

Index Terms— Personal agents, ubiquitous computing, smart
environments.

I. INTRODUCTION

HERE are many different ways in which context
information can be used to make applications more user
friendly, flexible and adaptive especially in ubiquitous

and pervasive computing where the context and usage needs
change rapidly [1].

In ubiquitous computing (UbiComp) computers fade into
the background, technology is present but invisible to users
and the computation is possible everywhere and with any sort
of device [2]. Then, interaction between users and services
provided by a smart environment is very complex as it can
happen at every time, in different situations and places. In this
kind of situation, adaptation to user and context features
seems to be important in order to decrease complexity and
increase the conversational bandwidth of interaction (3 P.J.
Brown, 1999). Context-awareness, then, refers to the ability of
a system of extracting, interpreting and using context
information intelligently in order to adapt its functionality to
the current context of use [4,5].

Considering the interaction between a user and a context-
aware system, there are at least two aspects that are worth
mentioning: information presentation and service fruition
[5]. As far as the first aspect is concerned, results of
information services should be adapted not only to static user
features, such as her background knowledge, preferences, sex,
and so on, but also to more dynamic ones related to the
context (i.e. activity, location, affective state and so on) [6].
The second aspect regards execution of users tasks triggered
by context features. For instance user's tasks present in a to-
do-list or agenda could be proactively reminded or executed
when the user enters in an environment or is in a situation in
which those task are enabled [7,8]. Moreover, their execution
can be contextualized according to available resources,
location and so on.

This paper presents an approach to address this second

issues: taking advantage from user and context modeling for
achieving effective ubiquitous interaction with services
available in smart environments.

A way to approach this problem is to take inspiration from
the personal interface agents research area [9,10]. In this
paradigm, the user delegates a task to the agent that may
operate directly on the application or may act in the
background while the user is doing something else. An agent
is, in this case, a representative of the user and acts on his/her
behalf more or less autonomously. Moreover, it has to be able
to communicate to the user in an appropriate way, without
being too much intrusive, according to the context situation,
user preferences, habits and needs. Then, importing this
interaction metaphor in the Ubicomp vision, the ideal personal
assistant, in addition, should exhibit a context-aware
intelligence, doing exactly what the user expects him to do
successfully in the current context.

Our work represents a first step in this direction. D-Me is a
MultiAgent System (MAS) composed at least of two
interacting entities: the Environment, a physical or logical
place in which various services are available, and one or more
mobile users interacting with ubiquitous services through a
Personal Agent. A relation between these two entities is
represented by the task the user wants to perform and the
services that the environment can provide for accomplishing
user’s tasks. For this reason, in order to give to the user the
possibility of delegating and controlling their D-Mes, when
interacting with the environment, we developed, as a first
prototype, a Smart To-Do-List .

A To Do List is a typical example of application that
requires personalization and can take advantage from user and
context modeling. Context-aware systems of this type remind
the user of tasks based on the situational context. For example,
if a user’s to-do list contains the task ‘buy food before going
back home’ and the user passes by a supermarket while going
back home, then a useful context -aware reminder would
notify the user to buy food. CyberMinder [7] and PDS[8] are
examples of systems of this type. In particular, CyberMinder
takes into account user’s activities, location, time and user
history as the context information. It can notice simple events
(e.g., notifying a user of a meeting just based on time) or
complex situations (e.g., reminding a user of an event using
other people’s context). The PDS system, in addition, utilizes
machine learning in order to support a user’s daily activities in
an everyday computing setting. Another system that
addresses the issue of context awareness of user interaction in
real spaces is illustrated in [11]. In this system, two agents
(one representing the user and the other representing the
environment) cooperate for achieving context-aware

A Personal Agent Supporting
Ubiquitous Interaction

Giovanni Cozzolongo, Berardina De Carolis, and Sebastiano Pizzutilo

T

baldoni

information presentation about the specific nature of the place
the user is currently visiting.

Our approach takes advantage of the inherent properties of
agents by adding to a simple context aware reminder
proactivity and autonomy: if there is a task in the user to-do-
list that can be completely or partially executed in the current
context by requiring a service to the environment, its
execution can be delegated to the personal agent given the
appropriate autonomy level.

In this paper, we describe the D-Me MAS focusing on the
description of the Personal Agent. In particular, Section II
outlines some architectural requirements and describes the
global organization of the D-Me system. Section III focuses
on the main features of the user Personal Agent outlining how
it exploits several knowledge sources for supporting
“personal” interaction with the Environment. In Section IV,
conclusions and future work are discussed.

II. OUTLINE OF THE D-ME ARCHITECTURE
Fig.1 illustrates the architectural schema of D-Me MAS

developed according to FIPA specifications [12].
In this system, each user is represented by a Personal Agent

(PA) that exploits some knowledge sources to remind and/or
request, more or less autonomously, execution of environment
services matching entries in the user To-Do-List that are
enabled in a particular context.

On the other side, the environment is 'active': it is modeled
as an organization of specialized agents:

- a Keeper Agent that coordinates the exchange of
information between the other agents, acting as a directory
facilitator (FIPA DF) and as a Agent Management System
(FIPA AMS). Every other agent in the system has to register
with it using the protocol appropriate for its role in the
environment. For instance, a Service Agent should use a
"serviceRegister " protocol, a D-Me agent uses its protocol.

- Service Agents, which provide services and are able to
execute tasks;

- D-Me Personal Agents, representing users in the
environment, that can look for contextually relevant services.
A PA asks to the Keeper the address of other agents (personal
or service) using a protocol that can look for them by name (a
known agent) or some keywords (a type of service). In case of
positive response, service execution can be asked directly to
the corresponding agent, otherwise, the request is repeated
until a timeout.

- a Context Agent, which can provide information about
the environment context.

Users may interact with environment services in a remote
way or by being physically in the environment and may move
from one environment to another. Managing inter-
environment communication is the task of the Environment
Keeper with whom every Keeper must register.

Fr
om the implementation viewpoint, D-Me has been developed
using the JADE toolkit [13]. In particular, the PA, that we will
see in details later on, runs on a mobile device and has been
implemented with JADE-Leap [14].

While the high-level communication protocols have been
implemented using Agent Communication Language (ACL)
messages, whose content refers to D-Me ontologies, the
service discovery function has been developed using a
framework for peer to peer communication, JXTA [15, 16].
Since FIPA has not yet delivered a definitive reference model
for dynamic service discovery, we integrated the functionality
of the D-Me Keeper agent with JXTA discovery middleware;
this means that every time an agent registers in the
environment, the Keeper will handle, besides standard
information, also information about its public services. In this
way, when an agent joins a platform, every other agent can be
aware of its services. We are aware this is not a standard and
definitive solution but, since our aim is not to create a new
reference model for service discovery, we adopted a
temporary solution until FIPA will provide this type of
support [17].

In the rest of the paper, we will not going deep into this
issue, since our aim is to show how the system works from the
user point of view.

III. THE D-ME PERSONAL AGENT
Fig.2 describes the D-Me PA. This agent is the core of the
user’s side of the D-Me system.

To support contextual service fruition, we developed a to-
do-list application in which the user, through a friendly user
interface, sets up a set of tasks to be performed in different
context and environment and gives to his/her PA the
autonomy to perform the task entirely or only in part [18].
When the user PA is in presence of a smart environment, that
can provide services useful to the execution of scheduled
tasks, it requests, on user behalf, their execution by passing to
the environment user related information, that can be used to
get personalized results.

Fig. 1. D-Me MAS

baldoni
56

To achieve this aim, the PA is modeled as a BDI agent [19];

its reasoning mechanism is implemented as a cyclic behavior
that continuously checks if, given the current set of agent
beliefs (mental state) and given its desires (goals), some
intentions and plan can be triggered and executed.

At this stage of the implementation, we modeled the
knowledge for achieving the following macro-desires:
- execute totally or in part tasks specified in the user to-do-

list: this desire is quite complex and it is achieved by
accessing the specification of the task in the user to-do-list
and executing the correspondent task model according to the
associated constrains (autonomy, user and context features).

- create new tasks if required: sometimes the context
triggers the execution of tasks that were not explicitly stated
in the to-do-list. In this case this desire become active given
the appropriate level of agent’s autonomy on that family of
actions.

- get user-related information relevant for adapting task
execution: in order to adapt task execution and to
communicate results to the user appropriately, the agent
needs to know information about the user. These
information can be stored in a user profile or can be inferred.

- get context-related information relevant for
contextualizing task execution: as for user related data,
assessing the current context situation is important
especially for triggering and adapting task execution.

- communicate personalized results: results of tasks can be
of various nature (information presentation, reminders,
notifications, and so on). The way in which the agent
communicates to the user is adapted to user interests,
knowledge, preference and so on, but also to context
features.
Then, In order to achieve these desires, the Personal Agent

exploits the following knowledge sources:
i) the to-do-list, containing the description of the task and

its constraints in terms of activation condition, priority, and
autonomy level;

ii) the formal description of the task, that the agent can
use in order to execute it;

iii) the Mobile User Profile (MUP), containing situational
information about the user managed by the Personal User
Modeling Agent (PUMA);

iv) the personal context situation listing the value of
sensors that can be detected from devices that the user wears
(heart beat monitors, temperature, etc.), and

v) the environment context situation (light, noise, etc.)
requested to the Context Agent.

These joint sets of information forms the agent’s set of
beliefs and can be used to trigger opportune intentions
formalized as “plan recipes”. Planning is a fundamental and
yet computationally hard problem [20], since D-Me is
potentially running on different types of personal devices with
limited computational power, predefined plan recipes seem to
be a good compromise between flexibility and resource
constraints.

To demonstrate our solution approach, we use the following
scenario as a running example throughout the remainder of
this paper:

The user enters into the to-do-list a very urgent task: “buy
food before going home (18.00)”. She finished working and is
now driving home. D-me reminds her, using the car display as
an output device, the task in the list that should be performed
outside the office before coming back home. In this case, D-
Me reminds her to buy food. The user acknowledges the
message and drives to the supermarket, where she usually
shops. When the user goes into the supermarket the agent
shows the list of missing food and the related special offers on
her PDA or telephone. The list is obtained by matching the
items provided by the home fridge agent, that checks the
fridge content using tagged objects technology, and the
supermarket special offers (obtained using the service
discovery technology of the supermarket keeper).

Let’s see in more details how these knowledge sources are
used by the agent to support context-aware interaction with
the environment.

A. D-Me Autonomy
D-Me Personal Agent exhibits an autonomous behavior

when achieving its desires that has to match, somehow, the
user delegation type. In particular, in the context of ubiquitous
computing, we recognized the need to model autonomy at
different levels:

- Execution Autonomy: related to execution of actions
(tasks, subtasks, request of services, and so on).

- Communication Autonomy: related to the level of
intrusiveness in communicating to the user. Can the agent take
the interaction initiative in every moment or there are
constraints related to the user and the context? Then, it is
necessary to determine how much a message can be intrusive
in a certain context.

- Personal Data Diffusion Autonomy: it is related to the
autonomy of performing tasks requesting the diffusion of
personal data like those contained in the user profile.

- Resource Autonomy: the agent may use critical
resources of the user in order to executed delegated tasks (i.e.
credit card number, time to schedule appointments).

Each dimension has an associated value that vary from
"null" to "high" in a 5 values scale. The "null" value
represents the absence of autonomy, the system has to execute
what explicitly requested by the user. It cannot infer any
information or decide to modify task execution without
explicitly asking it to the user. The opposite value, "high",
represents the maximum level of autonomy that gives to the

Fig. 2. D-Me Personal Agent

Interface Agent

Personal
Context

MUP

To-Do-list

Task Models

PUMA

User

KBs

D-ME Personal
Agent

baldoni
57

agent the freedom to decide what to do always according to
constraints imposed by the user (i.e. budget limits). The other
values determines an incremental growing of the autonomy in
making decisions and inferring information [18].

Initially, as we will see later on, the user sets explicitly the
autonomy level for a task in the to-do-list. During the
interaction, autonomy levels are revised according to the type
of feedback the user provides to the agent: positive feedback
enforces the autonomy on that category of task , negative one
reduces it. We are aware this is a simple mechanism, however
it will give us the possibility to conduct a further study aiming
at learning which is the most appropriate relation between the
agent’s level of autonomy and the type of user delegation on a
category of tasks.

B. To-Do-List and Task Models
In order to give to the user personal agent the capability to

reason on this information, it is necessary to specify the entry
in the To-Do-List in terms of type or family of task,
environment and context information relevant for task
execution, user related preferences, agent’s autonomy. To

this purpose, we
developed an interface
in Java running on a
PDA that enables user
to input this
information in a quite
simple way (Fig. 3).

A To-Do-List entry
is then formalized in
XML and stored in the
set D-Me KBs. An
example of entry
corresponding to “buy
food before coming
back home” is the
following:

<Knowledge
xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-
instance"xsi:noNamespaceSchemaLocation="C:\DmeSystem
\dati\Knowledge.xsd" slotName="ToDoList">

<Task slotName="taskDefinition" id="1" name="buy"
key="food action="remind" " date=2509041800"
belongingScope="homelife" environment="all" p-
env="supermarket" priority="high" what="food list"
when="before” whenevent=”going back home"
remindBefore="1755" nextOk="3" nextError="4">

<Autonomy slotName="autonomy" execution="high"
communication="high" personalData="middle"
resourcesExploitation="low" />
</Task>

...
</Knowledge>

This specification states which is the task name, the type of

associated D-Me action to be performed when the contextual
situation triggers it (remind in this example), the scope of the
task (homelife) that can be used to trigger user preferences in
that scope, the environment in which the task should be
reminded and the one in which the task should be performed
(p-env). Additional information regards the priority, the
deadline and the type of agent autonomy on that task.

In this example, the agent has an high execution and
communication autonomy, a medium autonomy in
communicating personal data to the environment and low
autonomy on resource exploitation (in this example this is
translated in the fact that the agent cannot buy and pay
autonomously the food unless it is explicitly authorized by the
user).

When user and context features triggers one of the tasks
present in the user To-Do-List, the agent’s desire of executing
a task is achieved by selecting the appropriate plan in the D-
Me KB.

In this case the Remind(U, Do(Task , env, p-env, Cti)) plan
is selected. In this case, U denotes relevant user features, Task
denotes Buy(food), env the environment in which the remind
can be notified (all), p-env the environment in which the user
task can be performed (supermarket) and Cti represents the
context at time ti.

C. P.U.M.A.: Personal User Modeling Agent
Mobile personalization can be defined as the process of

modeling contextual user-information which is then used to
deliver appropriate content and services tailored to the user’s
needs. As far as user modelling is concerned, a mobile
approach, in which the user "brings" always with her/himself
the user model on an personal device, seems to be very
promising in this interaction scenario [21]. It presents several
advantages: the information about the user are always
available, updated, and can be accessed in a wireless and quite
transparent way, avoiding problems related to consistency of
the model, since there is always one single profile per user.

Based on this idea, in the context of our research on
personalization of interaction in ubiquitous computing [22,
23], we have designed and implemented a Personal User
Modeling Agent (PUMA).

In developing its architecture we considered the following
issue: a personal device is used mainly in situations of user
mobility. Normally, when the user is in more “stable”
environments (i.e. home, office, etc.) he/she will use other
devices belonging to that environment (i.e. PC, house
appliances, etc.). In this view, the personal device can be seen
as a “satellite” of other “nucleus” devices that the user uses
habitually in his/her daily life. Then, the PUMA has to be able
to handle this nucleus-satellite relation.

With this aim, instead of implementing a truly mobile
agent, the PUMA is cloned and lives on all the user
platforms/devices. However, although the chosen approach
simplifies the implementation, it requires transferring
knowledge needed for user modeling and opens consistency
problems in maintaining a global image of user preferences,
interests, habitual behavior, etc. In our approach, user models
are organized in a hierarchy [24] whose nodes represent
relevant interaction environments, task families, interest
groups (Fig. 4).
In particular, the roots of the hierarchy represents user
modeling scopes (interaction environments). Each node in the
hierarchy represents a subset of user model data relevant to
the specified domain, task, etc. Then the PUMA accesses and
reasons on the Mobile User Profile portion that is in focus

Fig. 3. A snapshot of the To Do List Interface.

baldoni
58

according to the user task and environment.

This approach presents the main advantages of decreasing the
complexity of representing an unified view of the user profile
even if it requires particular attention in structure modelling
and decomposition.

In another project we are testing how the same approach
could be implemented using a hierarchy of Bayesian network
instead of MUPs allowing in this way a better treatment of
uncertainty that is typical of ubiquitous computing [25].

As far as representation is concerned, beside considering
static long term user features (age, sex, job, general interests
and so on) it is necessary to store information about more
dynamic “user in context” features.

For instance, the fact that a user, when is shopping at the
supermarket, buy cookies only when there is a 3x2 special
offer is related to a contextual situation. If we want to give to
the user PUMA the capability to reason on this type of facts,
we need a representation language rich enough to formalize
user properties related to contextual situation, understandable
potentially by every environment, flexible and compact
enough to be stored on the user personal device. In a first
version of D-Me we developed our own ontology for
describing mobile user profiles, however, since it was not the
main aim of our research, in this second version of the
prototype, we decided to adopt UbisWorld [26, 27] language
as user model ontology of our Personal Agent. In this way we
have a unified language able to integrate user features and
data with situational statements and privacy settings that better
suited our need of supporting situated interaction. This
language is rich enough to deal with the representation and
provide privacy-protection features. It allows representing all
concepts related to the user by mean of the UserOL ontology,
to annotate these concepts with situational statements that may
be transferred to an environment only if the owner user allows
this according to privacy settings. An example of a situational
statement is the following:

<SituationalStatement version="Full_0.1">
<content>

<subject><UbisWorld:Nadja /></subject>
<predicate><UserOL:buying cookies /></predicate>
<predicate-range><UserOL:normal,specialoffer,3x2/>

</predicate-range>
<object>special offer <object>

</content>
<restriction>< location>supermarket<location></restriction>
<meta>

<owner><UbisWorld:Nadja /></owner>
<privacy><UbisWorld:friends /></privacy>
<purpose><UbisWorld:commercial /></purpose>
<retention><UbisWorld:short /></retention>
<viewer><UbisWorld:X-Supermarket /></viewer>
<evidence>not-specified</evidence>
<confidence>high</confidence>

</meta>
</SituationalStatement>

This approach can be used to represent some parts of the

real world like an office, a shop, an house or an airport. It
represents persons, objects, locations as well as times, events
and their properties and features.

User preferences, interests, etc. are collected by the PUMA
in two ways:

- using a graphical interface (Fig.5) in which the user can
explicitly insert her preferences and related privacy settings
regarding particular domains,

- other information (i.e. temporary interests) can be derived
when the user insert a task in the To-Do-List.

User feedback and actions in the digital and real world may
reproduce changes in the user model. The PUMA observes the
user actions: when new information about the user can be

inferred, it updates or adds
a new slot in the MUP and
sets the “confidence”
attribute of that slot with
an appropriate value that
is calculated by the
weighted average of all
the user actions having an
impact on that slot. The
confidence attribute may
be set to low, medium and
high.

Even if we have chosen
the mobile approach, we
cannot assume that the
user will have with

her/himself an handheld device and this type of device still
presents hardware-related limits (capacity, computational
speed, battery,…).

At this aim, in D-Me the PUMA could be stored on a
Remote Server trusted by the user [28]. In the near future
these technological constraints will be overcome by the spread
of many personal an powerful device [29,30]

D. Context Information
Both entities, D-Me Agents and the Environment, need to

sense and elaborate context information. In our approach,
Context is grounded on the concept of "user task executable
in an environment". Therefore, given a task in the user to-do-
list, once the user has been classified according to the strategy
of the UM component, its execution and results can be
influenced by the context in which the interaction occurs and,
in particular, by:
- static environment features: scope (daylife, social

relations, budget, etc..), physical features, such as

Home Work

Holiday

Fig. 4: An example of hierarchical User Model

Pets Budget

Fig. 5. An interface for initial setting
of the PUMA.

baldoni
59

desciption of objects relevant for interaction, type of
environment (public, private).

- dynamic environment features: for instance noise light
level and tagged object;

- dynamic user features, that identify the physical and
social surroundings of the user that can be derived by
specific data sensors (emotional state, location, activity
the user is performing, time, ...);

- device employed.
At the present stage of the prototype, we do not work on

hardware sensors. They will be realized in the next stage. At
the moment we simulate their values through an interface that
communicates relevant changes to the Context Agent that
knows the global context situation at the considered time. The
context situation relevant at time ti is represented in an XML
structure compliant to the D-Me context ontology.

E. Interacting with the user
The Communication Behavior of the Personal Agent is used

to interact with the user for communicating results of tasks or
for asking information/confirmations required for task
execution. We consider the following families of
communication tasks:

- request for input. If, for instance, the to-do-list includes a

task that requires additional information to be executed.
- information provision: Information may be presented

when explicitly requested by the user or proactively
prompted by D-Me because related to the current user
task. In our scenario the supermarket special offers will be
displayed as a consequence of the service discovery task.

- request for confirmation: if a task involves a step that
requires a D-Me action and the agent does not have a full
autonomy on that task, then the agent will ask the user for
confirmation before performing it.

- notification messages. Proactive task execution is notified
by D-Me, for instance, in the previous case, if the agent
has the autonomy to perform an action then it will not ask
for permission and will just notify it.

- remind messages. This is the typical message generated
for the shopping task in our example.

User and context related factors are taken into account in

generating the communication about a task in the following
way [31]:

1. user preferences and features: results of information

provision tasks are filtered, ordered and presented
according to what has been inferred about the user starting
from her profile data (interest, know-about, know-how).
Possible user disabilities are taken into account for media
selection.

2. activity: this influences information presentation as
follows. If the user is doing something with a higher
priority respect to the one of the communication task, then
the message is postponed until the current activity ends. If
the communication regards the current activity, media used
in the message take into account the available body parts.

Therefore, a voice input is preferable to a textual when, for
instance, the user is running with her/his PDA asking for
information about the next train to catch.

3. location of the user in the environment: texts, images and
other media may be selected according to the type of
environment (public vs. private, noisy vs. silent, dark vs.
lightened, etc.) in which the users are and, more precisely,
to their relative position to relevant objects in the
environment.

4. emotional state: factors concerning the emotional state
influence the level of detail in information presentation
(short messages are preferred in stressing situation), the
intrusiveness (bips and low priority messages are avoided
when the user is already nervous), and the message
content. For instance: if a user requests information in
conditions of emergency, the agent will have to avoid
engendering panic, by using reassuring expressions or
voice timbre [32].

5. device: the display capacity affects the way information is
selected, structured and rendered. For instance, natural
language texts may be more or less verbose, complex
figures may be avoided or substituted with ad hoc parts or
with written/spoken comments.

To accomplish the communication task, the agent applies
the following strategy: starting from XML-annotated results
of a Service Agent, decides how to render them at the surface
level taking into account the rules described above encoded in
XSL.

IV. DISCUSSION AND FUTURE WORK
Effective ubiquitous interaction requires, besides techniques

for recognising ‘user in context’ features, a continuous
modeling of both the user and the context. Therefore,
ubiquitous computing systems should be designed so as to
work in different situations that depend on several factors:
presence of a network connection, characteristics of
interaction devices, user location, activity, emotional state and
so on. However, in the near future, the network connectivity
will be no more a problem, and we will not be worried about
this constraint, as we are going towards an “interconnected
world”. Moreover the spread of technologies, such as for
example RFID, will render the information about the context
very rich and easy to use [33].

This work represents a step towards supporting
personalized interaction between mobile users and a smart
environment. Every user is represented by a D-Me Agent that,
according to the content of her/his “To Do List”, performs
tasks on the user behalf by negotiating services with the smart
environment.

Since the interaction happens through a personal agent, we
started to consider the “delegation-autonomy” adjustment
necessary for achieving cooperation between the user and
his/her representative. However, more work in understanding
how the user feedback influences the level of autonomy
especially when this feedback is implicit (until now we
considered only explicit feedback).

Moreover, as RFID are taking a key role in ubicomp we are
investigating how to use them in such a system, so as to

baldoni
60

“sense” the active tagged object. Those kind of object are part
of the context and can influence the execution of several tasks
as well as other information.

ACKNOWLEDGMENTS
We thanks students who cooperated in implementing the

prototype described in this paper: in particular, Ignazio
Palmisano, Luigi Iannone, and Roberto Tagliento. Finally, we
thank Fiorella de Rosis to which we owe several fruitful ideas
underlining this work.

REFERENCES
1. S. Greenberg. Context as a dynamic construct. Human-Computer

Interaction, 2001, 16.
2. M. Weiser. Some computer science issues in ubiquitous computing.

Commun. ACM, 1993, 36(7):75-84.
3. P. J. Brown, N. Davies, M. Smith, P. Steggles. Panel: towards a better

understanding of context and context-awareness. In H-W Gellersen (Ed.)
Hand-held and ubiquitous computing: HUC'99 proceedings, Springer,
1999.

4. G. Chen, D. Kotz, A Survey of Context-Aware Mobile Computing
Research. Technical Report TR
http://citeseer.nj.nec.com/chen00survey.html.

5. A. K. Dey, Understanding and Using Context. Personal and Ubiquitous
Computing 5 (2001) 1, 4-7.

6. L. Ardissono, A. Goy, G. Petrone, M. Segnan and P. Torasso. Ubiquitous
user assistance in a tourist information server. Lecture Notes in Computer
Science n. 2347, 2nd Int. Conference on Adaptive Hypermedia and
Adaptive Web Based Systems (AH2002), Malaga, pp. 14-23, Springer
Verlag 2002.

7. H.E. Byun, K. Cheverst, User Models and Context-Awareness to Support
Personal Daily Activities. Workshop on User Modelling for Context-Aware
Applications. 2002.

8. A.K. Dey, G.D. Abowd, CyberMinder: A Context -Aware System for
Supporting Reminders. Proc. Symposium on Handheld and Ubiquitous
Computing, Bristol. (2000).

9. P. Maes, "Agents that Reduce Work and Information Overload,"
Communications of the ACM, Vol. 37#7, ACM Press, 1994.

10. H. Lieberman, T. Selker , Out of Context: Computer Systems That Adapt
To, and Learn From, Context. IBM Systems Journal, Vol 39, Nos 3&4, pp.
617-631, 2000.

11. A.Celentano, D. Fogli, P. Mussio, F. Pittarello. Agents for Distributed
Context-Aware Interaction. AIMS '02, Workshop on Artifical Intelligence in
Mobile Systems, Lyon, France, July 22, 2002.

12. http://www.fipa.org.
13. http://sharon.cselt.it/projects/jade/
14. http://leap.crm-paris.com/
15. http://www.jxta.org
16. M. Pirker, M. Berger, M. Watzke,, An Approach for FIPA Agent Service

Discovery in Mobile Ad Hoc Environments , Workshop on Agents for
Ubiquitous Computing., Ubiagent04.

17. FIPA Agent Discovery Service Specification:
http://www.fipa.org/specs/fipa00095/PC00095A.pdf

18. R. Falcone, C. Castelfranchi. Tuning the Collaboration Level with
Autonomous Agents: a Principled Theory. AI*IA 2001: 212-224.

19. A. S. Rao and M. P. Georgeff, BDI-agents: from theory to practice, in
"Proceedings of the First Intl. Conference on Multiagent Systems", San
Francisco, 1995.

20. T. Bylander. The computational complexity of propositional STRIPS
planning. Artificial Intelligence, 69:161–204, 1994.

21. A. Kobsa, Generic User Modeling Systems. UMUAI vol. II nos.1-2 pp.49-
63. Kluwer Academic Publisher. 2001.

22. A. Cavalluzzi,B. De Carolis., S. Pizzutilo., G. Cozzolongo: Interacting with
embodied agents in public environments. AVI 2004: 240-243.

23. G. Cozzolongo, B. De Carolis, S. Pizzutilo, Supporting Personalized
Interaction in Public Spaces. In Proceedings of the Artificial Intelligence in
Mobile Systems 2004. (Ubicomp Workshop). Baus J., Kray, C., Porzel, R.
(Eds.). Nottingham, UK, 2004.

24. M. Samulowitz, Designing a Hierarchy of User Models for Context-Aware
Applications. Position Paper at
www.teco.edu/chi2000ws/papers/23_samulowitz.pdf

25. A. Jameson, Modeling Both the Context and the User. Personal and
Ubiquitous Computing. Vol 5. Nr 1. Pp 29-33. 2001.

26. D. Heckmann: Ubiquitous User Modeling for Situated Interaction. User
Modeling 2001: 280-282

27. D. Heckmann, Ubis World, www.u2m.org
28. B. De Carolis, S. Pizzutilo, I. Palmisano, A. Cavalluzzi, A Personal Agent

Supporting Ubiquitous Computing. UM'03 9th International Conference on
User Modeling. June 22-26, 2003.

29. www.vodafone.com
30. R.Want, http://www.intel.com/research/exploratory/personal_server.htm
31. B. De Carolis, F. de Rosis, S. Pizzutilo, Adapting Information Presentation

to the "User in Context". IJCAI 2001 Workshop on AI in Mobile Systems,
Seattle, 2001.

32. A Cavalluzzi, B De Carolis, V Carofiglio and G Grassano:
Emotional dialogs with an embodied agent.
In P Brusilovsky, A Corbett and F de Rosis (Eds): "User modeling '03".

33. T. Pederson, From Conceptual Links to Causal Relations -Physical-Virtual
Artefacts in Mixed-Reality Space. PhD thesis, Dept. of Computing Science,
Umeå university, report UMINF-03.14, ISSN 0348-0542, ISBN 91-7305-
556-5., 2003, http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-137.

baldoni
61

Abstract—Lo sviluppo pervasivo delle nuove tecnologie

dell’informazione, e in particolare di Internet, rappresenta un
fattore di accelerazione e, al tempo stesso, lo strumento per
“reinventare” le modalità di organizzazione e funzionamento
delle amministrazioni pubbliche. In questo articolo viene
presentato un sistema per la gestione automatica sul Web di gare
d’appalto bandite dalla Pubblica Amministrazione in Italia
basata sulla tecnologia ad agenti offerta dal framework
AgentService. L’applicazione si avvantaggia quindi dell’elevata
dinamicità e flessibilità delle comunità di agenti software e della
interoperabilità offerta dai Web Service.

Index Terms—e-government, multi-agent system, on-line
auction.

I. INTRODUZIONE
A diffusione di internet e la crescita del commercio

elettronico stanno modificando alcune convenzioni del
mondo economico, questo ha richiamato fortemente
l’attenzione di governi e pubbliche amministrazioni, che sono
intervenute a regolamentare il settore. Al momento attuale, sia
da un punto di vista tecnico che legale, l’e-commerce può
essere considerato una tecnologia matura e capace di attrarre
sia imprese private che enti pubblici. Molte importanti
istituzioni, ed in particolare la Comunità Europea e la
Repubblica Italiana, stanno promuovendo lo sviluppo di
servizi Internet per i cittadini, incoraggiando la nascita di
sistemi informativi in grado di snellire la burocrazia e renderla
più tempestiva [1].

Lo sviluppo pervasivo delle nuove tecnologie
dell’informazione, ed in particolare di internet, rappresenta
infatti un fattore di accelerazione e, al tempo stesso, lo
strumento per:

- “reinventare” le modalità di organizzazione e
funzionamento delle amministrazioni pubbliche;

- offrire ai cittadini, visti come “clienti”, servizi più
tempestivi, qualitativamente migliori e facilmente accessibili

Manuscript received October 27, 2004.
A. Grosso, M. Coccoli, and A. Boccalatte are with the Department of

Communication, Computer and System Sciences, University of Genova, via
Opera Pia 13, 16145 Genova, Italia (phone: +39 103532284; fax: +39
103532154; e-mail: {agrosso, coccoli, nino}@dist.unige.it).

(quindi meglio distribuiti) attraverso l’uso della rete e della
communication technology [2];

- contribuire, attraverso una maggiore interazione, a
migliorare in modo significativo il rapporto tra apparati statali
e cittadini;

- fornire servizi mirati, personalizzati, trasversali rispetto
alle singole competenze e accessibili ovunque, in ogni
momento.

La necessità di fornire servizi migliori, più efficienti,
tempestivi e che non pesino eccessivamente sui bilanci è
un’esigenza sentita oggi da ogni pubblica amministrazione a
tutti i livelli e in qualsiasi parte del mondo [3].

Formalmente il governo elettronico (e-government) può
essere definito come l'utilizzo delle nuove tecnologie
telematiche nei rapporti tra la Pubblica Amministrazione (PA)
e i cittadini, tra la PA e le imprese e tra gli organi della PA al
loro interno (fra le diverse amministrazioni o i differenti livelli
dello stato) [4]. Quindi, il "governo elettronico" interessa le
applicazioni interne ed esterne delle tecnologie
dell'informazione e della comunicazione (ICT) nel settore
pubblico [5].

La Presidenza del Consiglio dei Ministri e il Ministro per
l'innovazione e le tecnologie hanno emanato una Direttiva [6]
che fissa le linee guida per l'anno 2004 in materia di
digitalizzazione della pubblica amministrazione, indicando
come punti cardine i servizi on-line per cittadini e imprese e la
trasparenza dell’azione pubblica.

In questo articolo viene presentata un’applicazione di e-
government per la gestione di gare d’appalto bandite dalla
pubblica amministrazione, che propone un nuovo approccio
per la gestione di aste on-line basato sulla tecnologia ad
Agenti ed i Web Service. Web Auction Server System
(WASS) è un sistema per la gestione delle contrattazioni nelle
aste sul Web. WASS è pensato per essere utilizzato nella
pubblica amministrazione italiana per rendere automatico ed
economico il processo di acquisizione delle risorse, ma è in
grado di operare anche in contesti differenti come ad esempio
portali per il commercio elettronico. WASS è strettamente
legato alla tecnologia offerta dal framework AgentService [7].

Nella sezione II viene introdotto l’utilizzo della tecnogia ad
agenti nelle aste on-line, mentre nella sezione III è illustrato il
workflow per l’acquisizione di beni e servizi nella pubblica
amministrazione. La sezione IV presenta le principali

Un’Applicazione di E-government per la
Gestione di Gare d’Appalto nella Pubblica

Amministrazione
A. Grosso, M. Coccoli, and A. Boccalatte, Dist – University of Genova

L

baldoni

carratteristiche dei sistemi multi-agente e descrive le
caratteristiche del framework AgentService. L’architettura e le
funzionalità del WASS sono dettagliate nella sezione V, dopo
di che vengono evidenziate le conclusioni.

II. AGENTI E ASTE ON-LINE
Il commercio elettronico basato sulle aste on-line sembra

essere un’area in cui il web dimostra di essere più efficace
rispetto ai sistemi tradizionali; questo è dovuto principalmente
alla sua natura altamente interattiva, al coinvolgimento di
molti fornitori rispetto alle vendite tradizionali di tipo singolo
fornitore-compratore, ed infine ad una significativa riduzione
dei costi. Se si considera anche il proliferare su internet di
applicazioni per aste on-line come Auctionline, Onsale,
InterAUCTION ed eBay, risulta evidente che la contrattazione
basata sulle aste è divenuta una delle principali forme di
commercio elettronico.

Le aste sul Web costituiscono un meccanismo conveniente
per automatizzare le transazioni commerciali, ciò è
principalmente dovuto alla semplicità con cui avvengono le
interazioni nella negoziazione “multi-party”, ma anche al fatto
che le aste on-line sono in grado di minimizzare le scorte e
ridurre significativamente i costi sia di gestione che di
consegna. Inoltre è opportuno osservare che l’applicazione di
aste on-line nel campo della PA può portare, in aggiunta ai già
citati vantaggi, una maggior trasparenza nella contrattazione e
assegnazione degli appalti, ciò è dovuto all’automatizzazione
del servizio che limita al minimo l’intervento umano e quindi
una possibile frode.

In generale, i sistemi per la gestione delle aste hanno
un’elevata complessità; questa non è data solamente da oneri
computazionali, ma principalmente è dovuta a problemi di
progettazione, perché occorrerà focalizzarsi su come
aumentare il rendimento e allo stesso tempo soddisfare le
esigenze dei partecipanti/compratori.

Le aste sono un dominio applicativo altamente attrattivo per
i ricercatori del settore dell’intelligenza artificiale (AI), che
coinvolge lo sviluppo di “auction server” [8, 9], la
definizione di agenti per la contrattazione e le euristiche [10].
D’altra parte, le aste non sono impiegate solamente per il
commercio sul Web, ma costituiscono anche uno dei
principali meccanismi di coordinazione per problemi di
allocazione di risorse/task basati su agenti [11, 12, 13, 14].

L’interesse dei ricercatori nell’ambito della
programmazione ad agenti è ormai una realtà. I concetti base
di “agente autonomo” e “sistema multi-agente” (MAS),
introdotti nel campo della Distributed Artificial Intelligence
(DAI), possono essere applicati a contesti differenti per la
distribuzione del controllo dei processi decisionali tra i
componenti dei sistemi. Attualmente sono a disposizione un
certo numero di strumenti software creati per rendere più
semplice la programmazione orientata agli agenti: questi sono
in genere composti da librerie e “tool” che guidano gli utenti
durante la progettazione, l’implementazione ed il testing dei

sistemi multi-agente. La tecnologia ad Agenti sembra quindi
in grado di fornire il paradigma di programmazione adatto a
modellare i sistemi di aste on-line. Questo è dovuto alle
proprietà intrinseche degli agenti come l’autonomia e la
proattività, che saranno trattate nei prossimi paragrafi.

III. IL WORKFLOW NELLA PUBBLICA AMMINISTRAZIONE
Con il termine workflow, usato nelle sue diverse accezioni,

ci si può riferire: ad un processo aziendale, alle specifiche di
un processo generico, ad un software che implementi ed
automatizzi un processo, o ad un’applicazione per il
coordinamento delle persone e dei computer che creano il
processo stesso.

Con l’introduzione di modelli e principi di contabilità
economica e controllo di gestione, gli ordinamenti contabili
delle amministrazioni e degli enti pubblici stanno cambiando
radicalmente. La gestione della pubblica amministrazione
diventa sempre più simile a quella delle aziende private:
individuazione di programmi ed obiettivi, adozione di sistemi
di programmazione, consuntivazione e controllo,
pianificazione per obiettivi, monitoraggio dei risultati.

In questi ultimi anni si assiste all’introduzione nell’ente
pubblico di una cultura aziendale, rivolta al conseguimento di
risultati, obiettivo perseguito con decisione anche da
molteplici interventi legislativi. È un processo di
modernizzazione complesso, che riguarda i sistemi
informatici, ma che ha anche un forte impatto organizzativo,
che richiede nuove figure professionali e un intervento
capillare per favorire l’evoluzione culturale parallelamente
all’introduzione all’utilizzo di nuovi criteri gestionali.

Il concetto di workflow può quindi essere affiancato anche
alla realtà delle istituzioni pubbliche comprendendo attività di
razionalizzazione e, conseguentemente, di informatizzazione,
dei processi di una generica amministrazione.

Tutti i sistemi di workflow assumono come elemento
costitutivo primario il concetto di processo, inteso come entità
fondamentale alla base della struttura logica e funzionale, su
cui si fonda sia un’azienda privata che un ente pubblico.

Un processo è pertanto caratterizzato principalmente da:
- un prodotto che, trasferendo valore al cliente, rappresenta

il vero obiettivo dell'organizzazione;
- un insieme di attività che rappresentano il flusso operativo

del processo.
Per la produzione dei prodotti/servizi sono in genere

coinvolte una o più strutture organizzative, attraverso una
distribuzione di compiti e responsabilità, codificati in norme e
procedure.

Per poter operare sui processi è necessario poterli
rappresentare ed analizzare. E' importante quindi disporre di
modelli per la loro rappresentazione in grado di evidenziare
tutti i loro aspetti critici, quali ad es. le risorse consumate, il
processo di trasformazione, il prodotto/servizio, le regole e i
vincoli di trasformazione (controlli), i tempi e i costi, ecc.

baldoni
63

IV. AGENTI SOFTWARE E SISTEMI MULTI-AGENTE
Un agente è definibile come un’entità computazionale in

grado di agire in modo autonomo [15], acquisire informazioni
dall’ambiente circostante ed agire secondo la propria base di
conoscenza, scambiare informazioni con altri agenti o con
esseri umani, e perseguire i propri obiettivi intraprendendo
opportune iniziative. Gli agenti, perseguono il raggiungimento
dei goal prefissati eseguendo delle funzioni o task che,
frequentemente, appaiono vincolate da relazioni di
interdipendenza o di conflittualità [16]. Un agente opera in un
ambiente di esecuzione condiviso con altri agenti e
applicazioni software; gli agenti sono in grado di interagire
con l’ambiente in cui vivono, al fine di perseguire il proprio
obiettivo [17]. Gli agenti sono adattativi, possono imparare dai
cambiamenti dell’ambiente che li circonda: le capacità di
apprendimento e adattabilità consentono all’agente di
raggiungere con successo i propri obiettivi [16].

L’abilità sociale degli agenti costituisce una delle più
importanti caratteristiche della programmazione orientata agli
agenti. Un sistema multi-agente, MAS (multi-agent system),
rappresenta una comunità sociale di membri interdipendenti
che agiscono individualmente [18].

L’architettura che può essere considerata standard de facto
per i sistemi multi-agente è quella descritta all’interno delle
specifiche proposte dalla Foundation of Intelligent Physical
Agents (FIPA) [19].

A. AgentService
AgentService è un ambiente completo per la progettazione,

l’implementazione ed la distribuzione di applicazioni orientate
agli agenti; fornisce quindi una specifica piattaforma di
esecuzione degli agenti ed un linguaggio di programmazione
agent-oriented. La Common Language Infrastructure (CLI)
costituisce la base dell’ambiente di programmazione ed
esecuzione di AgentService: gli agenti sviluppati con
AgentService hanno pieno accesso al mondo dei componenti e
all’ampia gamma di servizi offerti dalla CLI. Analizziamo ora
gli elementi chiave proposti da Agent Service.

Il modello di agente: l’agente è composto da due elementi
fondamentali: comportamenti e unità di conoscenza. I
Behaviour rappresentano le attività concorrenti eseguite
dall’agente. La Knowledge è composta da strutture dati
persistenti condivise tra i behaviour e determina lo stato
dell’agente.

Il framework ad agenti: una piattaforma di programmazione
ad agenti che si basa sul modello sopra descritto e segue le
specifiche architetturali indicate da FIPA. Gli agenti in
esecuzione con i relativi comportamenti concorrenti sono
ospitati all’interno di uno specifico dominio applicativo
(AppDomain) della CLI. L’esecuzione e la sincronizzazione
dei comportamenti concorrenti è gestita dalla piattaforma.
AgentService che garantisce un elevato grado di scalabilità e
sicurezza grazie alle caratteristiche offerte dagli AppDomain.
In accordo al Document Object Model proposto con il
framework, vi è una netta separazione tra la definizione di
agente da parte del programmatore (design time agent) e la

relativa istanza di agente in esecuzione (runtime agent). Tale
separazione garantisce maggiore semplicità di
programmazione ed assoluta autonomia all’agente. Le
capacità sociali degli agenti si determinano tramite lo scambio
di messaggi che si basa sul canale di comunicazione offerto
dal sistema di “Remoting” della CLI.

Agent Programming Extensions (APX): un set di estensioni
del linguaggio di programmazione C# mirate a semplificare
lo sviluppo di applicazioni con AgentService. Il modello ad
oggetti di AgentService è nascosto da APX, così che allo
sviluppatore possa essere presentata una più semplice
interfaccia orientata agli agenti che comporta limitati
cambiamenti alla sintassi del C#.

B. Common Language Infrastructure
La Common Language Infrastructure è uno standard

ECMA [20] e ISO-IEC [21] che definisce un ambiente
virtuale di esecuzione. CLI è una piattaforma di
programmazione orientata ai componenti in cui moduli di
codice sono eseguiti in un contesto sicuro.

La Common Language Infrastructure è stata progettata per
essere il target di differenti linguaggi di programmazione;
offre una ricca libreria di classi ed un ampio set di servizi a
runtime che garantiscono un’efficace esecuzione del codice.
L’interoperabilità di linguaggio è una delle caratteristiche più
innovative della CLI: moduli scritti in differenti linguaggi di
programmazione possono interoperare con facilità senza
bisogno di connettori software realizzati ad-hoc.

Sono disponibili implementazioni differenti della CLI per
diversi sistemi operativi e diverse piattaforme hardware.
Un’implementazione shared source della CLI è SSCLI
comunemente nota con il nome di Rotor [22].

V. WEB AUCTION SERVER SYSTEM
In questo paragrafo viene presentato un sistema per la

gestione di aste on-line. Web Auction Server System (WASS)
garantisce ai fornitori un modo semplice ed automatico per
competere in una contrattazione attraverso la tecnologia
offerta dal framework AgentService e promossa grazie ai Web
Service.

L’obiettivo del WASS è quello di fornire
all’amministrazione pubblica italiana una via di accesso al
mercato elettronico nel rispetto delle regole di workflow
imposte dalla legislazione vigente. Le gare telematiche indette
per l’acquisto di beni e servizi sono infatti regolamentate da
una precisa normativa1.

L’applicazione si prefigge quindi lo scopo di snellire le
procedure amministrative per quel che riguarda
l’approvvigionamento di beni o servizi da parte degli organi
della Pubblica Amministrazione. E’ stato realizzato un sistema
di negoziazione che provvede a valutare in maniera
automatica le offerte inviate dai fornitori partecipanti alla

1 D.P.R. del 4 aprile 2002, n. 125, pubblicato sulla G.U. del 30 maggio

2002 e dalle successive linee guida

baldoni
64

gara, predisponendo una graduatoria sulla base dei criteri
scelti dall’amministrazione ordinante. Per l’abilitazione dei
fornitori sono predisposti dall’amministrazione appositi bandi.

In particolare, l’applicazione si propone di:
- automatizzare il reperimento dei fornitori; attualmente

avviene tramite contatto diretto oppure tramite gara pubblicata
su un quotidiano di livello nazionale e può quindi dare luogo a
esborsi di denaro;

- confrontare, tramite procedure automatiche, tutte le
proposte raccolte e valutarne i risultati;

- migliorare i tempi di esecuzione dell’intero processo di
acquisto, minimizzando soprattutto quelli imputabili alla
burocrazia, riducendo i costi anche in termini di risorse umane
e di documenti circolanti;

- aumentare la velocità di ricerca delle informazioni,
predisponendo la memorizzazione su supporti di tipo digitale
e quindi in database per un facile e rapido accesso ai dati.

Inoltre si introducono novità quali:
- la possibilità di attivare una gara d’appalto direttamente

on-line;
- il controllo on-line l’andamento delle gare in tempo reale;
- la modifica delle informazioni presenti nelle basi di dati in

maniera sicura e rapida senza dover compilare richieste o altri
tipi di modulistica.

L’idea del WASS è nata dallo studio del flusso di
documenti che avviene in relazione all’attività di
approvvigionamento in una amministrazione comunale.

Il sistema proposto si basa, per ciò che riguarda la gara
d’asta, sul paradigma ad agenti e, per la promozione e
distribuzione del servizio, sui Web Service. La modellazione
dei partecipanti all’asta attraverso l’uso di agenti software
consente di sfruttare la caratteristica di alta flessibilità propria
delle comunità di agenti (l’ingresso dinamico di nuovi agenti
alla gara è una caratteristica nativa delle “agent society”) e la
loro proattività (ogni offerente è in grado di agire in maniera
autonoma ed indipendente e può partecipare ad un asta o fare
un rilancio senza dover necessariamente essere stimolato da
un’altra entità).

Il sistema WASS si appoggia su di una base di dati per
l’archiviazione delle informazioni relative a gare, fornitori e
risorse da acquisire, e per la realizzazione di report. Oltre al
data base, la struttura del WASS è formata da tre componenti
fondametali:

- l’interfaccia web, per la parte grafica e di autenticazione.
Rappresenta il mezzo di comunicazione fra gli utenti e il web
service ed è materialmente il sito che rappresenta l’agenzia e
dal quale partono tutti i servizi disponibili. Contiene tutti i
controlli e form che servono per l’acquisizione dei dati
necessari per l’esecuzione di query sul database e per
l’immissione dei dati relativi all’appalto, alla verifica della
situazione della gara, e della congruenza dei dati immessi.

- il Web Service, espone i servizi del WASS rendendoli
accessibili alle pagine Web, consentendo ad esse l’accesso alla
base di dati. Contiene materialmente le query che vengono
richiamate dalle pagine web e restituisce i risultati delle
interrogazioni alle stesse. Il Web Service è anche riferimento

per la piattaforma ad agenti infatti contiene i metodi di avvio
e gestione della contrattazione per la creazione di report sullo
stato della gara.

- il sistema multi-agente, all’interno del quale gli agenti,
creati con AgentService, rappresentano i fornitori e la
Pubblica Amministrazione ed implementano l’intero
meccanismo di contrattazione.

Possiamo ora riassumere il procedimento di attivazione ed
esecuzione dell’asta. L’impiegato invia attraverso un pagina
web la richiesta per una nuova gara d’appalto. La richiesta
viene sottoposta al Web Service che accede al data base delle
gare e costruisce un nuovo profilo di asta al quale verranno
associati i possibili fornitori interessati in base alla categoria
merceologica di appartenenza. La gara e la lista dei fornitori
vengono quindi inviate alla piattaforma ad agenti, che attiva la
contrattazione e dopo il tempo stabilito fornisce il risultato al
Web Service che lo rende disponibile al sito Web.

A. Abilitazione dei fornitori alla gara
Le ditte fornitrici si iscrivono al sistema inviando una

richiesta scritta alla Pubblica Amministrazione. In essa le ditte
fornitrici devono inserire i dati identificativi della società:

- ragione o denominazione sociale;
- Partita IVA;
- Codice Fiscale;
- via e numero civico della sede legale della società;
- CAP della sede legale della società;
- città della sede legale della società;
- nazione della sede legale della società;
- rappresentante legale;
- categoria merceologica di appartenenza.
- caratteristiche dei beni forniti.
L’azienda deve inoltre dimostrare di essere in regola con i

pagamenti INPS e INAIL e deve impegnarsi, qualora si
aggiudichi una gara, a fornire i beni nella qualità e
caratteristiche, che ha dichiarato di fornire, in sede di
iscrizione.

Una volta accertate le credenziali l’ufficio della Pubblica
Amministrazione comunicherà all’amministratore del sistema,
che non fa parte della Pubblica Amministrazione, come gia
specificato, i parametri della ditta. Quest’ultimo effettuerà la
registrazione nel database, comunicando in maniera scritta alla
ditta fornitrice l’avvenuta iscrizione con esito positivo.

La contrattazione è basata su agenti software è quindi
necessario che ogni ditta fornitrice presenti tramite client Web
le indicazioni per caratterizzare i comportamenti dei suoi
agenti in modo da rendere completamente automatica la
contrattazione. E’ tuttavia possibile disabilitare e abilitare on
line l’agente, per escluderlo o meno, da contrattazioni future,
ed è prevista la costruzione di una serie di procedure per poter
cambiare o aggiornare alcuni comportamenti degli agenti.

Il Sistema è impostato in modo da ricercare la ditta
fornitrice da far partecipare alla gara in base alla categoria
merceologica indicata in fase di registrazione.

baldoni
65

B. Contrattazione
Attualmente, nella maggior parte dei casi, una gara di

appalto o di fornitura utilizza il meccanismo dell’offerta a
busta chiusa, in cui ogni partecipante effettua una offerta che
non può più essere modificata e raggiunta la data di scadenza
del bando, vengono aperte le buste e valutata l’offerta
migliore. Nel sistema proposto viene invece istituita un’asta al
ribasso, una delle tipologie d’asta indicate dalla
regolamentazione degli appalti pubblici; tale modalità d’asta
prevede che vengano formulate più offerte da parte di uno
stesso fornitore. I valori delle offerte vincenti sono rese
pubbliche in modo che tutti conoscano l’offerta migliore
temporanea, mentre viene tenuto nascosto solo colui che l’ha
formulata. Anche in questo caso, la contrattazione termina una
volta scaduto il tempo.

 All’interno del sistema WASS troviano due tipi di agenti,
descritti in AgentService da due differenti template, che
dovranno condurre la contrattazione:

 - bidder agent, che rappresenta l’offerente, nel nostro
caso interpreta il ruolo del fornitore;

 - auctioneer agent, che rappresenta il banditore, nel
nostro caso la pubblica amministrazione.

Analizziamo quindi come si articola lo svolgimento della
gara. Dopo che la richiesta di appalto è stata sottoposta al
WASS, il sistema si occuperà di trasmettere le informazioni
necessarie al MAS; uno specifico agente di servizio in grado
di interoperare con il back-end del Web Service si occuperà di
comunicare all’agente banditore la descrizione della gara ed i
possibili partecipanti selezionati dal WASS in base alla
categoria merceologica.

L’auctioneer agent comunicherà ai bidder agent
potenzialmente interessati l’apertura della nuova gara
indicandone il tipo di contrattazione e la scadenza. A questo
punto l’asta ha inizio. A tal proposito nell’applicazione sono
stati implementati due tipi di aste al ribasso:

- semplice;
- pesata.
L’asta semplice è basata sul controllo dell’importo

dell’offerta pervenuta. Ovviamente l’offerta con l’importo
minore, si aggiudica la qualità di vincente temporaneo. Tutte
le offerte successive vengono misurate in base al vincente
temporaneo e vengono scartate tutte le offerte superiori.
L’offerta minore alla scadenza si aggiudicherà l’asta.

L’asta pesata, si basa sul calcolo di un punteggio (P), pesato
in base all’importo dell’offerta ed ai giorni di consegna.

ti WbWaP ∗+∗=

I coefficienti Wi e Wt sono i pesi, mentre a è dato dal
rapporto tra l’importo dell’offerta migliore e quello
dell’offerta ricevuta, e b dal rapporto tra il miglior tempo di
consegna (espresso in giorni) ed il tempo di consegna
proposto. Si aggiudica l’asta colui che ottiene il punteggio
maggiore al termine dei giorni previsti per la contrattazione.

Ogni volta che riceve una offerta, l’agente della pubblica
amministrazione la confronta con l’offerta migliore

temporanea, e periodicamente, calcola il vincitore
momentaneo. Il controllo dell’offerta migliore viene effettuato
da un comportamento dell’auctioneer agent; quindi grazie alla
modularità dei behaviour di AgentService è possibile
modificare con facilità il criterio della scelta del vincente in
funzione del tipo di asta o di quanto indicato dalla gara di
appalto. Basterà per questo che il programmatore fornisca
all’agente banditore il nuovo comportamento, selezionandolo
ad esempio dalle librerie di AgentService.

Alla fine di ogni giorno di contrattazione o, in ogni caso,
dopo un determinato periodo di tempo, l’agente della pubblica
amministrazione comunica il vincente a tutti gli altri agenti, in
modo tale che possano eventualmente riformulare le loro
offerte oppure decidere di abbandonare la contrattazione
qualora avessero raggiunto i loro limiti di sconto applicabile
imposti dai rispettivi fornitori.

Al termine dell’asta viene inviata una e-mail alla ditta
vincitrice, nella quale vengono riepilogati i dettagli della gara,
la descrizione completa degli articoli e delle loro
caratteristiche tecniche, i tempi di consegna pattuiti, ecc. La
ditta fornitrice dovrà rispondere alla e-mail, per confermare la
fornitura, in caso contrario, trascorso un termine di tempo, si
processerà la seconda migliore offerta.

Il progetto WASS, attraverso un servizio di report, fornisce
in tempo reale una vista semplice e dettagliata dei messaggi
che gli agenti si stanno scambiando nel corso di un processo
di gara. Questo feed-back immediato su ciò che la piattaforma
sta processando su un server remoto garantisce un elevato
grado di trasparenza delle operazioni di contrattazione dal lato
front-end sia del fornitore sia dell’impiegato statale. Al
contempo il sistema mantiene l’anonimato dei fornitori
partecipanti.

C. Bidder Agent
Analizziamo ora come è modellato il “template” dell’agente

che rappresenta i partecipanti alla gara on-line. Secondo il
modello proprio di AgentService, l’agente viene descritto
attraverso i comportamenti, che ne caratterizzano l’attività, e
le unità di conoscenza, che ne costituiscono il sapere.

Vediamo quindi quali sono le knowledge e i behaviour che
definiscono il bidder agent:

Knowledge
- Active Auction: contiene le informazioni sulle aste a cui

sta attualmente partecipando. Per ciascuna asta viene
identificato il tipo, la quantità e il tipo di merci per cui si sta
contrattando ed eventualmente il prezzo di partenza suggerito
dall’acquirente;

- Auction Repository: contiene informazioni su ogni asta a
cui l’agente ha partecipato, consiste in pratica in un archivio
storico utile all’agente come base statistica per formulare
offerte sempre più vincenti;

- Budget: è composta di tutti i dati necessari all’agente per
formulare le offerte, quali ad esempio il prezzo limite e altre
indicazioni stabilite dal fornitore che rappresenta;

Behaviour
- Communicator: concerne tutta l’attività di comunicazione

baldoni
66

tra offerente e banditore: ricezione del bando dell’asta, invio
delle offerte e ricezione delle informazioni sullo stato attuale
dell’asta.

- Operator(s): implementa un particolare algoritmo di
contrattazione strettamente legato al tipo di asta a cui l’agente
partecipa.

- Manager: quando viene a conoscenza dell'inizio di un'asta
decide in base al “Budget” se parteciparvi ed in caso di scelta
favorevole con quale strategia contrattare con gli altri agenti.

Il Template del bidder agent può naturalmente essere
modificato, definendo differenti behaviour e knowledge, o più
facilmente personalizzando gli Operator. Ad ora sono
implementati Operator con algoritmi per la contrattazione in
aste al ribasso di tipo semplice, vickrey, busta chiusa, ed aste
al rialzo di tipo inglese.

Vediamo ora come si articola l’attività del bidder agent
durante la partecipazione ad un’asta. L’agente banditore
dell'asta comunica l'inizio dell'asta attraverso il behaviour
Communicator; quest'ultimo inserisce in Active Auction i
parametri dell'asta e il prezzo di partenza e attiva il behaviour
Manager.

Il Manager decide se partecipare o meno all'asta a seconda
del prezzo limite e delle indicazioni contenute in Budget; se
decide di parteciparvi sceglie l'algoritmo da utilizzare per
calcolare l'offerta usando le strategie implementate in
Operator. Il Manager poi si occuperà di aggiornare l'Auction
Repository. Le offerte vengono poi inviate all’auctioneer
agent tramite il Communicator, che, come visto nel paragrafo
precedente, tra le tante offerte ricevute, stabilisce, in funzione
del tipo di asta, quale è la vincente. Il banditore si occuperà
quindi di notificare l’ammontare dell’offerta temporaneamente
migliore a tutti gli agenti in gara per eventuali rilanci. Questo
fino al sopraggiungere del tempo limite per l’asta.

VI. CONCLUSIONI
Considerando il panorama estremamente eterogeneo per ciò

che concerne l’Information Tecnology (IT) all’interno delle
amministrazioni pubbliche, l’attenzione è stata rivolta ad
aspetti quali l'interazione tra tecnologie diverse su varie
piattaforme e su diversi dispositivi. L’adozione di standard
aperti e l’assenza di vincoli di linguaggio o piattaforme da
utilizzare risulta decisiva al fine di rendere raggiungibili i
risultati prefissati. Da qui la scelta di uno strumento software
quale il Web Service, basato su standard aperti e caratterizzato
da portabilità e interoperabilità. Si è perciò voluto realizzare
un’applicazione Web semplice, intuitiva e funzionale, che
presentasse un alto grado di autonomia riducendo al minimo
gli interventi, sia dell’amministrazione pubblica che dei
fornitori. Per far fede a tale principio, è stato sviluppato un
servizio che si avvalesse della tecnologia ad agenti proprio per
la loro capacità di compiere azioni autonome in contesti
complessi.

Gli agenti, grazie a caratteristiche quali autonomia e
proattività, si candidano ad essere la strategia vincente per

modellare il nascente quadro economico nel quale sempre più
spesso sarà richiesto alla macchina di esibire comportamenti
“intelligenti”.

Il progetto WASS presenta ampi margini di miglioramento
in quanto in questa sua prima realizzazione costituisce una
solida infrastruttura software di base, sulla quale poter
implementare ulteriori servizi e funzionalità. Il progetto è stato
concepito proprio come punto di partenza estremamente
“aperto” e flessibile in termini di:

- adattabilità ad eventuali nuovi vincoli normativi in materia
di approvvigionamento per via telematica o ad esigenze
peculiari di un ente pubblico. Queste possono risultare
decisamente differenti per effetto della disomogeneità
esistente tra le realtà comunali, provinciali e regionali sia a
livello nazionale che in altri paesi;

- possibilità di implementare una più ampia casistica dei
comportamenti (behaviour) per ogni singolo agente
partecipante alla gara. Questo rende l’agente sempre più
capace di adattarsi autonomamente alle differenti circostanze.
Ad esempio, prevedendo cambi di comportamento di uno
stesso agente fornitore in funzione dell’importo complessivo
della commessa, dell’andamento della trattativa d’asta in
corso, o della differente categoria merceologica oggetto della
trattativa d’asta, ecc. In questo ambito la letteratura di
riferimento dalla quale poter attingere nuove logiche
comportamentali è rappresentata dalla Teoria dei giochi [23].

- possibilità di affiancare altre tipologie d’asta a quelle ad
ora previste.

La suddivisione del progetto WASS in tre componenti
distinti, permette di mantenere un ottimo livello di modularità
e di chiarezza a servizio dello sviluppatore. In una visione di
più ampio respiro e grazie a tale modularità, alla soluzione si
potranno affiancare altri progetti in grado di integrarsi,
interagire e di automatizzare i processi che precedono la gara
d’appalto (studio di fattibilità, richiesta di finanziamento,
autorizzazione, capitolato, pre-qualificazione), nonché i flussi
documentali che gli stessi originano. Inoltre, per ottenere
questa ulteriore semplificazione delle operazioni a carico degli
impiegati statali, potrebbe essere necessaria una parallela
riformulazione e standardizzazione di tali fasi.

Il sistema proposto, proprio per la sua architettura, ben si
adatta ad operare anche in contesti differenti da quello del
settore pubblico. A tal fine occorrerà, oltre alla
personalizzazione dell’interfaccia, che i ruoli del banditore e
dei partecipanti all’asta siano interpretati da soggetti
differenti e che i relativi agenti che li rappresentano utilizzino
gli appropriati algoritmi di contrattazione attraverso gli
Operator della libreria del WASS (ad esempio una casa d’aste
con un’asta all’inglese).

L’interesse verso l’informatizzazione dei processi delle
pubbliche amministrazioni è dimostrato dal numero crescente
di applicazioni che hanno per oggetto l’e-government; nel
caso dell’acquisizione di risorse è interessante valutare e
rapportare al WASS il progetto eMarket proposto dal
Ministero delle Comunicazioni e Tecnologie Informatiche
della Romania [24].

baldoni
67

Come specificato dai realizzatori, il sistema eMarket è un
progetto di commercio elettronico portato avanti dal governo
della Romania nell’ambito dell’ “European eGovernment
Framework” nella forma di un mercato virtuale su internet. Il
progetto pilota è iniziato nel marzo del 2002 con lo scopo di
offrire una strada alternativa alle acquisizioni pubbliche. Le
aste sono organizzate dalle istituzioni pubbliche e sono rese
disponibili a qualsiasi società privata. Il meccanismo di offerta
è molto semplice ed il sistema garantisce la vittoria al miglior
offerente. L’eMarket sembra offrire molti dei vantaggi
discussi per il WASS, primo fra tutti trasparenza e
concorrenza nelle aste, ma il sistema di contrattazione è
sostanzialmente differente dato l’impiego nel WASS della
tecnologia ad agenti. Il WASS garantisce, per le caratteristiche
prorpie dei MAS, un livello più elevato di automatizzazione
del processo di contrattazione e maggiore flessibilità di
utilizzo vista la facile riusabilità e personalizzazione dei
componenti già realizzati e la possibilità di programmarne di
nuovi progettati ad hoc per rispondere a esigenze differenti.

Considerando il mercato in cui si va a collocare un
sistema fortemente autonomo come quello realizzato, è
indubbia una certa perplessità da parte degli operatori nel
delegare decisioni di importanza strategica “completamente
nelle mani di un software”. In tale contesto, potrebbe essere
oggetto di studio una soluzione più equilibrata dal punto di
vista del grado di interazione e decisione concesso ai suoi
utenti, limitando gli agenti all’esecuzione automatica di task
ripetitivi e quindi a strumenti computazionali per il supporto
alle decisioni. Queste alternative potrebbero, in un secondo
tempo, essere testate dal punto di vista delle prestazioni e
confrontate con quelle del WASS.

BIBLIOGRAFIA
[1] eEurope 2005 Action Plan:

http://europa.eu.int/information_society/eeurope/2005/all_about/action_
plan/text_en.htm

[2] “E-government: nuovi paradigmi organizzativi e formativi nelle regioni
e negli enti locali”: http://www.di.unipi.it/parete/InItalia.html

[3] “E-government – maggior autonomia e iniziativa ai cittadini”:
http://www.eu.microsoft.com/italy/business/filePub/58382952wpEgovP
A.pdf

[4] “E-government”: http://cittadinionline.caltanet.it/egovern.shtml
[5] “La società dell’informazione”:

http://www.mininnovazione.it/ita/soc_info/politiche_governo/affariregio
nali.shtml

[6] DIRETTIVA 18 dicembre 2003 - Linee guida in materia di
digitalizzazione dell'amministrazione per l'anno 2004. (GU n. 28 del 4-2-
2004).

[7] A. Boccalatte, A. Gozzi, A. Grosso, C. Vecchiola, “AgentService”, The
Sixteenth International Conference on Software Engineering and
Knowledge Engeneering (SEKE’04), Banff Centre, Banff, Alberta,
Canada 20-24 June 2004.

[8] P. R. Wurman, , M. P.Wellman, and W. E.Walsh. The Michigan Internet
AuctionBot: A Configurable Auction Server for Human and Software
Agents. In Second International Conference on Autonomous Agents
(AGENTS’98), 1998.

[9] J. A. Rodrıguez-Aguilar, P. Noriega, C. Sierra, and J. Padget. Fm96.5 a
java-based electronic auction house. In Second International Conference
on The Practical Application of Intelligent Agents and Multi-Agent
Technology(PAAM’97), 1997.

[10] P. Garcia, E. Gimenez, L. Godo, and J. A. Rodrıguez-Aguilar.
Possibilistic-based design of bidding strategies in electronic auctions. In
The 13th biennial European Conference on Artificial Intelligence
(ECAI-98), 1998.

[11] F. Ygge and H. Akkermans. Making a case for multi-agent systems. In
M. Boman and W. V. de Velde, editors, Advances in Case-Based
Reasoning, number 1237 in Lecture Notes in Artificial Intelligence,
pages 156–176. Springer-Verlag, 1997.

[12] F. Ygge and H. Akkermans. Power load management as a computational
market. In Proceedings of the Second International Conference on Multi-
Agent Systems (ICMAS-96), 1996.

[13] B. A. Huberman and S. Clearwater. A multi-agent system for controlling
builging environments. In Proceedings of the First International
Conference on Multi-Agent Systems (ICMAS-95), pages 171–176.
AAAI Press, June 1995.

[14] M. P.Wellman. A market-oriented programming environment and its
application to distributed multicommodity flow problems. Journal of
Artificial Intelligence Research, (1):1–23, 1993.

[15] Michael J. Wooldridge, Nicholas R. Jennings, Agent Theories,
Architectures, and Languages: A Survey, Workshop on Agent Theories,
Architectures \& Languages (ECAI'94), 1994.

[16] M. Wooldridge, “Intelligent Agents”, in Multi-agent Systems – A
Modern Approach to Distributed Artificial Intelligence, G. Weiss Ed.,
Cambridge, MA, pp. 27-78, 1999.

[17] G. Weiss, Multi-agent Systems – A Modern Approach to Distributed
Artificial Intelligence, G. Weiss Ed., Cambridge, MA, 1999.

[18] Shen, W. and Norrie, D. (1999) “Agent-Based Systems for Intelligent
Manufacturing: A state-of-the-Art Survey”. Knowledge and Information
Systems, 1(2):129-156.

[19] FIPA Abstract Architecture Specification, FIPA standard SC00001L:
http://www.fipa.org/specs/fipa00001/SC00001L.pdf.

[20] Standard ECMA-335: Common Language Infrastructure (CLI) 2nd
Edition, Dec. 2002, ECMA:
http://www.ecma-international.org/publications/standards/Ecma-
335.htm.

[21] Standard ISO/IEC 23271:2003: Common Language Infrastructure,
March 28, 2003, ISO.

[22] Microsoft Shared Source CLI:
http://msdn.microsoft.com/library/default.asp?url=/msdnmag/issues/02/
07/sharedsourcecli/toc.asp

[23] S. Tijs. Introduction to Game Theory, New Delhi, Hindustan Book
Agency, 2003.

[24] E-market, Electronic System for Public Acquisition:
 http://www.e-licitatie.ro/index_en.htm

baldoni
68

Coordinated Change of State for Situated Agents
Giuseppe Vizzari and Stefania Bandini

Dipartimento di Informatica, Sistemistica e Comunicazione
Universit̀a degli Studi di Milano–Bicocca

Via Bicocca degli Arcimboldi 8, 20126 Milano, Italy
{giuseppe.vizzari, bandini}@disco.unimib.it

Abstract— Situated Multi Agent System models are character-
ized by the representation and exploitation of spatial information
related to agents, the environment they inhabit and their posi-
tions. Specific coordination mechanisms exploiting the contextual
spatial information can be defined. In particular this paper will
focus on issues and proposed solutions related to the coordinated
change of state for situated agents.

I. I NTRODUCTION

Agent coordination represents a very active and challenging
area of the research in Multi-Agent Systems (MAS). The
term coordination refers to the interaction mechanisms that
allow autonomous agents to select and carry out their actions
within a concerted framework. The separation of the agent
computation model, specifying the behaviour of a single agent,
from the coordination model is a proposal that goes back to
the early nineties [7]. In particular, the concept of Linda tuple
space [6] and the related coordination language is the most
diffused metaphor adopted by current coordination languages
and approaches. The basic model has been enhanced, on one
hand at a technical level, in order to allow a distributed
implementation of the conceptually centered tuple space [16].
On the other hand, tuple spaces have been also extended in
order to allow the specification of tuple-based coordination
media presenting reactive and programmable behaviours (see,
e.g., [14], [15], [4]), and also allowing the specification and
enforcement of organizational abstractions and constraints
(e.g. roles, access control rules) to agent coordination [17].

Situated MASs (see, e.g., [1], [10], [20]) are particular agent
based models which provide the representation and exploita-
tion of spatial information related to agents and their position
into the environment they inhabit. While the previously defined
approaches to agent coordination provide general-purpose co-
ordination languages and mechanisms, situated MASs present
issues that could benefit from specific mechanisms for agent
interaction. For instance, the concept offield (i.e. a signal that
agents may spread in their environment, which can influence
the behaviour of other entities) has been widely adopted for
the generation of coordinated movements (see, e.g., [2], [9]).
This kind of mechanism is devoted to the interaction of agents
which may be positioned on distant points of their space, there
can be situations in which agents which are in direct contact
(considering a discrete representation of agents’ environment)
may wish to perform a coordinated change in the respective
state (for instance in order to model the exchange of infor-
mation) without causing modifications in the environment. In

fact, field based interaction and other approaches focused on
modelling agent environment [19], are intrinsically multicast
interaction mechanisms that may be useful to represent actions
and interactions that should beobservableby other entities
in the system. However this observability property should not
automatically characterize all possible actions and interactions
of a Multi Agent model. To this purpose, Multilayered Multi
Agent Situated System (MMASS) [1] defines thereaction
action which allows the coordinated change of the states of
agents which are positioned in sites forming a clique (i.e. a
complete subgraph) in the spatial structure of their environ-
ment. This operation, which also allows a direct exchange of
information among the involved entities, is not observable by
other agents. The aim of this paper is to describe issues related
to coordinated changes in the state of situated agents, and
propose approaches for the management of these issues, with
specific reference to the reaction MMASS action.

The following section will better describe the problem,
showing how existing situated MAS approaches tackle the is-
sue of coordinated agent change of state. Section III will focus
on the design and implementation of mechanisms supporting
coordinated change of state of situated agents, discussing
synchronous and asynchronous cases. Conclusions and future
developments will end the paper.

II. COORDINATED CHANGE OF STATE IN SITUATEDMASS

Despite most agent definitions emphasize the role of the
environment, currently most model do not include it as a first
class abstraction. The number of situated MAS models (that
are models providing a representation of spatial features of
agent environment) is thus relatively small, and the topic of
coordinating the change of state of situated agents is still not
widely analyzed.

One of the first approaches providing the possibility to
define the spatial structure of agents’ environment is rep-
resented by Swarm [12]. Swarm and platforms derived by
it (e.g. Repast1, Mason [8]) generally provide an explicit
representation of the environment in which agents are placed,
and often provide mechanisms for the diffusion of signals.
Nonetheless they generally represent useful libraries and tools
for the implementation of simulations, but do not provide a
comprehensive, formally definedinteraction model. In other
words they do not provide support to the coordinated change
of state among agents, but just define and implement a spatial

1http://repast.sourceforge.net

baldoni

structure in which agents, and sometimes signals, may be
placed. Moreover, they generally provide a sequential execu-
tion of agents’ behaviours (that are triggered by the environ-
ment, which is related to the only thread of execution in the
whole system). This approach prevents concurrency issues and
allows to obtain compact and efficient simulations even with a
very high number of entities. The price of these characteristics
is essentially that agents are not provided with a thread of
execution of their own (i.e. they have a very limited autonomy
and proactiveness), and the execution of their behaviours is
sequential (although not necessarily deterministic).

The Co-Fields [10] and the Tuples On The Air (TOTA)
middleware [11] provide the definition and implementation of
a field based interaction model, which specifically supports this
kind of interaction that implies a local modification of agents’
environment. However the defined interaction mechanism does
not provide the possibility to have a coordinated change of
agent state without such a modification.

A different approach to the modelling and implementation
of situated MAS [20] instead focuses on the definition of a
model for simultaneous agent actions, including centralized
and (local) regional synchronization mechanisms for agent
coordination. In particular, actions can be independent or
interfering among each other; in the latter case, they can be
mutually exclusive (concurrentactions), requiring a contem-
porary execution in order to have a successful outcome (joint
actions), or having a more complex influence among each
other (both positive or negative).

The previously introduced MMASS model provides two
mechanisms for agent interaction. The first is based on the
concept offield, that is a signal that may be emitted by agents,
and will spread in the environment according to its topology
and to specific rules specifying field diffusion functions. These
signal may be perceived by agents which will react according
to their specific behavioural specification. The model also
defines the possibility for having a coordinated change of agent
state through thereactionoperation. The outcome of this joint
action depends on three factors:

• agents’ positions: reacting agents must placed in sites
forming a complete subgraph in the spatial structure of
the environment;

• agents’behavioural specifications: agents must include
compatible reaction actions in their behavioural specifi-
cation;

• agents’willingnessto perform the joint action: one of the
preconditions for the reaction is the agreement among the
involved agents.

The following section will discuss issues related to the
design and implementation of this operation, but several
considerations are of general interest in the development of
mechanisms supporting the coordinated change of state for
situated agents.

III. R EACTION

Reaction is an activity that involves two or more agents that
are placed in sites forming a clique (i.e. a complete subgraph)
and allows them to change their state in a coordinated way,

begin
turn:=0;
do

begin
localContext:=environment.sense(turn);
nextAction:=actionSelect(localContext);
outcome:=environment.act(nextAction,turn);
if outcome<>fail then

turn:=turn+1;
end

while(true);
end

Fig. 1. Agent behaviour thread in a synchronous situation.

after they have performed an agreement. The MMASS model
does not formally specify what this agreement process consists
of, and how the activities related to this process influence
agent behaviour. This choice is due to the fact that such
an agreement process could be very different in different
application domains (e.g. user authentication, transactions).
For instance, in some of these situations an agent should block
its activities while waiting for the outcome of the agreement
process, while in others this would be unnecessary. Especially
in a distributed environment this agreement process could
bring to possible deadlocks, and in order to better focus this
subject, more details on internal mechanisms related to agent,
to the environment and its composing parts must be given.

A. Synchronous environments

In synchronous situations a global time step regulates the
execution of agents actions; in particular, every agent should
be allowed to carry out one action per turn. In order to enforce
synchronicity, the management of system time step and agent
actions can be delegated to agents’environment, that they
invoke not only for functional reasons (i.e. perform an action
which modifies the environment) but also to maintain system
synchronicity (i.e. agent threads are put into a wait condition
until the environment signals them that the global system
time step has advanced). This proposal assumes that agents
are provided with one thread of execution, and also provides
that the environment has at least one thread of execution
of its own. In fact the environment is responsible for the
management of field diffusion (more details on this subject
can be found in [3]), other modifications of the environment
(as consequences of agents’ actions), and to enforce system
synchronicity.

In the following, more details on agent and environment
activities and threads of execution will be given; the situation
that will be considered provides one thread for every agent,
and a synchronous system. The described approach is valid
both for centralized and for distributed situations; in the latter
case one of the sites must be elected as a representative of
the whole environment, and interactions with the environment
can be implemented through a remote invocation protocol
(e.g. RMI or others, according to the chosen implementation
platform).

1) Agent behaviour management thread:The sequence
of actions performed in the agent behaviour thread is the
following:

baldoni
70

begin turn:=0;
do

begin
until(forall i in 1..n, agent_i.actionperformed=true)

begin
collect(agent_i,action,agentTurn)
if agentTurn=turn then

begin
manage(agent_i,action, turn);
agent_i.actionperformed:=true;
end

else
agent_i.wait();

end
turn:=turn+1;
forall i in 1..n

agent_i.actionperformed:=false;
notifyAllAgents();
end

while(true);
end

Fig. 2. Environment behaviour thread in a synchronous situation.

• sense its local context: in order to understand what are
the actions whose preconditions are verified, the agent
has to collect information required for action selection,
and more precisely:

– active fields in the site it is positioned on and
adjacent ones;

– agents placed in adjacent sites, and their types;
• select which action to perform: according to the action

selection strategy specified for the system (or for the
specific agent type), the agent must select one action to
be performed at that turn (if no action’s preconditions are
satisfied, the agent will simply skip the turn);

• perform the selected action: in order to perform the
previously selected action, the agent must notify the
environment, because the action provides a modification
of agent’s local context or even simply to maintain system
synchronicity.

The last step in agent behavioural management cycle may
cause a suspension of the related thread by the environment.
In fact an agent may be trying to perform an action for turn
t while other ones still did not perform their actions for turn
t−1. A pseudo-code specification of agent behavioural thread
sequence of activities is shown in Figure 1. Agents must thus
keep track of current turn and of the previously performed
action. In fact, as will be introduced in the following subsec-
tion, system dynamics might require an agent to reconsider its
action when it is involved in a reaction process.

2) Environment management thread:The environment,
more than just managing information on agents’ spatial con-
text, also acts as a monitor in order to handle concurrency is-
sues (e.g. synchronization, agreements among agents). Agents
must notify the environment of their actions, and the latter will
manage these actions performing modifications to the involved
structures (e.g. sites and active fields) related to the following
turn. The state of the current one must be preserved, in order
to allow its sensing and inspection by agents which still did
not act in that turn.

The environment may also put an agent into await con-
dition, whenever performing its action would break system
synchronicity. This wait ends when all agents have performed

procedure reactionManagement(agent, action, turn)
begin
involvedAgents:=action.getReactionPartners();
reactingAgents:=new list();
reactingAgents.add(agent);
agreed:=true;
forall agent_i in involvedAgents

begin
if agent_i.agreeReaction(involvedAgents) = false then

begin
agreed:=false;
break;
end

reactingAgents.add(agent_i);
end

if agreed=true then
forall agent_i in reactingAgents

agent_i.performReact(turn);
else

forall agent_i in reactingAgents
agent_i.notifyFailure(turn);

end

Fig. 3. Reaction management procedure in a synchronous situation.

their action for the current turn, and thus all entities are free to
perform actions for the next one. The environment must thus
keep track of the actions performed by agents in the current
turn, and then notify waiting agents whenever system time
advances. More schematically, a pseudo-code description of
the environment thread of execution is shown in Figure 2. In
particular themanage function inspects the specified action
(which includes the required preconditions and parameters),
checks if it is valid and then calls the appropriate subroutines
which effectively perform actions.

The previously introduced sequences require a slight in-
tegration to specify how reaction actions are managed. In
this case the beginning of an agreement process stops other
agent actions until this process is over, either positively (when
all other involved agents agreed) or negatively (when the
agreement failed). In this way, also system time advancement
is stopped until the reaction process is over, preserving system
synchronicity.

The reaction is triggered by the agent which first re-
quires the execution of this action to the environment. The
latter becomes the leader of the group of involved agents,
queries them asking if they agree to take part in the reac-
tion, if an agreement is reached it signals them to change
their state, then starts again the normal system behaviour,
allowing the advancement of global system time step and
thus agent execution. More schematically the environment
procedure devoted to the management of reaction is shown
in 3. An agent receiving anotifyFailure will have a
fail outcome, and thus will not advance its time step and
will start over again its behavioural cycle for the current
turn. ThereactionManagement procedure is one of the
specific subroutines invoked by the the environment thread of
execution previously shown in Figure 2 through themanage
function.

3) Examples:A sample scenario illustrating the evolution
of a centralized synchronous MMASS system is shown is
Figure 4. Scenario (a) provides the presence of a set of agents
(Agent-1, . . . , Agent-n), which do not require the execution
of reaction actions. The system dynamics is the following:

baldoni
71

Agent-1

Environment

2: emit

1: trigger

2.1: diffuse

n: transport

Agent-2

Agent-n

n.1: move

n.2: advance

3: emit

Agent-1

Environment

2: react [Agent-2, Agent-3]

Agent-2

Agent-3

2.6: advance

(a)

(b)

1.1: actionDone

2.1: agree [Agent-1, Agent-3]

2.1.1: agreed

2.2: agree [Agent-1, Agent-2]

2.2.2: agreed

2.5: performReact

2.3: performReact

2.4: performReact

2.2.1: select

1.1: actionDone

1: trigger

Fig. 4. A sample scenario illustrating the evolution of a centralized
synchronous MMASS system. In (a) Agent-2 is put into a wait condition
to preserve system synchronicity. In (b) an agreement process for a reaction
among Agent-1, Agent-2 and Agent-n is shown.

• Agent-2 performs a trigger (action 1);
• Agent-1 emits a field (action 2) and as a consequence the

environment performs its diffusion (action 2.1);
• Agent-2 also tries to perform an emission (action 3), but

the environment puts it into a wait condition, as other
agents did not perform their actions in that turn;

• agents that are not shown in the Figure perform their
actions, which are managed by the environment;

• eventually Agent-n performs a transport action (action
n), and as a consequence the environment performs its
movement (action n.1), advances system time (action
n.2) and eventually notifies agents. Agent-2 emit action
(action 3) will now be managed.

A different case is shown in scenario (b), which exemplifies
the sequence generated by a reaction request. Agent-1, Agent-
2 and Agent-3 are positioned in sites forming a clique. In this
case system dynamics is the following:

• Agent-3 performs a trigger (action 1);
• Agent-1 requires the environment to perform a reaction

with Agent-2 and Agent-3 (action 2);
• as a consequence to this request, the environment asks

Agent-2 if it intends to agree in preforming the reaction
(action 2.1) and it receives a positive reply (action 2.1.1);

the environment then asks Agent-3 if it wishes to
reconsider its action for the current turn (action 2.2); the
agent performs anew an action selection (action 2.2.1)

begin
do

begin
localContext:=mysite.sense();
nextAction:=actionSelect(localContext);
outcome:=site.act(nextAction);

while(true);
end

Fig. 5. Agent behaviour thread in an asynchronous situation.

and decides to agree(action 2.2.1);
• the environment indicates all involved agents that they

must perform the reaction (actions 2.3 – 2.5) and then
advances system time.

4) Discussion: The previously described approach to the
management of agents, their cycle of execution, their en-
vironment and reaction mechanisms provides a key role of
the environment, which represents a sort of medium ensuring
specific properties, and especially system synchronicity. This
is a global feature of the system, and the simplest way
to ensure it is to have a conceptually centralized unit to
which all entities must refer in order to perform their actions.
This medium and coordination models providing a centralized
medium (e.g. a tuple space) seem thus similar, in fact, both
provide an indirect interaction among agents and must tackle
issues related to the concurrent access to shared resources.
The main difference is the fact that, for instance, a Linda
tuple space does not provide abstractions for the definition
of spatial information (e.g. a topology, an adjacency relation),
that should be modelled, represented and implemented. An in-
teresting feature of advanced artifact based interaction models,
and more precisely reactive and programmable tuple spaces,
is the possibility to specify a behaviour for the artifact, which
could be a way to implement interaction mechanisms defined
by the MMASS model.

The described approach provides computational costs that
could be avoided, in a centralized situation, by providing a
single thread of execution, preventing synchronization issues
by activating agents in a sequential (although non necessarily
deterministic) way (i.e. adopting the approach exploited by
Swarm–like simulation platforms). Whenever autonomy and
proactiveness are not central elements in agent modelling, this
could be a feasible and cost effective choice. It could be the
case of simulations characterized by a large number of entities
endowed with very simple behavioural specification. However,
the described approach can useful when integrating into a
single environment entities characterized by a higher degree
of autonomy, proactiveness and heterogeneity (for instance, re-
active and deliberative agents developed with deeply different
approaches).

B. Asynchronous environments

In an asynchronous situation, the mechanisms for the man-
agement of agents and their interactions with the environment,
are on one hand simpler than in a synchronous case (i.e. there
is no need to ensure that every agent acts once per turn), but
can also be more complex as there less constraints on action
timings. In a centralized situation, it is still possible to delegate

baldoni
72

begin
do

begin
reactionRequest:=mysite.getReactionRequest();
newReactManager:=new ReactManagerThread(reactionRequest);
newReactManager.start();

while(true);
end

Fig. 6. Agent reaction detection thread in an asynchronous situation.

the management of shared resources to an environment entity,
whose task is actually simpler than in a synchronous situation
as it does not have to maintain global system synchronicity,
although it must guarantee the consistent access to shared
resources. In a distributed and asynchronous situation, even
if it would be possible to elect a single representative of
agents’ environment (like in the synchronous and distributed
case, described in the previous Section), this possibility would
represent a bottleneck and is not even necessary. In fact, the
main reason for the presence of a single representative of
agent environment was to assure system synchronicity. This
Section will then focus on a distributed and asynchronous
scenario, and will describe a distributed approach providing
the collaboration ofsites, instead of a single centralized
environment, for the management of coordinated change of
agents’ states.

1) Agent related threads:As previously introduces, agents
will now collaborate directly with the sites they are placed
on, and their behavioural threads must thus be changed. A
pseudo-code formalization of agent behaviour thread in an
asynchronous situation is shown in Figure 5.

Another change that can be introduced in the agent is the
presence of a distinct thread for the management of reaction
requests. In fact the agreement process required by the reaction
process can require a certain number of interaction among
agents which are placed in computational units spread over
a network. This means that a relevant delay may occur from
the beginning of an agreement process and its outcome (either
positive or negative). Being in an asynchronous situation there
is no need to stop agent behavior in order to wait for this
process to end. An agent may be provided with three kinds of
threads:
• its behavioural thread, which is very similar to the one

related to the synchronous situation, and whose structure
is shown in Figure 5;

• a thread which is devoted to the detection of reaction
requests; this thread is responsible to query the site
for pending reaction requests (which may occur concur-
rently) and start the third kind of thread which will man-
age the agreement process; a pseudo-code formalization
of this thread is shown in Figure 6;

• threads that are devoted to the effective management
of the reaction process; a pseudo-code formalization of
this thread is shown in Figure 7. This kind of thread
must check if the agent effectively agrees to perform
the reaction, through thecheckAgreement invocation
(only if it is not the one which actually started the reaction
process). This means that first of all the agent must have
a react action matching the one specified by the request

begin myReactAction:=this.getAction(reactionRequest); if
myReactAction<>null then

begin
if reactionRequest.author <> this then

begin
agreed:=checkAgreement(reactionRequest);
site.replyReactReq(reactionRequest, agreed);
end

if agreed=true then
begin
agreemReached:=site.getReactAgreement(reactionRequest);
if agreemReached=true then

this.changeState(myReaction.nextState);
end

end
else

site.replyReactReq(reactionRequest, false);
end

Fig. 7. Agent reaction management thread in an asynchronous situation.

Behavioural
thread

Reaction
detection

thread

Agent basic
threads

Additional threads
for reaction
management

Reaction
agreement

request

Reaction
agreement

request

Fig. 8. Threads of execution related to a single MMASS agent in a distributed
asynchronous environment.

(this is checked through thegetAction invocation).
Then it must wait the notification of the success or
failure of the agreement (thegetReactAgreement
invocation may in fact suspend this thread) and, in the
former case, change the agent state.

A diagram showing the three kinds of thread related to a
single agent are shown in Figure 8.

2) Site related threads:Similar considerations on the in-
ternal structure of agents may be also done for sites. The
latter act as a interfaces between agents and the rest of
the environment, and must manage events generated both
internally and externally. In particular,internal eventsare
generated by an agent that is positioned on the site, and more
precisely they are the following ones:

• sense the local context: the site must provide an agent
with the information it needs to select which action it
may perform (active fields in the site and adjacent ones,
agents in adjacent positions and related types);

• transport request: when an agent attempts a transport
action, the site it is positioned on must communicate with
the destination one in order to verify if it is empty, and
eventually allow the agent movement, which frees the

baldoni
73

baldoni

procedure reactionManagement(agent, action)
begin
involvedAgents:=action.getReactionPartners();
reactingAgents:=new list();
reactingAgents.add(agent);
agreed:=true;
forall agent_i in involvedAgents

begin
adjSite:=agent_i.getSite();
adjSite.reqAgreement(action);
end

until(forall a in involvedAgents, a.gotResponse)
begin
if receiveAgreeResp(agent_i,action) = false then

begin
agreed:=false;
break;
end

reactingAgents.add(agent_i)
end

if agreed=true then
forall agent_i in reactingAgents

begin
adjSite:=agent_i.getSite();
adjSite.performReact(action);
end

else
forall agent_i in reactingAgents

begin
adjSite:=agent_i.getSite();
adjSite.performReact(adjSite);
end

end

Fig. 9. Reaction management procedure for the leader site in an asynchronous
situation.

current site;
• reaction request: upon reception of a reaction request

by the overlaying agent, the site must propagate it to
involved agents’ sites, which in turn will notify them.
The site must wait for their replies and then notify all
involved entities of the agreement operation outcome; in
other words, the site where the reaction is generated is
the leader of the group of involved sites; a pseudo-code
formalization of the reaction management procedure for
the leader site is shown in Figure 9;

• field emission: when a field is generated in a site it must
be added to the set of active fields present in the site, and
it must be propagated to other adjacent sites according to
the chosen diffusion algorithm.

With reference to reaction, and especially on the selection of
a leader site, there are some additional elements that must be
integrated with the previous description of site behaviour. In
an asynchronous environment, there is the possibility that two
agents concurrently start two related reactions. For instance,
given three agents A, B and C, placed in sites forming a clique,
agent A and Agent B require their respective sites to react
among themselves and with agent C. There is not a single
site which started the reaction, so a leader must be chosen.
Whenever this kind of situation occurs an election protocol
must be invoked. The first and probably simplest solution, is to
associate a unique identifier related to every site (a very simple
way of obtaining it could be the adoption of a combination of
the IP address and TCP port related to the site) and assume that
the one with the lowest identifier becomes the leader of the
reaction group, and others will behave as the reaction request
was generated by the leader.

procedure reactionManagement(site, action)
begin
if this.agent <> null then

begin
this.agent.notifyReaction(action);
agreed:=getReactReply(agent,action);
site.replyReact(agreed);
if agreed=true then

if site.reqAgreement()=true then
this.agent.setReactAgreement(action,true);

end
else

site.replyReact(false);
end

Fig. 10. Reaction management procedure for non-leader sites in an asyn-
chronous situation.

Externally generated eventsare consequences of internal
events generated by agents in other sites; more precisely they
are the following ones:

• inspect the site: upon request, the site must provide to
adjacent sites information related to active fields and to
the presence (or absence) of an agent in it;

• diffusion propagation: when a field generated in a differ-
ent site is propagated to the current one the latter must
evaluate its value through the related diffusion function
and, if the value is not null, it must propagate the field
to other adjacent sites according to the adopted diffusion
algorithm;

• reaction request: upon reception of a reaction request by
the leader of a reaction group, the site must forward it to
the overlaying agent, wait for its response and transmit
it back to the leader; then it must wait for the outcome
of the reaction and notify the overlaying agent; a more
schematic description of non-leader sites behavior for
management of reaction is shown in Figure 10;

• transport: when a remote agent attempts a transport
action, the destination site must verify if its state has
changed from the previous inspection performed by the
agent, and if it is still empty will allow the transport
action, blocking subsequent incoming transports.

Site is thus responsible for many concurrent activities;
the proposed structure of threads for a site is shown in
Figure 11: there are two threads respectively detecting internal
and external events, and these two threads generate additional
ones in order to effectively manage them.

3) Inter-thread communication:Both agents and sites are
provided with a set of threads which must be able to com-
municate among themselves in a safe and consistent way.
For instance, agent reaction management thread in an asyn-
chronous situation communicates to the underlying site by
means of areplyReactRequest invocation (see Figure 7).
The latter performs a write operation on a thread-safe queue,
that is a structure with synchronized accessors (observers
and modifiers) that may be accessed by site threads but also
by the ones related to the agent that is placed on it. The
replyReactRequest invocation inserts an event in this
queue, and notifies threads that were waiting for the generation
of events. In this case the thread interested in the agent reply
to the reaction request is the one related to the underlying site
which effectively manages the agreement process with other

baldoni
74

Internal event
detection thread

Site basic
threads

Emission
action request

Remote event
detection thread

Propagate
field request

Reaction
action request

Internal event
management

External event
management

Fig. 11. Threads of execution related to a single MMASS site in a distributed
asynchronous environment.

involved entities. It could be either the leader, which is put
into a wait condition by the and thereceiveAgreeResp
invocation (see Figure 9), or any other involved site, which is
put into a wait condition by agetReactReply invocation
(see Figure 10).

4) Precautions on network communication:What was still
not considered is the possibility to have failures in network
transmission, even if to design a robust distributed protocol for
reaction management is not the focus of this work. Moreover
the chosen technologies supporting network communication
could implement mechanisms assuring a reliable form of
communication. However, considering the simple loss of
messages related to the orchestration of reaction, a simple
protocol providing the transmission acknowledgements and the
definition of timeouts in order to avoid deadlock situations
could be easily implemented. Whenever this kind of issue
is detected, the agents’ threads related to the management
of reaction could simply try to repeat the whole process
from the beginning. Moreover, the fact that every agent is
related to multiple threads of control, greatly reduces the
dangers and issues related to possible deadlocks. In fact, the
agent behaviour thread is separated from the management of
reactions, and the same can be said for what concerns site
specific functions (e.g. threads related to field diffusion are
separated from those managing reactions). In this way a failure
in a reaction process does not hinder the possibility of the
agent to continue its common behaviour, leaving aside the
specific reaction that caused the problem. This price of these
advantages is that agents and sites are more complex from a
computational perspective, and require more resources both in
terms of memory and processor time.

There are also some functional requirements that must be
considered: the execution of an action during an agreement
process might change the preconditions that brought an agent
to accept the proposed agreement. In specific cases this could
represent a serious issue, and in this case the possibility of
the reaction management thread to temporarily block the agent
behavioural one should be introduced, suitably exploiting the
inter thread interaction mechanism.

5) Discussion:Some of the concurrency issues that were
described in this Section are common also in direct agent
interaction models. In fact, they are generally designed to work
in an asynchronous situation in which messages may be sent
and received at any time. In order not to miss any message,
the communication partners require some kind of indirection
mechanism and structure. For instance, the abstraction of
mailbox is adopted by Zeus [13], and Jade [18] usesqueues
for managing agent messages. In both cases, specific threads
of execution, in addition to those that are related to agents,
are adopted to manage communication channels and message
exchange.

Unlike the synchronous approach, in this case no single
entity managing the coordinated change of state among agents
is provided. While managing this kind of operation in a
distributed way provides a more complex implementation of
sites, to which this activity is delegated, this approach seems
more suitable in distributed situations, unless synchronization
is absolutely necessary. In fact, a single entity managing this
operation may represent a bottleneck and a single point of
failure, hindering system robustness.

IV. CONCLUSIONS AND FUTURE DEVELOPMENTS

The paper has discussed issues related to the coordinated
change of state for situated MASs, proposing specific solutions
for synchronous and asynchronous situations. In particular,
the MMASS reaction action was considered as a specific
case of coordinated change of state in situated agents, but
several considerations are of general interest in the design and
implementation of mechanisms supporting this form of co-
ordinated action in situated MASs. In particular the approach
described in [20] provides a similar approach to situated agents
coordination: in fact it provides a centralized synchronization,
similar to the one provided by the environment described in
Section III-A. A distributed mechanism for agent coordination
is also described, but it provides a personal synchronizer for
every agent while in the approach described in Section III-B
every site is responsible for providing this kind of service to
the hosted agent.

This work is part of a wider research aimed at the design
and development of a platform supporting the development of
MMASS based systems. In this framework, another work fo-
cused on supporting field diffusion [3], while agent movement
will be object of a through analysis: in fact this mechanism
requires an attention to functional aspects (e.g. concurrent
agents’ attempts to move towards the same empty site) and
also non-functional ones related to agent mobility in distrib-
uted environments. In particular the latter represents a whole
area in agent research and software engineering in general
(see, e.g., [5]).

REFERENCES

[1] Stefania Bandini, Sara Manzoni, and Carla Simone, “Heterogeneous
agents situated in heterogeneous spaces.,”Applied Artificial Intelligence,
vol. 16, no. 9-10, pp. 831–852, 2002.

[2] Stefania Bandini, Sara Manzoni, and Giuseppe Vizzari, “Situated
cellular agents: a model to simulate crowding dynamics,”IEICE
Transactions on Information and Systems: Special Issues on Cellular
Automata, vol. E87-D, no. 3, pp. 669–676, 2004.

baldoni
75

[3] Stefania Bandini, Sara Manzoni, and Giuseppe Vizzari, “Towards
a specification and execution environment for simulations based on
mmass: Managing at–a–distance interaction,” inProceedings of the 17th
European Meeting on Cybernetics and Systems Research, Robert Trappl,
Ed. 2004, pp. 636–641, Austrian Society for Cybernetic Studies.

[4] Giacomo Cabri, Letizia Leonardi, and Franco Zambonelli, “Mars:
a programmable coordination architecture for mobile agents,”IEEE
Internet Computing, vol. 4, no. 4, pp. 26–35, 2000.

[5] Alfonso Fuggetta, Gian Pietro Picco, and Giovanni Vigna, “Understand-
ing code mobility,” IEEE Transactions on Software Engineering, vol.
24, no. 5, pp. 342–361, 1998.

[6] David Gelernter, “Generative communication in linda,”ACM Trans.
Program. Lang. Syst., vol. 7, no. 1, pp. 80–112, 1985.

[7] David Gelernter and Nicholas Carriero, “Coordination languages and
their significance,” Communications of the ACM, vol. 35, no. 2, pp.
97–107, 1992.

[8] Sean Luke, G. C. Balan, Liviu A. Panait, C. Cioffi-Revilla, and S. Paus,
“Mason: a java multi-agent simulation library,” inProceedings of Agent
2003 Conference on Challenges in Social Simulation, 2003.

[9] Marco Mamei, Letizia Leonardi, and Franco Zambonelli, “A physically
grounded approach to coordinate movements in a team,” inProceedings
of the 1st International Workshop Mobile Teamwork. 2002, pp. 373–378,
IEEE Computer Society.

[10] Marco Mamei, Franco Zambonelli, and Letizia Leonardi, “Co-fields:
Towards a unifying approach to the engineering of swarm intelligent
systems,” inEngineering Societies in the Agents World III: Third
International Workshop (ESAW2002). 2002, vol. 2577 ofLecture Notes
in Artificial Intelligence, pp. 68–81, Springer–Verlag.

[11] Marco Mamei and Franco Zambonelli, “Programming pervasive and
mobile computing applications with the tota middleware,” in2nd IEEE
International Conference on Pervasive Computing and Communication
(Percom2004). 2004, pp. 263–273, IEEE Computer Society.

[12] Nelson Minar, Roger Burkhart, Chris Langton, and Manor Askenazi,
“The swarm simulation system: A toolkit for building multi-agent
simulations,” Working Paper 96-06-042, Santa Fe Institute, 1996.

[13] Hyacinth S. Nwana, Divine T. Ndumu, Lyndon C. Lee, and Jaron C.
Collis, “Zeus: A toolkit for building distributed multiagent systems,”
Applied Artificial Intelligence, vol. 13, no. 1-2, pp. 129–185, 1999.

[14] Andrea Omicini and Enrico Denti, “From tuple spaces to tuple centres,”
Science of Computer Programming, vol. 41, no. 3, pp. 277–294, 2001.

[15] Andrea Omicini and Franco Zambonelli, “Coordination for Internet
application development,”Autonomous Agents and Multi-Agent Systems,
vol. 2, no. 3, pp. 251–269, Sept. 1999, Special Issue: Coordination
Mechanisms for Web Agents.

[16] Gian Pietro Picco, Amy L. Murphy, and Gruia-Catalin Roman, “Lime:
Linda meets mobility,” inProceedings of the 21st International Con-
ference on Software Engineering (ICSE99). 1999, pp. 368–377, ACM
press.

[17] Alessandro Ricci, Mirko Viroli, and Andrea Omicini, “Agent coordi-
nation context: From theory to practice,” inCybernetics and Systems
2004, Robert Trappl, Ed., Vienna, Austria, 2004, vol. 2, pp. 618–623,
Austrian Society for Cybernetic Studies, 17th European Meeting on
Cybernetics and Systems Research (EMCSR 2004), Vienna, Austria,
13–16 Apr. 2004. Proceedings.

[18] Giovanni Rimassa,Runtime Support for Distributed Multi-Agent Sys-
tems, Ph.D. thesis, University of Parma, January 2003.

[19] Luca Tummolini, Cristiano Castelfranchi, Alessandro Ricci, Mirko
Viroli, and Andrea Omicini, ““Exhibitionists” and “voyeurs” do it
better: A shared environment approach for flexible coordination with
tacit messages,” in1st International Workshop on “Environments for
MultiAgent Systems” (E4MAS 2004), Danny Weyns, H. Van Dyke
Parunak, and Fabien Michel, Eds., 2004, pp. 97–111.

[20] Danny Weyns and Tom Holvoet, “Model for simultaneous actions in
situated multi-agent systems,” inFirst International German Conference
on Multi-Agent System Technologies, MATES. 2003, vol. 2831 ofLNCS,
pp. 105–119, Springer–Verlag.

baldoni
76

Timed Coordination Artifacts withReSpecT

Alessandro Ricci
DEIS

Universit̀a di Bologna – Sede di Cesena
via Venezia 52, 47023 Cesena (FC), Italy

Email: aricci@deis.unibo.it

Mirko Viroli
DEIS

Universit̀a di Bologna – Sede di Cesena
via Venezia 52, 47023 Cesena (FC), Italy

Email: mviroli@deis.unibo.it

Abstract— Environment-based approaches to Multi-Agent Sys-
tems (MAS) advocate the use of abstractions mediating the
interaction between agents, providing an alternative viewpoint
to the standard speech-act-based approach. A remarkable exam-
ple is rooted in the notion of coordination artifact: embodied
entities provided by the MAS infrastructure to automate a
specific coordination task, and featuring peculiar engineering
properties such as encapsulation, predictability, inspectability
and malleability. An example technology supporting this scenario
is TuCSoN, where coordination artifacts are built as tuple centres
programmed with the ReSpecT logic language.

In most application scenarios characterised by a high degree
of openness and dynamism, coordination tasks need to be time-
dependent so as to be able to specify and guarantee necessary
levels of liveness and of quality of service. Moreover, temporal
properties are also fundamental for intercepting violations in the
agent-artifact contract, which is at the root of the engineering
approach underlining coordination artifacts. Accordingly, in this
paper we introduce an extension to theReSpecT language
allowing to define timed coordination artifacts in the TuCSoN
infrastructure. This is achieved by adding the management of
trap events, fired and intercepting using the same mechanism
currently used by ReSpecT to handle communication events,
thus in a uniform and coherent way. Examples are provided to
show the expressiveness of the language to model temporal-based
coordination tasks.

I. I NTRODUCTION

In the context of Environment-based approaches to interac-
tion on Multi-Agent Systems (MAS), the notion ofcoordina-
tion artifact has been introduced as the root of an engineering
methodology for agent coordination [10], [15]. The key idea
of this approach is to equip the MAS with a coordination
infrastructure, providing abstractions — called coordination
artifacts — perceived by the agents as run-time entities living
in the environment. Coordination artifacts are designed with
the goal of automating a specific coordination task, provided
to the agents as a service, and featuring peculiar engineering
properties such as encapsulation, predictability, inspectability
and malleability [10], [15].

An example technology supporting this scenario is
TuCSoN [11], [14]. In TuCSoN, the nodes of the network can
be populated bytuple centresplaying the role of coordination
artifacts. Tuple centres are LINDA -like blackboards, whose
reactive behaviour can be programmed using the logic-based
languageReSpecT, so as to make the tuple centres encap-
sulating any coordination task, from simple synchronization
policies up to complex workflows. In particular,ReSpecT is

shown to be Turing-complete, thus allowing any coordination
algorithm to be specified.

However, in most application scenarios characterised by a
high degree of opennes and dynamism, coordination tasks need
to be time-dependent. On the one hand, it is very useful to
specify (and then enforce) given levels of liveness and of
quality of service — e.g. requiring agents to interact with the
coordination artifact at a minimum/maximum frequency. On
the other hand, temporal properties are also fundamental as-
pects concerning interception of violations in the agent-artifact
contract: an agent might be required to provide a service
within a given deadline, or might require the artifact to do the
same. As shown in [15], it is sensible e.g. to let coordination
artifacts provide agents with operating instructions featuring
timed properties, which can be correctly enforced only through
timed coordination tasks.

The need for specifying timed coordination policies
emerged in a parallel way in the field of distributed systems
as well. For instance, in JavaSpaces [4] primitivesread and
take — looking for a tuple analogously tord and in in
L INDA — comes with a timeout value: when the timeout
expires the request immediately returns a failure. Similarly,
tuples can provide alease time when inserted in the space:
when the lease expires the tuple is automatically removed.
All these primitives, and others based on time, can actually be
the basis for structuring more complex coordination scenarios,
such as e.g. auctions and negotiations protocols including
time-based guarantees and constraints.

In this work we discuss how the basicReSpecT tuple
centre model has been extended to support the definition and
enaction of time-aware coordination policies. The basic idea
is to exploit the programmability of the coordination medium
extended with a temporal framework to get the capability
of modelling any time-based coordination patterns, realised
directly by specifying a suitable behaviour of the artifact.

The rest of the paper is organised as follows: Section II
discusses in details theReSpecT extended model, Section III
provides some concrete examples exploiting the extended
model, Section IV provides some reflections on the features
of the approach and finally Section V provides related works,
conclusion and future works.

baldoni

σ ::= {reaction(p(t),(Specification
body

)). }
p ::= cp | rp ReSpecT primitives

cp ::= out | in | rd Comm. primitives
rp ::= in r | rd r | Reaction primitives

out r | no r
body ::= [goal{, goal}] Specification body

ph ::= pre | post Direction predicates
goal ::= ph | rp(t) Goals

Fig. 1. The syntax of aReSpecT specification

II. EXTENDING ReSpecT WITH TIME

We describe here informal semantics of a significant frag-
ment of theReSpecT language: the reader interested in a
formal presentation should refer to [9], [8]. Then, we describe
how this model can be extended so as to deal with timing
aspects, that is, with the ability to trigger trap events at a
specified time (in the future).

A. The Basic Model

ReSpecT [8] is a logic-based language to program the
reactive behaviour of tuple centres [9].

Tuple centres arecoordination mediaextending the basic
model of LINDA tuple spaces [5]. Similarly to LINDA , they
accept and serve requests for inserting a tuplet (by prim-
itive out(t)), removing a tuple matching templatett (by
primitive in(tt)), and reading a tuple matching templatett
(by primitive rd(tt))1. With respect to LINDA , ReSpecT
tuple centres specialise the tuple space model with logic
tuples (Prolog-like terms with variables) and unification as
the matching criterion; differently from LINDA tuple spaces,
tuple centres can be programmed so that whenever an external
communication event occurs a computation reactively starts
which may affect the state of the inner tuple space. External
communication events can either be(i) a listening, reception
of a request from a coordinated process (either ain , rd ,
out), or (ii) a speaking, the production of a reply towards a
coordinated process (either the reply to ain or rd)2.

The ReSpecT language can be used to declare a setσ
of reaction specification tuples(RSTs), using the syntax of
Figure 1.

Each RST has a head and a body. When a communication
event p(t) occurs, all the RSTs with a matching head are
activated, that is, their bodies — each specifying an atomic
computation over the tuple centre — are used to spawn a
pending reaction waiting to be executed. Being specified by
a body, reactions are composed by a sequence of reaction
primitives rp resembling LINDA primitives, which are used

1Tuple centres can also deal with usual predicative primitivesinp(tt)
and rdp(tt) of L INDA , but these are not considered here for the sake of
simplicity and without loss of generality.

2we use here the termlistening related to events following the basic
terminology adopted in [9]

to remove a tuple (in r), read a tuple (rd r), insert a tuple
(out r), and check for the absence of a tuple (no r). This
sequence can contain a direction predicateph, pre or post ,
which is used to filter between reactions to a listening or a
speaking. In particular, we here consider therefore five kinds
of external communication events: listening of aout , rd , or
in , and speaking of ain and rd .

Reactions are non-deterministically picked and executed, by
atomically executing all its reaction primitives. Their effect
is to change the state of the tuple centre, and to fire new
reactions, as long as they match some other RST — whose
head can specify a reaction primitive (internal communication
events) other than a communication primitive (external com-
munication events). This recursive creation of reactions is the
mechanism by whichReSpecT achieves expressiveness up to
reaching Turing-completeness [3].

Primitives in r , rd r , and no r might fail (the former
two when the tuple is absent, the latter when it is present),
in which case the reaction execution fails, and its effect on
the tuple centre is rolled back. The computation fired by the
external communication event stops when (if) no more pending
reactions occur: when this happens the tuple centre waits until
the next communication event occurs.

B. The Extended Model

First of all, the model is extended with a notion of current
time of the tuple centreTc: each tuple centre has its own
clock, which defines the passing of time3. Actually, tuple
centre time is a physical time, but it is value considered to
be constant during the execution of an individual reaction:
in other words, we assume thatTc refers to the time when
the reaction started executing. This choice is coherent with
ReSpecT philosophy concerning reactions, which are meant
to be executed atomically (in the case of successful reactions).

In order to getTc in ReSpecT programs a new primitive
is introduced:

current time(?Tc) 4

This primitive (predicate) is successful ifTc (typically a
variable) unifies with the current tuple centre timeTc. As an
example, the reaction specification tuple

reaction(in(p(X)),(
current_time(Tc),
out_r(request_log(Tc,p(X)))

)).

inserts a new tuple with timing information each time a request
to retrieve a tuplep(X) is executed, realising a temporal log
of the requests.

The model is then extended with the notion oftrap event
or simply trap, which is an event generated when the tuple
centre reaches a specific time point. A trap occurs because

3In current implementation the temporal unity is the millisecond
4A Prolog notation is adopted for describing the modality of arguments:

+ is used for specifying input argument, - output argument, ? input/output
argument, @ input argument which must be fully instantiated

baldoni
78

of a (trap) source, characterised by a unique identifierID, a
time Te and a description tupleTd. The language is extended
with the possibility to generate and manipulate trap events and
sources. In particular we introduce the two following features:

• internally in the tuple centre, a coordination law (i.e. one
or more reaction specification tuples) might install a trap
source, which causes a trap to occur at a specific time.
For instance, we may want to generate a trap described
by the tupleexpired(T) a certain intervalLeaseTime
after the insertion of a tupleleased(T) ;

• the tuple centre reacts to a trap event analogously to
communication events, by means of proper reaction
specification tuples. In the case above, we may want
the tupleT to be removed when the trap described by
expired(T) occurs.

In order to support trap generator installation, the language is
extended with two new primitives:

new trap(-ID , @Te, +Td)

kill trap(@ID)

The first is successful ifTe is an integer equal or greater than
zero. Its effect is to install a new trap source — withID as
identifier — which enters a queue of installed sources. When
tuple centre timeTc time will be equal or greater than current
time plus Te, a trap event described by the tupleTd will
be then generated and inserted into the queue of triggered
trap events, whereas its source is deinstalled — i.e. removed
from its queue. Notice that because of the success/failure
semantics ofReSpecT semantics, if the reaction including
an invocation to primitivenew trap fails, no trap source
is installed, actually. An example involving thenew trap
primitive is as follows:

reaction(out(leased(T,LeaseTime)),(
new_trap(_,LeaseTime,expired(T))

)).

The reaction is triggered when a tuple matching
leased(T,LeaseTime) is inserted, and it installs a
new trap source which will generate a trap described by
the tupleexpired(T) after LeaseTime units from then.
Primitive kill trap is instead used to deinstall a source
given its identifier: such a primitive fails if not installed
sources has is characterised by the identifier provided.

Then, the language has been extended with the possibility
to write reactions triggered by the occurrence of trap events.
The syntactical and semantic models of trap reactions are
analogous to the reactions to communication events:

reaction(trap(Tuple), Body)

Body specifies the set of actions to be executed when
a trap with a description tuple matching the templateTuple
occurs. In the following simple example

reaction(trap(expired(T)),(in_r(T))).

when a trap described by a tuple matching the template
expired(T) occurs, the tuple specified inT is removed from
the tuple set. Notice that if the tuple is not present thein r
fails causing the whole reaction to fail — as the trap event is

occurred, however, the trap source is erased.
Trap events are listened one by one as soon as the tuple

centre is not executing a reaction; that is — according to the
tuple centre semantics [9], [8] — when it is in the idle state, or
between a listening and a speaking stage, or during a reacting
stage (between the execution of two reactions). When a trap
event is listened, it is first removed from the trap event queue,
the set of the reactions it triggers is determined — by matching
the reaction head with the trap description tuple — and then
executing sequentially all such reactions. As for theReSpecT
reacting stage, the order of execution of the reactions is not
deterministic.

An important semantic aspect of this extension concerns the
priority of reactions fired by external communication events
(standard execution) with respect to those of trap events (trap
execution). The model and implementation described here
feature higher priority of reactions fired by trap events. This
means that if during the standard executions of a reaction chain
a trap event occurs, the chain is broken, and the reactions fired
by the trap are executed. It’s worth noting that the individual
reactions are still atomic, not interruptible as in the basic
ReSpecT model: traps event in the trap queue are listened
(and related reactions executed) after the completion of any
reaction eventually in execution. Then, chains of reactions can
be broken, not individual reactions. This is fundamental in
order to preserve the semantic properties ofReSpecT model
[8]. Also reactions triggered by a trap event are atomic, and
they cannot be interrupted or suspended: in other words, trap
handlers are not interruptible and cannot be nested.

As will be discussed in Section IV, the possibily of breaking
reaction chains is important to build robust coordinating be-
haviour, in particular with respect to possible bugs generating
terminating reaction chains.

Nevertheless, it is worth mentioning here that other seman-
tics are possible and interesting. By giving higher priority
to the standard execution, one ensures that traps never in-
terfere with it. In exchange of the better isolation of code
achieved, in this case one can no longer guarantee the same
timing constraints: trap executions must wait for the standard
execution to complete. Notice that such aspects are mostly
orthogonal to the actual applicability of temporal coordination
laws as shown e.g. in next section. Moreover, a straightforward
generalisation of our model can be realised by specifying the
priority level of a trap (higher, lower, or equal to the that
of external communication events) at the time its source is
installed5.

III. E XAMPLES

In this section we describe some simple examples of how
temporal coordination primitives and coordination laws can be
modelled on top of extendedReSpecT. It’s worth noting that
these examples – even if simple – appear in several research
work in literature as a core of timing features extending the

5This interesting feature which is subject of current research is not described
in this paper for brevity.

baldoni
79

1 reaction(in(timed(Time,Tuple,Res)), (
pre, in r(Tuple),
out r(timed(Time,Tuple,yes)))).

2 reaction(in(timed(Time,Tuple,Res)), (
pre,no r(Tuple),
new trap(ID,Time,expired in(Time,Tuple)),
out r(trap info(ID,Time,Tuple)))).

3 reaction(trap(expired in(Time,Tuple)),(
in r(trap info(ID,Time,Tuple)),
out r(timed(Time,Tuple,no)))).

4 reaction(out(Tuple),(
in r(trap info(ID,Time,Tuple)),
kill trap(ID),
out r(timed(Time,Tuple,yes)))).

TABLE I

ReSpecT SPECIFICATION FOR MODELLING A TIMED I N PRIMITIVE

basic model; typically, in the literature there is a specific exten-
sion for each timing feature described here: on the contrary,
we remark the generality of our approach, which is meant
to support these and several other time-based coordination
patterns on top of the same model.

A. Timed Requests

In this first example we model a timedin primitive, i.e. an
in request that keeps blocked only for a maximum amount
of time. An agent issues a timedin by executing primitive
in(timed(@Time, ?Template , -Res) . If a tuple match-
ing Template is inserted withinTime units of time, the
requested tuple is removed and taken by the agent as usual
with Res being bound to theyes atom. Conversely, if no
matching tuples are inserted within the specified time,Res is
bound tono atom. Table I reports theReSpecT specification
which makes it possible to realise the behaviour of this new
primitive. When thein request is issued, if a tuple matching
the template is present a proper tuple satisfying the request is
created (reaction 1). Instead, if no tuple is found, a trap source
is installed for generating a trap at the due time (reaction 2).
Also, a tupletrap info is inserted in the tuple set, reifying
information about the installed trap source, required for its
possible removal. If a tuple matching a template of a pending
timed in is inserted on time, the related trap source is removed
and a proper tuple matching the timedin request is inserted
(reaction 4). Finally, if the trap occurs — meaning that no
tuples have been inserted on time matching a pending timed
in — then a tuple matching the timedin request carrying
negative result is inserted in the tuple set (reaction 3).

B. Tuples in Leasing

In this example we model the notion oflease, analogously to
the lease notion in models such as JavaSpaces [4] and TSpaces
[16]. Tuples can be inserted in the tuple set specifying a lease
time, i.e. the maximum amount of time for which they can
reside in the tuple centre before automatic removal.

1 reaction(out(leased(Time,Tuple)), (
new trap(ID,Time,lease expired(Time,Tuple)),
in r(leased(Time,Tuple)),
out r(outl(ID,Time,Tuple)))).

2 reaction(rd(Tuple),(pre,
rd r(outl(ID, ,Tuple)),
out r(Tuple))).

3 reaction(rd(Tuple),(post,
rd r(outl(ID, ,Tuple)),
in r(Tuple))).

4 reaction(in(Tuple),(pre,
in r(outl(ID, ,Tuple)),
out r(Tuple),
kill trap(ID))).

5 reaction(trap(lease expired(Time,Tuple)), (
in r(outl(ID,Time,Tuple)))).

TABLE II

ReSpecT SPECIFICATION FOR MODELLING TUPLES WITH A LEASE TIME

An agent insert a tuple with a lease time by issuing
an out(leased(@Time, @Tuple)) . Table II shows the
ReSpecT specification programming the tuple centre with
the desired leasing behaviour . When a tuple with a lease
time is inserted in the tuple centre, a trap source is installed
for generating a trap when the tuple centre time reaches the
lease due time (reaction 1). Also a tupleoutl is inserted in
the tuple set with the information on the trap source and the
leased tuple (note that the flat tuple with the lease time is not
directly present in the set). Then, for eachrd issued with a
template matching a leased tuple, a flat tuple satisfying the
request is first inserted in the tuple set (reaction 2), and then
removed after therd has been satisfied (reaction 3). Anin
request instead causes directly the removal of the lease tuple
and of the trap source (reaction 4). Finally, if a trap event
occurs (meaning that the lease time of a tuple expired), the
outl tuple carrying information about the presence of the
leased tuple is removed (reaction 5).

C. Dining Philosophers with Maximum Eating Time

The dining philosopher is a classical problem used for
evaluating the expressiveness of coordination languages in the
context of concurrent systems. In spite of its formulation, it is
generally used as an archetype for non-trivial resource access
policies. The solution of the problem inReSpecT consists in
using a tuple centre for encapsulating the coordination policy
required to decouple agent requests from single requests of
resources — specifically, to encapsulate the management of
chopsticks(for details refer to [9]).

Each philosopher agent(i) gets the two needed chopsticks
by retrieving a tuplechops(C1,C2) , (ii) eats for a certain
amount of time,(iii) then provides back the chopsticks by
inserting the tuplechops(C1,C2) in the tuple centre, and
(iv) finally starts thinking until next dining cycle.

A pseudo-code reflecting this interactive behaviour is the
following:

baldoni
80

1 reaction(in(all timed(Time,Tuple,OutList)),(
new trap(ID,Time,inat(Time,Tuple,OutList)),
out r(current in all(ID,Time,Tuple,[])),
out r(remove in all(ID)))).

2 reaction(out r(remove in all(ID)),(
in r(remove in all(ID)),
rd r(current in all(ID,Time,Tuple,L)),
in r(Tuple),
in r(current in all(ID,Time,Tuple2,L)),
out r(current in all(ID,Time,Tuple2,[Tuple|L])),
out r(remove in all(ID)))).

3 reaction(out r(remove in all(ID)),(
in r(remove in all(ID)),
rd r(current in all(ID, ,Tuple,)),
no r(Tuple))).

4 reaction(out(Tuple),(
in r(current in all(ID, ,Tuple,L)),
in r(Tuple),
out r(current in all(ID, ,Tuple,[Tuple|L])))).

5 reaction(trap(inat(Time,Tuple,OutList)), (
in r(current in all(ID,Time,Tuple,L)),
out r(all timed(Time,Tuple,L)))).

TABLE III

ReSpecT SPECIFICATION MIMICKING AN I N A L L WITH A DURATION TIME

while (true){
think();
in(chops(C1,C2));
eat();
out(chops(C1,C2));

}

The coordination specification inReSpecT (first 6 reac-
tions of Table IV, bottom) mediates the representation of the
resources (chops vs. chop tuples), and most importantly
avoid deadlocks among the agents.

Here we extend the basic problem by adding a further
constraint: the maximum time which philosophers can take
to eat (i.e. to use the resources) is given, stored in a tuple
max eating time(MaxEatingTime) in the tuple centre.
To keep the example simple, if this time is exceeded, the
chopsticks are regenerated in the tuple centre, avoiding the
starvation of the philosophers waiting for them, and the
chopsticks eventually inserted out of time are removed.

The solution to this problem using the extendedReSpecT
model accounts for adding only theReSpecT specification
(the agent code and related protocols are untouched) with the
reactions 7–10 described in Table IV (bottom), and extending
reaction 4 with the part in italics. Essentially, the new reactions
install a new trap source as soon as a philosopher retrieves
his chopsticks (reaction 7). If the philosopher provides the
chopsticks back in time (before the occurrence of the trap),
then the trap source is removed (reaction 8). Otherwise, if
the trap event occurs, the triggered trap reaction recreates the
missing chopsticks tuples in the tuple centre and inserts a tuple
invalid chops which prevent chopsticks insertion out of
fime (reaction 9). This prevention is realised by checking
the existence of the tupleinvalid chops when the tuple
chops are released by a philosopher (reaction 10).

It is worth noting that keeping track of the maximum eating

% a request of the chopsticks is reified with a
% required tuple
1 reaction(in(chops(C1,C2)),(pre,out r(required(C1,C2)))).

% if both the chopsticks are available, a chops
% tuple is generated
2 reaction(out r(required(C1,C2)),(

in r(chop(C1)),in r(chop(C2)),out r(chops(C1,C2)))).

% with the retrieval of the chops tuple,
% the chopsticks request is removed
3 reaction(in(chops(C1,C2)), (post,in r(required(C1,C2)))).

% the release of a chops tuple still valid (on time)
% causes the insertion of individual chopsticks,
% represented by the two chop tuples
4 reaction(out(chops(C1,C2)), (

current agent(AgentId),
no r(invalid chops(AgentId,C1,C2)),
in r(chops(C1,C2)),out r(chop(C1)),out r(chop(C2)))).

% a chops tuple is generated if there is
% a pending request, and both chop tuples
% are actually available
5 reaction(out r(chop(C1)), (rd r(required(C1,C)),

in r(chop(C1)),in r(chop(C)),out r(chops(C1,C)))).
6 reaction(out r(chop(C2)), (rd r(required(C,C2)),

in r(chop(C)),in r(chop(C2)),out r(chops(C,C2)))).

% a chopsticks request causes also creating a
% new trap generator, keeping track of its information
% in the chops pending trap tuple
7 reaction(in(chops(C1,C2)),(pre,

rd r(max eating time(Tmax)),
new trap(ID,Tmax, expired(C1,C2)),
current agent(AgentId),
out r(chops pending trap(ID,AgentId,C1,C2)))).

% when chops are released on time, the trap
% generator is removed
8 reaction(out(chops(C1,C2)),(

in r(chops pending trap(ID,C1,C2)),
kill trap(ID))).

% trap generation causes the insertion back
% of the missing tuples and the insertion of tuple
% keeping track of the invalid chops
9 reaction(trap(expired(C1,C2)),(

no r(chop(C1)), no r(chop(C2)),
current agent(AgentId),
in r(chops pending trap(ID,AgentId,C1,C2)),
out r(invalid chops(AgentId,C1,C2)),
out r(chop(C1)), out r(chop(C2)))).

% chopsticks released that are invalid (due to
% time expiration) are immediately removed
10 reaction(out(chops(C1,C2)), (

current agent(AgentId),
in r(invalid chops(AgentId,C1,C2)),
in r(chops(C1,C2)))).

TABLE IV

ReSpecT SPECIFICATION FOR COORDINATING DINING PHILOSOPHERS

WITH A MAXIMUM EATING TIME

baldoni
81

baldoni

time as a tuple (max eating time in the example) makes
it possible to easily change it dynamically, while the activity
is running; this can be very useful for instance in scenarios
where this time need to be adapted (at runtime) according
to the workload and, more generally, environmental factors
affecting the system.

Finally, it’s worth remarking that the approach is not meant
to alter the autonomy of the agent, for instance by means of
some form of preemption in the case of timing violations; on
the contrary – as a coordination model – all the constraints and
(timed based) rule enforcing concerns the interaction space.

D. An Artifact for Timed Contract Net Protocols

As a final example, we describe a coordination artifact
modelling and embodying the coordinating behaviour of a
time-aware Contract Net Protocol (CNP). CNP is a well-
known protocol in MAS, used as basic building block for
bulding more articulated protocols and coordination strategies
[13]. Following [6], we consider the CNP in a task allocation
scenario: a master announces a task (service) to be executed,
potential workers interested provide their bids, the announcer
collects the bid and selects one; after confirming his bid, the
awarded bidder becomes the contractor, taking in charge of
the execution of the task and finally providing task results.

We extend the basic version with some timing constraints. In
particular we suppose that:(i) the bidding stage has a duration,
established at a “contract” level;(ii) there is a maximum time
for the announcer for communicating the awarded bidder;(iii)
there is a maximum time for the awarded bidder for confirming
the bid and becoming the contractor;(iv) there is a maximum
time for the contractor for executing the task.

According to our approach, a coordination artifact can be
used to embody the coordinating behaviour of the time-aware
CNP, fully encapsulating the social/contractual rules defining
protocols steps and governing participant interaction, including
temporal constraints. The coordination artifact is realised as
a tuple centre – calledtasks –, programmed with the
ReSpecT specification reported in Table VI. Table V shows
the pseudo-code representing the interactive behaviour of the
master (top) and workers (bottom).

The usage protocol of the artifact for the master con-
sists in: making the announcement (by inserting a tuple
announcement), collecting the bids (by retrieving the tu-
ple bids), selecting and informing the awarded bidder (by
inserting the tupleawarded bid) and, finally, collecting the
result (by retrieving the tupletask done); for the workers,
the usage protocol accounts for reading the announcement (by
reading the tupleannouncement), evaluating the proposal
and providing a bid (by inserting a tuplebid), reading the
master decision (by retrieving the tuplebid result), and –
in the case of awarding – confirming the bid (by inserting the
tuple confirming bid), performing the task and, finally,
providing the results (by insering the tupletask result).

The artifact behaviour inReSpecT described in Table VI
reflects the various stages of the CNP protocol, and traps
are used for modelling the timing constraints related to the

tasks ? out(announcement(task(TaskId,TaskInfo,MaxExecTime)))
tasks ? in(bids(TaskId,BidList))
Bid ← selectWinner(BidList)
tasks ? out(awarded bid(TaskId,AgentId))
tasks ? in(task done(TaskId,Result,Duration))

tasks ? rd(announcement(task(TaskId,TaskInfo,MaxExecTime)))
MyBid ← evaluate(TaskInfo)
tasks ? out(bid(TaskId,MyId,MyBid))
tasks ? in(bid result(TaskId,MyId,Answer))
if (Answer==’awarded’) {

tasks ? out(confirm bid(MyId))
Result ← perform(TaskInfo)
tasks ? out(task result(TaskId,MyId,Result))

}

TABLE V

SKETCH OF THE BEHAVIOUR OF THE AGENTS PARTICIPATING TO THE

TIMED CONTRACT NET PROTOCOL: MASTERS(Top)AND WORKERS

(Bottom)

various stages: from bidding, to awarding, confirming, and
task execution A brief description of the artifact behaviour
follows: when a new announcement is done (reaction 1), the
information about the new CNP are created (tupletask todo
and cnp state) and a new trap source is installed, gener-
ating a trap when the bidding time is expired. At the trap
generation (reaction 2) – meaning that the bidding stage is
closed – all the bids inserted are collected (reaction 3), the
information concerning the protocol state updated, and a new
trap source is installed, generating a trap when the awarding
time is expired. If the master provides information about the
awarded bidder before this trap generation, the trap source
is killed, the tuples concerning awarded and non-awarded
bidders are generated (reactions 5, 8, 9), and a new trap
source for managing confirmation expire is installed (reaction
5). If no awarded bidder is provided on time or a wrong
(unknown) awared is communicated, the tuple reporting the
CNP state is updated accordingly, reporting the error (reactions
4, 6, 7). If the awarded bidder confirms on time his bid
(reaction 10), the execution stage is entered, by updating the
CNP state properly and installing a new trap generator for
keeping track of task execution time expiration. Otherwise,
if the confirm is not provided on time, the related trap event
is generated and listened (reaction 11), aborting the activity
and updating accordingly the CNP state tuple. Finally, if the
contractor provides the task result on time (reaction 13), the
trap generator for task execution is killed, the tuples concening
the terminating CNP are removed and the result information
are prepared for being retrieved by the master. Otherwise,
if the contractor does not provide information on time, the
trap is generated and the artifact state is updated accordingly,
reporting the error (reaction 12).

IV. D ISCUSSION

The approach aims to be general and expressive enough to
allow the description of a large range of coordination patterns
based on the notion of time. An alternative way to solve

baldoni
82

% When an announcement is made, a trap generator is
% installed for generating a timeout for bidding time
1 reaction(out(announcement(task(Id,Info,MaxTime))),(

out r(task todo(Id,Info,MaxTime)),
out r(cnp state(collecting bids(Id))),
rd r(bidding time(Time)),
new trap(,Time,bidding expired(Id)))).

% When the bidding time has expired, the master can
% collect the bids for choosing the winner. A trap
% generator is installed for defining the maximum
% awarding time
2 reaction(trap(bidding expired(TaskId)),(

in r(announcement()),
in r(cnp state(collecting bids(TaskId))),
out r(collected bids(TaskId,[])),
out r(cnp state(awarding(TaskId))),
rd r(awarding time(Time)),
new trap(,Time,awarding expired(TaskId)))).

3 reaction(out r(collected bids(TaskId,L)),(
in r(bid(TaskId,AgentId,Bid)),
out r(bid evaluated(TaskId,AgentId,Bid)),
in r(collected bids(TaskId,L)),
out r(collected bids(TaskId,

[bid(AgentId,Bid)|L])))).

% When the awarding time has expired, the bidders are
% informed of the results. If no winner has been
% selected the protocol enters in an error state,
% otherwise the protocol enters in the confirming
% stage, setting up a maximum time for it
4 reaction(trap(awarding expired(TaskId)),(

in r(cnp state(awarding(TaskId))),
out r(check awarded(TaskId)))).

5 reaction(out r(check awarded(TaskId)),(
in r(check awarded(TaskId)),
rd r(awarded bid(TaskId,AgentId)),
in r(bid evaluated(TaskId,AgentId,Bid)),
out r(result(TaskId,AgentId,awarded)),
out r(cnp state(confirming bid(TaskId,AgentId))),
rd r(confirming time(Time)),
new trap(ID,Time,confirm expired(TaskId)),
out r(confirm timer(TaskId,ID)),
out r(refuse others(TaskId)))).

6 reaction(out r(check awarded(TaskId)),(
in r(check awarded(TaskId)),
rd r(awarded bid(TaskId,AgentId)),
no r(bid evaluated(AgentId,Bid)),
out r(cnp state(aborted(TaskId,wrong awarded))))).

7 reaction(out r(check awarded(TaskId)),(
in r(check awarded(TaskId)),
no r(awarded bid(TaskId,AgentId)),
out r(cnp state(aborted(TaskId,award expired))))).

8 reaction(out r(refuse others(TaskId)),(
in r(bid evaluated(TaskId,AgentId,Bid)),
out r(result(TaskId,AgentId,’not-awarded’)),
out r(refuse others(TaskId)))).

9 reaction(out r(refuse others(TaskId)),(
in r(refuse others(TaskId)))).

% At the arrival of the confirm from the awarded
% bidder, a timeout trap is setup for checking the
% execution time of the task
10 reaction(out(confirm bid(TaskId,AgentId)),(

in r(confirm bid(TaskId,AgentId)),
in r(cnp state(confirming bid(TaskId,AgentId))),
current time(StartTime),
out r(cnp state(executing task(TaskId,StartTime))),
in r(confirm timer(TaskId,IdT)),
kill trap(IdT),
rd r(task todo(TaskId, ,MaxTime)),
new trap(IdT2, MaxTime, execution expired),
out r(execution timer(TaskId,IdT2)))).

% The occurrence of the confirm expired trap means
% that the confirm from the awarded bidder has not
% arrived on time, causing the protocol to be aborted
11 reaction(trap(confirm expired(TaskId)),(

in r(cnp state(confirming bid(TaskId,AgentId))),
in r(confirm timer(TaskId,)),
rd r(awarded bid(TaskId,AgentId)),
out r(cnp state(aborted(TaskId,

confirm expired(AgentId)))))).

% The occurrence of the execution expired trap means
% that the awarded bidder has not completed the
% task on time, causing the protocol to be aborted
12 reaction(trap(execution expired(TaskId)),(

in r(cnp state(executing task(TaskId,StartTime))),
in r(execution timer(TaskId,)),
rd r(awarded bid(TaskId,AgentId)),
current time(Now),
Duration is Now - StartTime,
out r(cnp state(aborted(TaskId,

execution expired(AgentId,Duration)))))).

% The awarded bidder provided task result on time
% terminating correctly the protocol
13 reaction(out(task result(TaskId,AgentId,Result)),(

in r(task result(TaskId,AgentId,Result)),
in r(awarded bid(TaskId,AgentId)),
in r(execution timer(TaskId,Id)),
kill trap(Id),
in r(cnp state(executing task(TaskId,StartTime))),
in r(task todo(TaskId,Info,MaxTime)),
current time(Now),
Duration is Now - StartTime,
out r(task done(TaskId,Result,Duration)))).

TABLE VI

BEHAVIOUR OF THE ARTIFACT REALISING A TIMED CNP,ENCODED IN THEReSpecT LANGUAGE

the problem consists in adopting helper agents (sort ofTimer
agents) with the specific goal of generating traps by inserting
specific tuples in the tuple centre a certain time points. With
respect to this approach and also to other approaches, the
solution described in this work has several advantages:

• Incapsulation of coordination— Managing traps directly
inside the coordination medium makes it possible to
fully keep coordination encapsulated, embedding its full
specification and enactment in aReSpecT program and
tuple centre behaviour. Conversely, using helper agents
to realise part of the coordination policies which cannot
be expressed directly in the medium causes a violation of

encapsulation. Among the problems that arise, we have:
less degree of control, more problematic reusability and
extensibility, more complex formalisation.

• Timed-coordination— The approach is not meant to
provide strict guarantees as required for real time sys-
tems: actually, this would be difficult to achieve given
also the complexity ofReSpecT behaviours, based on
first order logic. However, the model is expressive and
effective enough to be useful for several kind of timed
systems in general. Also, the management of time events
directly inside the medium makes it possible to have some
guarantees on the timings related to trap generation and

baldoni
83

trap reaction execution. These guarantees would not be
possible in general adopting external agents simulating
traps by inserting tuples at (their) specific time. The
reacting stage of a tuple centre has always priority with
respect to listening of communication events generated by
external agents; this means that in the case of complex
and articulated reaction chains, the listening of a trap
event (i.e. reacting to tuples inserted by timer agents)
could be substantially delayed, and possibly could not
happen. On the contrary, this cannot happen in the
extended model, where a trap event is ensured to be
listened and the related reactions to be executed — with
higher priority.

• Well-founded semantics— The extension realised to
the basic model allows for a well-defined operational
semantics extending the basic semantics of tuple centres
and ReSpecT with few constructs and behaviours. In
particular, the basic properties ofReSpecT – in par-
ticular atomic reaction execution – are all preserved.
This semantics has been fundamental for driving the
implementation of the model and will be important also
for the development of verification tools.

• Compatibility, reuse and minimality— The extension
does not alter the basic set of (Linda) coordination
primitives, and then it does not require learning and
adopting new interfaces for agents aiming to exploit it:
all the new features are at the level of the coordination
medium programming. This in particular implies that
the new model can be introduced in existing systems,
exploiting the new temporal features without the need to
change existing agents.

• “The hills are alive” — Coordination artifacts with
temporal capabilities can be suitably exploited to model
and engineerliving environments, i.e. environments which
spontaneously change with some kind of transformations,
due to the passage of time. A well known example
is given by environments in the context of stigmergy
coordination approaches with multi-agent systems [12];
in this context, the pheromones (part of the agents –
ants – environment) evaporate with the passing of time
according to some laws which heavily condition the
emerging coordination patterns. Tuple centres can be
exploited then to model and enact the living environment:
tuples can represent pheromones (placed to and perceived
from the environment by mean of the basic coordination
primitives), and tuple centre behaviour can embed the
rules describing how to transform pheromones with the
passage of time.

Concerning the implementation of the model, the tuple centre
centralisation vs. distribution issue arises. The basic tuple cen-
tre model is not necessarily centralised: however, the extension
provided in this work — devising out a notion of time for
each medium — leads quite inevitably to realise tuple centres
with a specific spatial location. This is what already happens
in TuCSoN coordination infrastructure, where there can be

multiple tuple centres distributed over the network, collected
and localised in infrastructure nodes. It is worth mentioning
that this problem is not caused by our framework, but is
inherent on any approach aiming at adding temporal aspects
to a coordination model.

However, according to our experience in agent based dis-
tributed system design and development, the need to have a
distributed implementation of individual coordination media is
a real issue only for very specific application domains. For the
most part of applications, the bottleneck and single point of
failure arguments against the use of centralised coordination
media can be answered by a suitable design of the multi-agent
system and an effective use of the coordination infrastructure.
At this level, it is fundamental that a software engineer would
know the scale of the coordination artifacts he is going to use,
and the quality of service (robustness in particular) provided
by the infrastructure.

V. RELATED WORKS AND CONCLUSION

The contribution provided by this work can be generalised
from tuple centre to — more generally — the design and
development of general purpose time-aware coordination arti-
facts in multi-agent systems [10].

Outside the specific context of coordination models and
languages, the issue of defining suitable languages for speci-
fying the communication and coordination in (soft) real time
systems have been studied for long time. Examples of such
languages are Esterel [1] and Lustre [2], both modelling
synchronous systems, the former with an imperative style,
and the latter based on dataflow. In coordination literature
several approaches have been proposed for extending basic
coordination languages with timing capabilities. [7] introduces
two notions of time for Linda-style coordination models,
relative time and absolute time, providing different kind of
features. Time-outs have been introduced in JavaSpaces [4]
and in TSpaces [16].

The approach described in this work is quite different from
these approaches, since it extends the basic model without
altering the basic Linda model from the point of view of the
primitives, but acting directly on the expressiveness of the
coordination media. Also, it does not provide specific time
capabilities, but — following the programmable coordination
media philosophy — aims at instrumenting the model with the
expressiveness useful for specifying any time-based coordina-
tion pattern.

The model has been implemented in the version 1.4.0 of
TuCSoN coordination infrastructure, which is available for
downloading atTuCSoN web site [14]. Ongoing work is
concerned with defining a formal operational semantics of
the extended model, consistent and compatible with the basic
one defined forReSpecT [9], [8]. The formal semantics is
important in particular to frame the expressiveness of the
model compared to existing models in literature concerned
with timed systems, and to explore the possibility of building
theories and tools for the verification of formal properties.

baldoni
84

Future work will stress the approach with the engineering
of real world application domain involving time in the coor-
dination activities.

REFERENCES

[1] G. Berry and G. Gonthier. The esterel synchronous programming
language: Design, semantics, implementation.Science of Computer
Programming, 19(2):87–152, 1992.

[2] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. Lustre: a declarative
language for real-time programming. InProceedings of the 14th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages,
pages 178–188. ACM Press, 1987.

[3] E. Denti, A. Natali, and A. Omicini. On the expressive power of a
language for programming coordination media. InProc. of the 1998
ACM Symposium on Applied Computing (SAC’98), pages 169–177.
ACM, February 27 - March 1 1998. Track on Coordination Models,
Languages and Applications.

[4] E. Freeman, S. Hupfer, and K. Arnold.JavaSpaces: Principles, Patterns,
and Practice. The Jini Technology Series. Addison-Wesley, 1999.

[5] D. Gelernter. Generative communication in Linda.ACM Transactions
on Programming Languages and Systems, 7(1):80–112, January 1985.

[6] M. Huhns and L. M. Stephens. Multiagent systems and societies of
agents. In G. Weiss, editor,Multiagent Systems – A Modern Approach
to Distributed Artificial Intelligence, pages 79–118. MIT Press, 1999.

[7] J.-M. Jacquet, K. De Bosschere, and A. Brogi. On timed coordination
languages. In D. Garlan and D. Le Métayer, editors,Proceedings of the
4th International Conference on Coordination Languages and Models,
volume 1906 ofLNCS, pages 81–98, Berlin (D), 2000. Springer-Verlag.

[8] A. Omicini and E. Denti. FormalReSpecT. In A. Dovier, M. C. Meo,
and A. Omicini, editors,Declarative Programming – Selected Papers
from AGP’00, volume 48 ofElectronic Notes in Theoretical Computer
Science, pages 179–196. Elsevier Science B. V., 2001.

[9] A. Omicini and E. Denti. From tuple spaces to tuple centres.Science
of Computer Programming, 41(3):277–294, Nov. 2001.

[10] A. Omicini, A. Ricci, M. Viroli, C. Castelfranchi, and L. Tummolini.
Coordination artifacts: Environment-based coordination for intelligent
agents. In N. R. Jennings, C. Sierra, L. Sonenberg, and M. Tambe,
editors,3rd international Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2004), volume 1, pages 286–293, New
York, USA, 19–23 July 2004. ACM.

[11] A. Omicini and F. Zambonelli. Coordination for Internet application
development.Autonomous Agents and Multi-Agent Systems, 2(3):251–
269, Sept. 1999. Special Issue: Coordination Mechanisms for Web
Agents.

[12] V. D. Parunak. ’Go To The Ant’: Engineering principles from natural
agent systems.Annals of Operations Research, 75:69–101, 1997.

[13] R. G. Smith. The contract net protocol: High-level communication
and control in a distributed problem solver. InProceedings of the 1st
International Conference on Distributed Computing Systems, pages 186–
192, Washington D.C., 1979. IEEE Computer Society.

[14] TuCSoN home page.http://lia.deis.unibo.it/research/
TuCSoN/ .

[15] M. Viroli and A. Ricci. Instructions-based semantics of agent mediated
interaction. In N. R. Jennings, C. Sierra, L. Sonenberg, and M. Tambe,
editors,3rd international Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2004), volume 1, pages 102–110, New
York, USA, 19–23 July 2004. ACM.

[16] P. Wyckoff, S. W. McLaughry, T. J. Lehman, and D. A. Ford.
T Spaces. IBM Journal of Research and Development, 37(3 - Java
Techonology):454–474, 1998.

baldoni
85

Abstract— In this paper we describe one of the results of the

research activities that have been conducted by an interdisciplinary
research group composed by computer scientists and economists
during the Exystence Thematic Institute on “Regional Innovation
Systems and Complexity” (Wien, September 2004). The main aim
of work is to apply the Multilayered Multi Agent Situated Systems
(MMASS) to model socio-economic processes in residential and
industrial development. Some of the group members have
previously experienced in modeling this type processes according to
a microeconomic agent-based approach (and they have already
developed a simulation system). The specific model we considered
in this work assumes that commuter traffic in urban regions can be
studied as an emergent phenomenon of the decisions of individual
heterogeneous agents (i.e. households decide on residence, firms on
location). We will show that the adoption of the MMASS approach
provides modelers with the necessary expressive power that the
problem requires and, at the same time, it allows to obtain a model
that is simpler both to be developed and to be used. The typical use
of this type of model is, as in the case we describe, to develop a
simulation system that implements it. Thus, a software tool (like the
one provided by MMASS) that allows to design and develop
simulations can be fruitfully exploited by domain experts that are
interested in model domain validation and domain analysis. In this
paper we report the first phase of one of the researches that will be
conducted during a research framework that involved the Austrian
Research Center Seibersdorf (ARCS) and the Department of
Computer Science, Systems and Communication (DISCo) of the
University of Milano-Bicocca.

Index Terms—MAS-based modeling of complex system,
complex system in economics and land use, MMASS modeling

I. INTRODUCTION
HIS paper reports a research activity that has been

conducted during the Thematic Institute “Regional

Manuscript received November 2, 2004.
S. Manzoni is with the Department of Computer Science, Systsems and

Communication (DISCo) at the University of Milano-Bicocca (e-mail:
manzoni@disco.unimib.it).

A. Kauffman and A. Reseitarits are with the Systems Research
(technology-economy-environment department) at the Austrian Research
Center Seibersdorf (ARCS).

Innovation Systems and Complexity” within the Exystence
framework (http://www.complexityscience.org). The working
group was composed by computer scientists and economists
and they collaborated in order to define a common framework
where to conduct a joint research on complex systems that
could be fruitful and interesting for both the involved research
disciplines.

The main objectives of this collaboration can be summed up

as follow:
- Investigation on the notion of agents in microeconomics

and its classification according to concepts and notions
that are traditionally considered by agent research in
computer science (i.e. agent architectures and behavioral
models, interaction models within Multi-Agent Systems,
relationship between agents and their surrounding
environment, …).

- Investigation on the use of agent-based simulations in
economics. This part of the work concerns an overview of
the main motivations and goals that bring economists in
developing software simulation systems in their
researches and work (e.g. model validation, prevision,
analysis, and so on). Moreover, particular attention is paid
to the identification of the set of requirements and tools
from the viewpoint of system developers (e.g.
computational models, software platforms) and of
simulation users (e.g. analysis approaches and tools).

- Definition of a common framework starting from
analogies and differences emerged from the analysis of
the different use of the notion of agents and interactions
within computer science and economics. The common
framework aims at concerning the conceptual, modeling,
as well as computational point of views.

This working group aims to the definition of a set of

methodological and software tools to support researchers and
experts in landuse management in their research activities. In
order to reach this long-term research goal, the working group
has identified a set of activities to be conducted together or by
group members individually. On one hand, a set of activities

Commutation as an Emergent Phenomenon
of Residential and Industrial Location
Decisions: from a Microeconomic to a

MMASS-based Model

Alexander Kaufmann(°),Sara Manzoni(*), Andreas Resetarits(°)

T

baldoni

will be conducted by the members of the working group
individually (even if a coordinated way). An example of these
individual activities consists in overviewing available
computational models (e.g. agent-based, based on Multi Agent
Systems and Cellular Automata or their composition, and so
on), focusing in previous experiences in adopting agent
approach in Economics. The main aim of this activity is to
formalize a set of fundamental simulation requirements that
are coming from Economics (in particular from new emerging
approaches to study complex systems from an economic
viewpoint).

On the other hand, this paper will describe one of the
activities that will be conducted by interdisciplinary working
groups (here we report the one that has been conducted during
the Wien Thematic Institute hosted by ARCS). The aim of this
activity was to experiment the application of the Multilayered
Multi-Agent Situated Systems [Bandini et al., 2002] to model
socio-economic processes in residential and industrial
development. Some of the group’s members have previously
experienced in modeling this type of processes according to
an agent-based approach and a microeconomic simulation tool
has already been developed. The specific model we
considered in this work assumed and demonstrated that
commuter traffic in urban regions can be studied as an
emergent phenomenon of the decisions of individual
heterogeneous agents (i.e. households decide on residence,
firms on location).

In this paper we will show that the adoption of the MMASS
approach provides modelers with the necessary expressive
power that the problem requires and, thus, allows representing
the commutation problem as an emergent phenomenon of the
residential-industrial complex systems composed by situated
interacting agents. At the same time, the MMASS allows to
obtain a model that is simpler to be developed, updated and,
thus, used. The typical use of this type of model is, as in the
case we describe, to develop a simulation system that
implements it. Thus, after having introduced field data about
the area that is object of the study (i.e. the Wien area in this
case), domain experts analyze the simulation runs in order to
reach the simulation aims (maybe, for instance, the validation
of the model itself, or the prevision or explanation of known
phenomena). During this process, very often, the originally
developed model may require to be updated. In fact, different
versions of a model are usually developed, enriching first
versions with previously not considered elements, additional
parameters that had previously been disregarded, ignored or
unknown, and so on.

The paper is organized as follow: first, we draw an
overview about the adoption of distributed approaches (based
on agents, MAS and CA) in economic theory (focusing in
land use and traffic simulation contexts). Then, we will briefly
overview the agent-based microeconomic model that has been
previously proposed to study commuting as an emergent
phenomenon, and we propose a model of the same problem
according to the MMASS approach, pointing out the
motivations of the adoption of MMASS among other MAS-

based modeling tools. Finally the paper will end with some
considerations on this proposal.

II. WHY AN AGENT-BASED MODEL?
Over much of its history economic theory has been

preoccupied with explaining the optimal allocation of scarce
resources. As a consequence of the notion of an optimal
solution equilibrium between supply and demand of goods has
become the central concept in economics. In order to be able
to analyze partial and total equilibrium models, they have to
be extremely simplified. It is especially the, usually necessary,
assumption of homogeneity (i.e. a single agent called
‘representative’) that misses important aspects of economic
reality. Traditional economics focuses primarily on the market
as a selection mechanism, but neglects the market as a cause
of variation and innovation. Of course, there have been many
theories (e.g. [Schumpeter, 1999]) dealing with the evolution
of economic systems, but they always lacked the rigor of
equilibrium economics. For evolutionary models new methods
were required, and agent-based modeling approach suggests
interesting research directions. This approach is certainly
adequate for analyzing economic models characterized by
heterogeneity of agents, bounded and contradicting
rationalities of agents, strategic behavior, imperfect
information, imperfect competition, and other factors leading
to out-of-equilibrium dynamics [Arthur et al., 1997]. Agent-
based modeling helps to understand the economy as a co-
evolutionary system, linking the economic macrostructure to
the microeconomic behavior of individual agents (Batten,
2000). However, for a really evolutionary model of the
economy, it is not sufficient to build agent-based models only
to explain the emergence and change of relations between
agents (e.g. as suggested by network models). Agent-based
modeling has also to contribute to the understanding of the
emergence and change of behavioral norms, organizations and
institutions, which, at present, seems to be a much more
difficult task [Tesfatsion, 2003].

Self-organization models, used to explain urban
development or traffic flows, are not new. Until now, most
models have focused on one of these issues only. So far there
have been only few attempts to deal with urban development
and traffic flows in a combined model in order to understand
their mutual interdependence. As far as urban development is
concerned, the limits of equilibrium-based approaches have
led to an increased interest in simulation which is better able
to capture the complex dynamics of interactions between
heterogeneous agents. Cellular Automata (CA) have been the
most frequently applied method [Portugali, 1999]. The fact
that already simple rules can lead to complex dynamics and
the direct applicability on spatial processes have made CA to a
widely used tool for analyzing patterns of urban development
that are characterized by self-organization. One of the first
CA-models in economic research analyzed the emergence of
social segregation caused by the preference of people to live
in the neighborhood of other people belonging to the same

baldoni
87

social class [Schelling, 1969]. Other CA-models concerned
land use patterns and their change over time (e.g. [Colonna et
al., 1998]). As far as traffic is concerned, simulation has been
used as a tool to improve traffic planning and management of
traffic flows. For this purpose CA as well as MAS-based
models have been proposed (e.g. [Raney et al., 2002];
[TRANSIMS]). Agent-based traffic simulation models are
especially useful, because they enable the identification of
each individual car, truck, bike or pedestrian. As a
consequence, it is possible to analyze individual objectives,
route plans, search and decision strategies [Batten, 2000] as
well as effects of learning and changes of strategies on the
traffic flows [Raney et al., 2002].

Within our interdisciplinary research, we claim that
economy researches requires dedicated and more specific
tools (both at the methodological and software levels) to be
applied to this growing and interesting direction. Moreover,
we claim that researches and studies on agents in computer
science are ready to provide these modeling and
computational tools in order to fruitfully support economy
theory.

III. THE MICROECONOMIC MODEL
The microeconomic model by which this work has been

inspired is based on the decisions of individual heterogeneous
agents: households decide on residence, firms on location.
Commuting is both a result of decisions of individual agents
(i.e. an emergent feature in the urban system), and a feedback
factor influencing the decisions of households and firms. The
here described model focuses on self-organization of
households and firms, while other agents (e.g., regulation of
land use by municipalities) are taken as given.

A. Residential and industrial choice of location and
commuter flows

The model consists of two classes of agents: households of
employed persons and firms. Both classes are heterogeneous
with respect to preferences on location. Specific types of
households prefer given residential locations as well as
specific firms prefer given sites. They regard different
location factors and they attribute different weights to certain
factors. In particular, on one hand households looking for
residence take the following factors into account:
- the residential density at their location and in the

surroundings;
- the availability of private services at their location and in

the surroundings;
- the green space at their location and in the surroundings;
- the distance to the city centre.
On the other hand, firms looking for their optimal location
focus on the following factors:
- the industrial density (as an indicator for the price of a

certain location) at their location and in the surroundings;
- the ratio between demand and competitors at their

location and in the surroundings;

- the proximity of related firms (suppliers, services,
customers) within a cluster at their location and in the
surroundings;

- the distance to the next transport node (highway exit,
railroad station).

In the model the notion of distance between two locations
does not indicate the topological distance, but it is given by an
estimate of the time needed to reach a location from the other
one taking into account the type of available connections (e.g.
roads, underground line, train line). In the model
experimentations these values have been computed according
to collected field data and considering the availability of the
different transportations in the experimentation territory (i.e.
Wien urban territory).

The behavior of households in trying to find out their

residential location is based on a location utility function and a
cost function which considers commuting and relocation in
case of changing residence. Commuting is a result of the
choice of residence and the randomly determined new job
opportunities or losses. Employed persons and jobs,
accordingly, are differentiated by levels of qualification, so
that not any job is accessible for every employed person. The
behavior of firms is based on their location utility and a cost
function of relocation in case of changing the site.

Combining the decisions on residential and industrial

locations, as well as the random job matching, leads to
commuter flows between the locations which, in turn, enter
the residential choice of households. Further feedback
(represented in Figure 1) concerns the change in residential
and industrial density, both being factors on which households
and firms base their respective decision-making processes.
Moreover, other factors that influence residential and
industrial development and commutation are determined
exogenously (for instance: location preferences of firms,
changes in residential preferences life cycle of households,
changes in job opportunities and employment, zoning and
restrictions of land use, provision of traffic infrastructure).

The chart in Figure 2 gives a short overview of the whole
microeconomic model. In the following sections we describe
its modules in more detail.

Figure 1: Influences and feedbacks between householdders, firms and
commuting

baldoni
88

Figure 2. Structure of the model

B. Endogenous processes
As previously introduced, there are two different types of

location decisions performed by the two types of agents that
the model considers: households decide on their residence,
while firms on the production site. Information needed for
both decisions can be either perfect or distance-dependent. In
a first model version, we supposed agents to have perfect
information all over the urban region; in a second one, a
distance discount parameter (i.e. σ) has been introduced in
order to let agent sensitivity to information decreases with the
distance.

Using information regarding the relevant location factors
any household maximizes its residential utility and takes into
account commuting and relocation costs (Table 1 lists and
schematically describes all the involved parameters):

H: α R + β S + δ G + γ Dic – (C3 + C1) → max

TABLE 1: RESIDENTIAL LOCATION FACTORS

Households H H
Residential
density

R* Ri = Hi/Bi, R*I = Ri + Σj Rj e^-σ Dij,
normalized: % of R’

Private services
(relative supply)

S*/H S*I = Si + Σj Sj e^-σ Dij, normalized: %
of H

Green space G* G*I = Gi + Σj Gj e^-σ Dij, normalized: %
of A

Distance between
I and j

Dij

Downtown
distance

Dic normalized: % of Dmax

Residential
relocation cost

C1

Residential area Bi

On the contrary, according to the information regarding the
relevant location factors (either in perfect or distance-
dependent information versions) any firm maximizes its
location utility considering relocation cost (see Table 2):

F: ϕ I + λ P + µ X + π Din – C2 → max

TABLE 2: INDUSTRIAL LOCATION FACTORS

Firms F F
Industrial density I* Ii = Fi/Mi, I*i = Ii + Σj Ij e^-σ

Dij,
normalized: % of I’

Demand / competition ratio P* P*i = (Hi + Σj Hj e^-σ Dij) /
(Si + Σj Sj e^-σ Dij)

Cluster (relative supply) X*/F X*I = Xi + Σj Xj e^-σ Dij,
normalized: % of F

Distance between I and j Dij
Transport node distance Din Normalized: % of Dmax
Industrial relocation cost C2
Industrial area Mi

Both types of agents, households as well as firms, are

heterogeneous regarding their location preferences
(households also with regard to their qualification). According
to their type (i.e. ‘household’ or ‘firm’), agents apply the
above utility function, but they differ with respect to the
weights associated to each location factor (see, respectively,
Table 3 and Table 4). Symbols in Tables 3 and Table 4
indicate the relevance of each parameter and the type of its
effects (i.e. either positive or negative).

TABLE 3: CLASSES OF HOUSEHOLDS AND PREFERENCES

 Residential preferences
 α R β S δ G γ Dic

Highly qualified suburbanites (Q=1) -- 0 ++ -
Highly qualified urbanites (Q=1) + ++ 0 ++
Less qualified suburbanites (Q=2) - 0 ++ -
Less qualified urbanites (Q=2) 0 + 0 +

TABLE 4: CLASSES OF FIRMS AND PREFERENCES

 Location preferences
 ϕ I λ P µ X π Din

Private services (S) 0 ++ + 0
Cluster firms (X) - 0 ++ -
Large scale manufacturing (V) -- 0 0 -
Utilities (U) 0 0 0 0

In order to solve conflicts in case of density constraints, in

the here presented model, “First come – first locate” strategy
with random order (i.e., reordering of agents after each step)
was applied. Alternative strategies such as comparison of the
added value (e.g. those with the highest value are allowed to
locate, the others either stay where they are), or have to
choose second-/third-best locations, are possible but have not
still been applied.

C. Exogenous processes
All the actual parameters and several parameters for the

model experimentation have been determined exogenously
(several sets of parameters are tested in the simulation runs).
This concerns residential preferences, industrial location
preferences, generation and loss of jobs, zoning and maximum
density and transport infrastructure.

Industrial location preferences are constant; they do not
change during the simulation period. On the other hand,
residential preference for suburban or urban locations changes

baldoni
89

probabilistically according to an assumed household life cycle
(see Table 6). When a household reaches age 60 we assume
that it retires, stops commuting and does not change location.
Transition probability is estimated according to the frequency
of households with and without children per age class (mean
value of all municipalities is more than one municipality is
considered). Moreover, the qualification level does not change
according to age.

TABLE 6: TRANSITION PROBABILITIES OF HOUSEHOLDS

 Probability per age class

 -30 31-45 45-60

Highly
qualified
suburbanites

→ Highly
qualified
urbanites

low very low Negligible

Highly
qualified
urbanites

→ Highly
qualified
suburbanites

low very high High

Less qualified
suburbanites

→ Less
qualified
urbanites

very low Negligible Negligible

Less qualified
urbanites

→ Less
qualified
suburbanites

Negligible low very low

The generation and loss of jobs is defined by the respective

national industrial activity. The latter changes randomly
within a specific industry the job opportunities offered by a
certain firm and, after matching with people looking for jobs,
it leads to the actual employment of any firm.

As far as spatial information is concerned, the regulation of
land use (zoning), the upper limits of density and the
provision of infrastructure (traffic capacity) are determined
exogenously and may change discretely over time

IV. THE MMASS-BASED MODEL
Among models based on Multi Agent Systems (MAS

[Ferber, 1999]), within our research framework we decided to
adopt the Multilayerd Multi Agent Situated Systems (MMASS
[Bandini et al., 2002]. The main motivations of this decision
are strictly related to problem features and peculiarities (i.e.
relevance of spatial features of agent environment, strong role
of agent situatedness in their behaviors and interactions …)
that we will overview in the following section. Then our
proposal of applying the MMASS approach to model the
above described problem1 will be described.

A. Why MMASS?
Some features that we identified as interesting in relation to

the considered problem are:
- It explicitly describes the spatial structure of agent

environment (i.e. space): a multilayered network of sites
where each node can host an agent, and represents a part

1 A detailed description of the MMASS approach is out the scopes of this
paper. Details on the model can be found in [Bandini et al., 2002]; for some
examples of its applications within the research context of modeling and
simulation of complex systems see [Bandini et al., 2004a] and [Bandini et al.,
2004b].

of the distributed medium for the diffusion of signal
emitted by agents to interact (e.g. to provide information
to other agents).

- MMASS agents can be characterized by heterogeneous
behaviors that are space-dependant: an action is
performed by an agent since it belongs to some given
type, it is currently characterized by some given state and
it is situated in a given spatial location.

- Interactions between MMASS agents are heterogeneous
and space-dependant (i.e. the distance between agents is
an element that determines its nature – e.g. synchronous
vs asynchronous, direct vs indirect, local vs at-a-
distance):
o MMASS agents interact according to direct

interaction mechanism (i.e. MMASS reaction) when
they are situated in adjacent positions and have
previously agreed to synchronously change their
states;

o not adjacent agents can interact according to an
indirect interaction mechanism based on emission-
diffusion-perception of signals (i.e. MMASS fields)
emitted by agents themselves

- Multilayered spatial structure (i.e. multiple situated MAS
can coexist and interact): MMASS allows the modeler to
exploit multiple layers in order to represent a high-
complexity system (like the one of the reference problem)
as composed by multiple interacting systems of lower
complexity. Heterogeneous aspects that contribute to the
behavior and dynamics of the whole system can be
described by distinct MAS situated in distinct (but
interconnected) layers of the spatial structure

B. The proposal
In order to apply the MMASS approach to represent the

above described problem model, we first distinguished
territorial elements (i.e. territory) from those entities that
populate the territory and behave according to their type, their
state and the state of the local environment they are currently
situated.

We describe a territory as a discrete set of locations where
either residential or industrial buildings are allowed (other
location types have not been considered). A suitable
representation of the territory set of locations in a graph-like
structure (see the top of Figure 3), where each node of the
graph represents a territory area (and its type), and graph
edges represent connections between territory areas. In this
representation, an edge exists between two locations only
when some transportation infrastructure (e.g. road, train line)
exists between them. Useful available information can be
associated to each graph node and edge. For instance, edges
can be labeled with information about the type of available
transportation, the average number of cars per hour when it
represent a road, mean delay time if it represents public
transportations, and so on.

In adopting this type of representation of the territory, we
have adopted a first feature of the MMASS model that is, the

baldoni
90

possibility to describe the structure of the environment that is
populated by a set of active entities (i.e. agents). MMASS
agents can represent thus those system entities that perform
some kind of decision-making process (according to their
features and state and the ones of the environment they are
situated in).

Figure 3. Multi-layered representation of the territory

The second feature of the MMASS approach that we

exploited concerns the possibility to represent the
environment where agents are situated according to a
multilayered structure. Thus, given a territory, we represent it
according to a structure composed by three layers. Two layers
(the ones on the top and bottom of Figure 3) are devoted to
represent those territorial areas in which, respectively,
residential and industrial buildings are allowed. Each layer
can be seen as a sort of “view on the territory graph
representation” where only subsets of the graph nodes are
considered.

The main motivation of this choice is related to the fact
that, in this way, at residential and industrial layers we can
represent two distinct complex sub-systems (i.e.
“Householders’ System” and “Firms’ System” respectively).
In fact the effect of householders’ decisions, first of all, occurs
within the system they are part of, but at the same time,
householders and firms belong to two different complex
systems. The third sub-system we considered is represented by
“Commuting”. We will not describe here into details the
behavior, architecture and interaction abilities of agents that
constitute each system since they are mainly based on the
firms’ and householders’ models that have been described in
Section 2.

According to system description (see Section 2 and Figure

1), we have identified three main influences that can occur
between these three sub-systems (Figure 4):
1. Householders’ and Firms’ systems Commuting:

commuting is the result of decisions of householders and
firms;

2. Decisions in Firms’ System Householders’ System:

decisions in the Firms’ System influences the Householders’
System since a firm may move to a location that may cause a
change in decisions of some householders. This influence is
not bidirectional since the availability of ‘manpower’ in the
surroundings has not been considered by domain experts as
a fundamental factor in firms’ decisions-making process.

3. Commuting Householders’ System: the level of
commuting is one of the main elements in householders’
decisions (while it is not a factor influencing firms’
decisions on their location).

Figure 4. Influences between Systems

C. Some observations on the proposal
From the MMASS-based model description, we can draw

some first observations and conclusions about the suitability
of the adoption of the MMASS approach for the considered
problem. In fact MMASS allows modelers to
- represent all the elements of the microeconomic reference

model (that already demonstrated to fruitfully allow to
represent the considered problem);

- better separate different elements involved in the complex
system dynamics (e.g. territorial and decisional ones);

- explicitly represent influences, feedbacks and interactions
between sub-systems;

- simpler update, and incrementally improve, the model.
Moreover, MMASS, despite other MAS-based modeling

approaches, allows domain experts to simpler develop
simulation software in order to experiment, validate, and
update the model according to the problem requirements. In
fact, a simulation platform for models based on MMASS is
already available [Bandini et al., 2004c].

V. CONCLUSIONS AND FUTURE WORKS
In this paper, we have described a microeconomic agent-

based model of a complex system where commuting is
strongly involved in system dynamics (it is the result of
householders and firms decisions and, at the same time, it is
involved in their decisions). We have not included in this
paper a discussion on the quality of this model. For this work,
this model is the reference model and it is out of the scopes of
this paper to validate it and verify its suitability.

baldoni
91

Thus, we have proposed a MMASS-based model of the
same problem (Section 3). The aim of this work was not to
propose a modeling approach that improves the suitability or
validity of the microeconomic model. On the contrary, we
have proposed this modeling approach since it provides
interesting features related to the reference scenario and to the
goals of the microeconomic model. The main features of
MMASS approach that can be useful in this work have been
listed and some of them have been exploited in its application.

The here presented work is still ongoing and next activities
will concern:
- specification of agent behavioral models: this work will

be performed according to the behaviors of agents
described by the microeconomic model (see households’
and firms’ utility functions);

- detailed specification of interactions and influences
between sub-systems;

- development of a simulation system based the MMASS-
based model: in performing this activity, we will exploit
the tools provided by the MMASS platform [Bandini et
al., 2004c] that will allow us to produce a simulation tool
in the short time.

REFERENCES
[Arthur et al., 1997] Arthur, W.B., Durlauf, S.N., Lane, D.A. (eds.), The

economy as an evolving complex system II, Perseus Books, 1997
[Bandini et al., 2002] Bandini, S., S. Manzoni, C. Simone, Heterogeneous

Agents Situated in Heterogeneous Spaces, Applied Artificial
Intelligence, Vol. 16, n. 9-10, 2002, pp. 831-852.

[Bandini et al., 2004a] Bandini, S., S. Manzoni, G. Vizzari, Multi-Agent
Approach to localization Problems: the Case of Multilayered Multi-
Agent Situated System, Web Intelligence and Agent Systems
International Journal, IOS PRESS, 2004. (in press).

[Bandini et al., 2004b] Bandini, S., S. Manzoni, G. Vizzari, Situated Cellular
Agents: A Model to Simulate Crowding Dynamics, IEICE
TRANSACTIONS on Information and Systems, Vol.E87-D(3), march
2004, pp.669-676.

[Bandini et al., 2004c] Bandini, S., S. Manzoni, G. Vizzari, Towards a
platform for MMASS based simulations: focusing on field diffusion, To
appear in Applied Artificial Intelligence, Taylor & Francis, 2004.

[Batten, 2000] Batten, D.F., Discovering artificial economics. How agents
learn and economies evolve, Westview Press, 2000.

[Colonna et al., 1998] Colonna, A., di Stefano, V., Lombardo, S.T., Papini, L.,
Rabino, G.A., L.A.U.D.E.: Learning automata for urban development
exploration. The case study of Rome urban system, ERSA-conference
1998, Vienna, 1998.

[Ferber, 1999] Ferber, J., Multi-Agent Systems: An Introduction to distributed
artificial intelligence, Addison-Wesley, Harlow (UK), 1999.

[Portugali, 1999] Portugali, J., Self-organization and the city, Springer, 1999.
[Raney et al., 2002] Raney, B., Cetin, N., Völlmy, A., Nagel, K., Large scale

multi-agent transportation simulations, ERSA-conference 2002,
Dortmund, 2002.

[Schelling, 1969] Schelling, T.S., Models of segregation, American Economic
Review, 59(2), 488-493, 1969.

[Schumpeter, 1939] Schumpeter, J.A., Business cycles. A theoretical,
historical, and statistical analysis of the capitalist process, McGraw-
Hill, 1939.

[Tesfatsion, 2003] Tesfatsion, L., Agent-based computational economics. ISU
Economics Working Paper no. 1, 2003.

[TRAweb] Transportation analysis simulation system (TRANSIMS),
http://transims.tsasa.lanl.gov/, http://www.transims.net/.

baldoni
92

Structuring Organizations by Means of Roles
Using the Agent Metaphor
Guido Boella

Dipartimento di Informatica - Università di Torino - Italy
Leendert van der Torre

CWI - Amsterdam - The Netherlands

Abstract— In this paper we propose to define the organizational
structure of multiagent systems using the agent metaphor. The
agent metaphor is not only used to model software agents,
but also social entities like organizations, groups and normative
systems. We argue that mental attitudes can be attributed to
them - beliefs, desires and goals - and also an autonomous and
proactive behavior in order to explain their behavior. We show
how the metaphor can be applied also to structure organizations
in functional areas and roles, which are described as agents too.
Thus, the agent metaphor can play a role similar to the object
oriented metaphor which allows structuring objects in component
objects. Finally, we discuss how the agent metaphor addresses
the problems of control and communication in such structured
organizations.

I. I NTRODUCTION

Software engineering is used to provide models and tech-
niques to develop complex software system. It is necessary
to make it easier to handle the complexity arising from the
large number of interactions in a software system [1]. Models
and techniques allow expressing knowledge and to support the
analysis and reasoning about a system to be developed. As the
context and needs of software change, advances are needed to
respond to changes. For example, today’s systems and their
environments are more varied and dynamic, and accommodate
more local freedom and initiative [2].

For these reasons, agent orientation emerged as a new
paradigm for designing and constructing software systems
[1], [2]. The agent oriented approach advocates decomposing
problems in terms of autonomous agents that can engage in
flexible, high-level interactions. In particular, this is anatural
representation for complex systems that are - as many real
systems are - invariably distributed [1]. Compared to the still
dominant software paradigm, namely object orientation, agent
orientation offers a higher level of abstraction for thinking
about the characteristics and behaviors of software systems.
It can be seen as part of an ongoing trend towards greater
interactivity in conceptions of programming and software
system design and construction. Much like the concepts of
activity and object that have played pivotal roles in earlier
modelling paradigms - Yu [2] argues - the agent concept can
be instrumental in bringing about a shift to a much richer,
socially-oriented ontology that is needed to characterizeand
analyze today’s systems and environments.

The shift from the object oriented perspective to the agent
oriented one is not, however, without losses. Booch [3] iden-
tifies three tools which allow coping with complexity: “1)

Decomposition: the most basic technique for tackling any
large problem is to divide it into smaller, more manageable
chunks each of which can then be dealt with in relative
isolation. 2) Abstraction: the process of defining a simplified
model of the system that emphasises some of the details or
properties. 3) Organisation: the process of identifying and
managing interrelationships between various problem solving
components.”

In the agent oriented approach, however, decomposition,
abstraction and organization are not yet addressed with the
same efficacy as in the object oriented approach, where an
object can be composed of other objects, which can be ignored
in the analysis at a certain level of abstraction. The agent
metaphor is sometimes proposed as a specialization of the
object metaphor [4]: agents do not only have - like objects
- a behavior which can be invoked by the other agents,
but they also autonomously act and react to changes in the
environment following their own goals and beliefs. In contrast,
the component view of objects in the object metaphor could
to be lost. The property of agents, i.e., sociality, closestto
the property allowing the aggregation of objects to form
more complex objects is not enough to overcome the gap. In
particular, multiagent systems offer as aggregation methods the
notion of group or of organization. According to Zambonelli
et al. [5] “a multiagent system can be conceived in terms of
an organized society of individuals in which each agent plays
specific roles and interacts with other agents”. At the same
time, they claim that “an organization is more than simply
a collection of roles (as most methodologies assume) [...]
further organization-oriented abstractions need to be devised
and placed in the context of a methodology [...] As soon as the
complexity increases, modularity and encapsulation principles
suggest dividing the system into different suborganizations”.
According to Jennings [1], however, most current approaches
“possess insufficient mechanisms for dealing with organisa-
tional structure”. Moreover, what is the semantic principle
which allows decomposing organizations into suborganizations
must be still made precise.

The research question of this paper, thus, is: how can the
agent oriented paradigm be extended with a decomposition
structure isomorphic to the one proposed by the object oriented
paradigm? How can a multiagent system be designed and
constructed as an organization using this structure?

The methodology we use in this paper is a normative
multiagent framework we proposed in [6], [7], [8], [9]. The

baldoni

basic idea of this framework is: agents attribute mental atti-
tudes, like beliefs, desires and goals, to the other agents they
interact with and also to social entities like groups, normative
systems, and organizations. Thus these social entities canbe
described as agents too, and at the same time, the components
of organizations, namely, functional areas and roles, can be
described as agents, as in the ontology we present in [7]. We
call themsocially constructed agents.

This paper is organized as follows. In Section II we discuss
the progress from object orientation to agents and socially
constructed agents. In Section III we present the formal
model and in Section IV we discuss the issue of control
and communication in an multiagent system structured as an
organization. A summary closes the paper.

II. FROM OBJECTS TO SOCIALLY CONSTRUCTED AGENTS

The trend in software and requirements engineering and in
programming languages paradigms has been from elements
that represent abstract computations towards elements that
represent the real world: from procedural to structured pro-
gramming, from objects to agents. Agent systems have no
central control authority, instead each agent is an independent
locus of control, and the agent’s task drives the control. Del-
egating control to autonomous components can be considered
as an additional dimension of modularity and encapsulation.
Intentional concepts such as goals, beliefs, abilities, commit-
ments,etc., provide a higher-level characterization of behavior.
One can characterize an agent in terms of its intentional
properties without having to know its specific actions in terms
of processes and steps. Explicit representation of goals allows
motivations and rationales to be expressed. The agent concept
provides a local scope, for reconciling and making tradeoffs
among competing intentionality, such as conflicting goals and
inconsistent beliefs. By adopting intentional modelling,the
networks of dependencies among the agents can be modelled
and reasoned about at a high level of abstraction. Moreover,
cooperation among agents cannot be taken for granted. Be-
cause agents are autonomous, the likelihood of successful
cooperation is contingent upon many factors. However, an
agent that exists within a social network of expectations and
obligations has behaviors that are confined by them. The
agent can still violate them, but will suffer the consequences.
The behavior of a socially situated agent is therefore largely
predictable, although not in a precise way.

Given that agents are nowadays conceived as useful abstrac-
tions for modelling and engineering large complex systems,
the need for a disciplined organizational principle for agent
systems emerges clearly in the same way as the formalizatoin
of the object decomposition principle does in the case of object
oriented systems.

One of the main features of the object perspective is that
objects are composed by other objects and that objects can be
replaced by other objects with the same properties (e.g., the
same interface). This is not entirely true for agents. According
to Jennings [1], “the agent oriented approach advocates de-
composing problems in terms of autonomous agents”, but no

further decomposition seems possible. To overcome this flat-
ness limitation, the organization metaphor has been proposed,
e.g., by [10], [5]. Organizations are modelled as collections
of agents, gathered in groups [10], playing roles [1], [11]
or regulated by organizational rules [5]. What is lacking is
a notion of organization as a first class abstraction which
allows decomposing into subproblems the problem which a
system wants to solve, using a recursive mechanism (as the
object decomposition is) until autonomous agents composing
a multiagent system are reached.

The desired solution is required to model at least simple
examples taken from organizational theory in Economics as
the following one. Consider a simple enterprise which is
composed by a direction area and a production area. The
direction area is composed by the CEO and the board. The
board is composed by a set of administrators. The production
area is composed by two production units; each production
unit by a set of workers. The direction area, the board, the
production area and the production units arefunctional areas.
In particular, the direction area and the production areas belong
to the organization, the board to the direction area,etc. The
CEO, the administrators and the members of the production
units areroles, each one belonging to a functional area, e.g.,
the CEO is part of the direction area.

This recursive decomposition terminates with roles: roles,
unlike organizations and functional areas, are not composed
by further social entities. Rather, roles are played by other
agents, real agents (human or software) who have to act as
expected by their role.

The object metaphor is not adequate to deal with such
a structure, because each entity can be better described in
terms of belief, desires and goals, and of its autonomous
behavior. We talk, e.g., about the decisions of the CEO, or
about the organization’s goal to propose a deal, about the
belief of the production area that the inventory is finished,
etc. Hence, at first sight, these entities can be described as
autonomous agents. But this is not sufficient, since the agent
metaphor does not account for the decomposition structure
of an organization relating it with its functional areas and
roles. Moreover, organizations, functional areas and roles do
not exist in the same sense as (human or software) agents do.
Thus, if we want to follow this intuition, the agent metaphor
must be extended. Inspired by Searle [12]’s analysis of social
reality we define organizations, functional areas and rolesas
socially constructed agents. These agents do not exist in the
usual sense of the term, but they are abstractions which other
agents describe as if they were agents, with their own beliefs,
desires and goals, and with their own autonomous behavior.
The argument goes as follows:

1) agents can attribute to other (human or software) agents
mental attitudes and an autonomous behavior to explain
how they work, regardless of the fact that they really
have any mental attitudes (theintentional stanceof
Dennett [13]);

2) according to Searle [12], agents create new social enti-
ties like institutions - e.g., money and private property -

baldoni
94

by means of collectively attributing to existing entities -
e.g., paper bills - a new functional status - e.g., money
- and new qualities.

3) if the new functional status is composed by mental
attitudes and autonomous behavior, the new entities are
described as agents:socially constructed agents.

4) hence, socially constructed agents,qua agents, can cre-
ate new socially constructed agents by attributing mental
attitudes to them, in turn.

Agents create organizations by collectively attributing them
mental attitudes; organizations, as socially constructedagents,
can create new social entities like functional areas and roles
which are the components of the organization. Functional
areas, as agents, can in turn apply the agent metaphor to create
subareas and further roles, and so on. Roles are descriptions
of the behavior which is expected by agents who, with their
own mental attitudes, play these roles: the role’s expected
behavior is described in terms of mental attitudes, since roles
are considered socially constructed agents. Modelling roles
by attributing them mental attitudes allows a more expressive
way to describe the expected behavior with respect, e.g., the
scripts proposed by Activity Theory [14]. In this manner,
we have a way to structure an organization in components
with an homogeneous character - since they are all agents -
in the same way as the object orientation allows structuring
objects by means of objects. An advantage of this way of
structuring an organization is that its components can be
described as agents with beliefs, desires and goals. Hence,
the same decomposition approach advocated by [1] is used
for structuring an organization: it is decomposed in a set of
autonomous agents: not only real ones, but socially constructed
agents like functional areas and roles; socially constructed
agents do not exist, but they are only used as abstractions
in the design analysis to structure an organization. At the end
of the process there are only human or software agents which,
to coordinate their behavior, behave as if they all attribute the
same beliefs, desires and goals to the organization. This isa
subjective approach to coordination [14].

Another reason why organizations, functional areas and
roles should be all considered as agents - and not simply
groups - is that they have private properties and agents
who are employed in them; so a department can possess a
building and machines, employ people,etc. Moreover they
are the addressees of obligations (e.g., to pay the employees),
permissions (e.g., a role can use a certain machine) and powers
(e.g., the role of CEO can take decisions). This is what is also
meant by the law when such social entities are defined as
“legal persons”: they are considered persons with obligations
and rights [15]. Finally, organizations and functional areas,
as legal institutions, are normative agents themselves: they
are agents who can pose obligations on the roles and on the
employees, e.g., by giving orders to them, or endow them with
permissions and powers.

There is a difference with the decompositional view of the
object oriented perspective which must be noticed. The parts
of an object exist by themselves and the object itself exists

only as long as its (essential) parts exist. In contrast, in an
organization the perspective is reversed: the “components”
of the organization exist only as long as the organization
exists, while the organization itself can exist even without
its components. The role of CEO does not have sense if the
organization which the role belongs to does not exist anymore.
The reason is that an organization as a social entity has no
physical realization. The organization exists because of the
attribution of mental attitudes by the agents of a society.
In turn, functional areas and roles exist only as long as the
organization attributes mental attitudes to them. An important
consequence of this view is that an organization can restructure
itself while continuing to exist.

As [16], [10] claim, a multiagent system should not make
any assumption about the implementation of the agents. As
Yu [2] notices, the agent perspective does not mean necessary
that entities should be implemented with mental attitudes:

Agent intentionality is externally attributed by
the modeller. From a modelling point of view, inten-
tionality may be attributed to some entity if the mod-
eller feels that the intentional characterization offers
a useful way for describing and analyzing that entity.
For example, some entity that is treated as an agent
during modelling may end up being implemented
in software that has no explicit representation and
manipulation of goals,etc.

Socially constructed agents defined in terms of beliefs,
desires and goals are only an abstraction for designing the
system. Moreover, the behavior of roles is described by mental
attitudes, but this does not require that the agents playingroles
in the organizations are endowed with beliefs and motivations:
it is sufficient that their behavior conforms to that of the role
they are playing.

In Figure 1, we summarize the approach: the multiagent
system in the oval is composed of three real agents (boxes)
who collectively attribute beliefs (B), desires (D) and goals
(G) to the organization (parallelogram). The organization,
in turn, attributes mental attitudes to two functional areas
and functional areas to three roles. The organization and
the functional areas are attributed also norms (V), facts (f),
institutional facts (i) and decisions (the triangled).

III. T HE CONCEPTUAL MODEL

We introduce the conceptual model necessary to cope with
socially constructed agents: first the multiagent system with
the attribution of mental attitudes to agents, then the normative
system.

First of all, the structural concepts and their relations. We
describe the different aspects of the world and the relationships
among them by introducing a set of propositional variablesX

and extending it to consider also negative states of affairs:
L(X) = X ∪ {¬x | x ∈ X}. The relations between the
propositional variables are given by means of conditional rules
written asR(X) = 2L(X) × L(X): the set of pairs of a set
of literals built fromX and a literal built fromX, written as
l1∧ . . .∧ ln → l or, whenn = 0, ⊤ → l. The rules are used to

baldoni
95

MAS

f

i

G

D

B

d

f

i

G

D V

B

d

f

i

G

D V

B

d

f

i

G

D V

B

d

f

i

G

D

B

d

collective
attribution

f

i

G

D

B

d

fG

D

B fG B fG

D

B

D

social
reality

attribution

functional
areas

organization

roles

attribution

role play

d d d

realityagents

Fig. 1. The attribution of mental attitudes.

represent the relations among propositional variables existing
in beliefs, desires and goal of the agents.

Then there are the different sorts of agentsA we consider.
Besides real agentsRA (either human or software) we con-
sider as agents in the model also socially constructed agents
like organizationsOA, functional areasFA, and rolesRO.
The different sorts of agents are disjoint and are all subsets of
the set of agentsA: RA∪OA∪FA∪RO ⊆ A. All these agents
have mental attitudes; by mental attitudes we mean beliefsB,
desiresD and goalsG.

Mental attitudes are represented by rules, even if they do not
coincide with them:MD : B∪D∪G → R(X). When there is
no risk of confusion we abuse the notation by identifying rules
and mental states. To resolve conflicts among motivations we
introduce a priority relation by means of≥: A → 2M × 2M a
function from agents to a transitive and reflexive relation on
the powerset of the motivationsM = D∪G containing at least
the subset relation. We write≥a for ≥ (a). Moreover, different
mental attitudes are attributed to all the different sorts of agents
by the agent description relationAD : A → 2B∪D∪G∪A. We
write Ba = AD(a) ∩ B, Aa = AD(a) ∩ A for a ∈ A, etc.

Also agents are in the target of the agent descriptionAD

relation for the following reason: organizations, functional
areas and roles exist only as profiles attributed by other agents.
So they exist only as they are described as agents by other
agents, according to the agent description relation. TheAD

relation specifies that an agentb ∈ OA ∪ FA ∪ RO exists
only as far as some other agents{a ∈ A | b ∈ Aa} attribute
to it mental attitudes. The set(FA∪RO)∩Ao represents the
immediate “components” of the organization or functional area
o ∈ OA∪FA. The decomposition structure of an organization
ends with roles. Roles are described as agents, but they do

not create further socially constructed agents; rather, roles are
associated with agents playing them,PL : RO → RA.

We introduce now concepts concerning informational as-
pects. First of all, the set of variables whose truth value
is determined by an agent (decision variables) [17] are dis-
tinguished from thoseP which are not (the parameters).
Besides, we need to represent also the so called “institutional
facts” I. They are states of affairs which exist only inside
normative systems and organizations: as Searle [12] suggests,
money, private property, marriages,etc. exist only as part of
social reality; since we model social reality by means of the
attribution of mental attitudes to social entities, institutional
facts can be modelled as the beliefs attributed to these agents,
as done by [8]. Similarly, we need to represent the fact that
social entities like normative systems and organizations are
able to change their mental attitudes. The actions determining
the changes are called creation actionsC. Finally, inspired
by Lee [18] we introduce the notion of documentsDC: “we
use the term ‘document’ since most information parcels in
business practice are mapped on paper documents”.

As concerns the relations among these concepts, we have
that parametersP are a subset of the propositional variables
X. The complement ofX andP represents the decision vari-
ables controlled by the different agents. Hence we associate
with each agent a subset ofX \ P by extending again the
agent description relationAD : A → 2B∪D∪G∪A∪(X\P). We
write Xa = AD(a) ∩ X.

Moreover, the institutional factsI are a subset of the
parametersP : I ⊆ P . When a belief ruleY ∧c → p ∈ Ba has
an institutional factp ∈ I as consequent, we say thatc ∈ X

counts asp in contextY - using Searle [12]’s terminology -
for agenta ∈ OA ∪ FA ∪ RO.

baldoni
96

baldoni

The creation actionsC are a subset of the institutional
factsC ⊂ I. Since agents are attributed mental attitudes, we
represent their modification by adding new mental attitudes
expressed as rules. So the creation action relationCR :
{b, d, g} × A × R(X) → C is a mapping from rules (for
beliefs, desires and goals) to propositional variables, where
CR(b, a, r) stands for the creation ofm ∈ Ba, CR(d, a, r)
stands for the creation ofm ∈ Da, andCR(g, a, r) stands for
the creation ofm ∈ Ga, such that the mental attitudem is
described by the ruler ∈ R(X): r = MD(m).

Finally, the document creation relationCD : DC → X is a
mapping from documents to decision variables representing
their creation. We writeCD(d) ∈ Xa for the creation of
documentd ∈ DC.

We define a multiagent system as
MAS = 〈RA,OA,FA,RO,X,P,B,D,G,AD,

MD,≥, I, C,DC〉.

We introduce obligations posed by organizations and func-
tional areas by means of a normative multiagent system.
Let the norms{n1, . . . , nm} = N be a set. Let the norm
descriptionV : OA∪FA → (N×A → X) be a function from
agents to complete functions from the norms and agents to
the decision variables: we writeVo for the functionV (o) and
Vo(n, a) for the decision variable of agento ∈ RA∪OA∪FA

representing that it considers a violation of normn by agent
a ∈ A.

NMAS = 〈RA,OA,FA,RO,X,P,D,G,AD,MD,PL,≥
, I, C,DC,N, V 〉 is a normative multiagent system .

Following [6], obligations are defined in terms of goals of
the addressee of the norma and of the agento. The definition
of obligation contains several clauses. The first one defines
obligations of agents as goals of the normative agent, following
the ‘Your wish is my command’ strategy, the remaining ones
are instrumental to the respect of the obligation.

Agent a ∈ A is obligedby normative agento ∈ OA ∪ FA

to decide to dox ∈ L(Xa ∪ P) with sanctions ∈ L(Xo ∪
P) if Y ⊆ L(Xa ∪ P) in NMAS, written asNMAS |=
Oao(x, s|Y), if and only if there is an ∈ N such that:

1) Y → x ∈ Do∩Go: if agento believesY then it desires
and has as a goal thatx.

2) Y ∪ {∼x} → Vo(n,a) ∈ Do ∩ Go: if agento believes
Y and∼x, then it has the goal and the desireVo(n,a):
to recognize it as a violation by agenta.

3) Y ∪ {Vo(n,a)} → s ∈ Do ∩ Go: if agento believesY
and decidesVo(n,a), then it desires and has as a goal
that it sanctions agenta.

4) ⊤ →∼s ∈ Da: agenta desires∼s, which expresses
that it does not like to be sanctioned.

Since obligations are defined in terms of mental states, they
can be created by means of the creation actionsC introducing
new desires and goals, as shown by [8]. In this paper, we will
use the shorthandCR(o, Oao(x, s|Y)) to represent the set of
creation actions necessary to create an obligationOao(x, s|Y).

IV. CONTROL AND COMMUNICATION IN ORGANIZATIONS

Instead of having a single global collection of beliefs and
motivations, modelling organizations as socially constructed
agents allows allocating different beliefsBa, desiresDa and
goalsGa to separate agentsa ∈ Ao composing the organi-
zation o ∈ OA. Agents can be thought of as a locality for
intentionality. In this way it is possible to distribute subgoals
of Go among the different functional areas and rolesa ∈ Ao

to decompose problems in a hierarchical way and to avoid to
overburden them with too much goals. In particular, the goals
Gr attributed to roler ∈ RO represent the responsibilities
which agentb ∈ A playing that roles (PL(r) = b) has to
fulfill.

The beliefs attributed to the organization (Bo) and attributed
by the organization to its components (Bm and m ∈ Ao)
represent their know how and the procedures used to achieve
the goals of the organization; these beliefs are represented for
example by statutes and manuals of organizations. As in case
of goals, different beliefsBa can be distributed to functional
areas and rolesa ∈ Ao. In this way the organization can
respect the incapsulation principle and preserve securityand
privacy of information, as requested by [10].

The beliefs, desires and goals of the components of an
organization play also another role. They express the institu-
tional relations among the different components: in particular,
the control and communication relations among the functional
areas and roles. Both issues will be addressed using the notion
of document. Documents are the way information parcels are
represented in organizations and represent also the records of
decisions and information flow.

The institutional relations of control and communication
among the components of an organization are defined in terms
of the “counts as” relation. For Jones and Sergot [19], the
“counts as” relation expresses the fact that a state of affairs
or an action of an agent “is a sufficient condition to guarantee
that the institution creates some (usually normative) state of
affairs”. As [19] suggest this relation can be considered as
“constraints of (operative in) [an] institution”. In Section III
we propose to model “counts as” relations by means of belief
rules of the socially constructed agents. They express how an
organization, a functional area or a role provide an institutional
classification of reality.

In an organization it is fundamental to specify how agents
can control other agents by giving orders to them [10], [5];
the control is achieved by the command structure of an
organization. In fact, organizations can be seen as burocracies
according to [20]. Control has two dimensions: how the
organization and its functional areas can pose obligations
(commands) to roles, and who has the power to create these
obligations (since, as organizations and their units are socially
constructed agents, they do not act). For example, a production
unit can decide to give a production order to its members
and the decision of the production unit can be taken by a
director of that unit. The basic block of control is the creation
of obligations. As described in the conceptual model, an

baldoni
97

agent can change its own mental attitudes. In particular, an
organizationo can change its desires and goals so to create a
new obligationOao(x, s | Y) by means of the creation action
CR(o, Oao(x, s | Y)). It is possible to create sanction-based
obligations addressed to agenta ∈ A since the agents involved
in organizations are depended on them, for example, for the
fact that organizations pay them salaries and decide benefits.

The creation actionsC of an organizationo are parameters,
hence they are not directly controlled by it: the organization
does not act directly, but only by means of the actions of
the agents composing it. Creation actions achieve their effect
to introduce new obligations if some other action “counts
as” a creation action for the organization: this relation is
expressed by a belief rule of the organizationo, e.g., c →
CR(o, Oao(x, s | Y)) ∈ Bo. Since there is no other way for
making true the creation action, only the organization itself
can specify who create new obligations. In particular,c ∈ Xr

can be an actionCD(d) of a role r ∈ RO of producing a
documentd ∈ DC: in this way the organizationo specifies
that the roler has control over some other rolea ∈ RO

such thata ∈ Ao. The documentd represents the record of
the exercise of the power of agentr. Also functional areas
are modelled as agents in an organization: hence, the same
mechanism can be used to specify that an agentr has control
over role a ∈ RO, where r and a can belong to the same
functional aream ∈ FA ({r, a} ⊆ Am ∩ RO).

Since the “counts as” relation can be iterated, it is possible
to specify how a roler ∈ RO belonging to a functional area
m ∈ FA (r ∈ Am) of an organizationo ∈ OA can create
an obligationOao(x, s | Y) directed to a functional area or
role a ∈ FA ∪ RO directly belonging to the organization:
a ∈ Ao. This is possible since an actionc ∈ Xr of role r can
count as an institutional factp ∈ I for the functional aream:
c → p ∈ Bm. In turn, the institutional factp can count as the
creation of an obligationOao(x, s | Y) by the organization
o: p → CR(b,o, Oao(x, s | Y) ∈ Bo; this obligation is
directed towards agenta which belongs to the organizationo.
These relations are only possible since the beliefsBm of the
functional aream are attributed to agentm by the organization
o itself, sincem ∈ Ao. For example, a decision of the CEO
counts as an obligation of the entire organization since the
direction functional area to which the CEO belongs considers
the CEO’s decision as made by itself and the organization,
in turn, considers the decision of the direction as having the
obligation as a consequence. In this way, the organization,
when it creates its components by attributing mental attitudes
to them, at the same time, constructs its control structure.

The second issue is communication among roles. It is
often claimed [10] that the organizational structure specifies
the communication possibilities of agents. Agents can com-
municate almost by definition and standard communication
languages have been defined for this aim [21]. What the
organization can specify is their possibility to communicate to
each other in an institutional way by means of documents; as
Wooldridgeet al. [22] claim, organizations specify “systematic
institutionalized patterns of interactions”.

Communication among socially constructed agents is based
on the same principle as control. It relies on the fact that
the beliefs of a functional area or of a role are attributed
to them by the higher level socially constructed agent which
they are attributed mental attitudes by. In this way we can
express the fact that a document created by a roler ∈ RO

communicates some beliefp to an organization or functional
aream ∈ OA∪FA it belongs tor ∈ Am: CD(d) → p ∈ Bm,
whereCD(d) ∈ Xr is an action creating a documentd ∈ DC.
This is read as the fact the action of roler “counts as” the
official belief p of agentm. The documentd represents the
record of the communication betweenr andm.

Analogously, we can specify official communication among
roles. A roler ∈ RO communicates to a rolea ∈ RO thatp ∈
P if there is some actionCD(d) ∈ Xr creating a document
d ∈ DC such thatCD(d) → p ∈ Ba. Note thatBa are
not the beliefs of the agentb ∈ RA playing role a (b =
PL(a)). Rather they are the beliefs attributed to the role by
the functional aream ∈ FA: since the rolea is created by
the functional aream, those beliefs are attributed toa by the
functional aream. When an agentb ∈ RA which plays the
role a ∈ RO knows that documentd has been created, it has
to act as if it had the beliefp, while it is not requested to
be psychologically convinced thatp is true. Otherwise agent
b does not stick to its role anymore and it becomes liable to
having violated its duties.

V. SUMMARY

In this paper we propose a way to model the organizational
structure of multiagent systems. Organizations are composed
by functional areas and roles; functional areas, in turn, are
composed by functional areas and roles. Roles are played
by agents. Using the methodology of attributing mental at-
titudes to social entities, we show that organizations and their
components can be described as agents: socially constructed
agents. Since socially constructed agents are agents, they
can construct, in turn, other agents which constitute their
components. This strategy allows creating a decomposition
structure as rich as the one in object orientation. Moreover, it
allows progressively decomposing an organization in simpler
agents described by beliefs and motivations to manage the
complexity of a multiagent system. Finally, since agents can
be subject to obligations and endowed with permissions and
powers, all the social entities composing an organization can
be the addressees of norms and powers; at the same time,
socially constructed agents can be normative systems imposing
obligations on their components, i.e., organizations can be
modelled as burocracies [20].

This paper is part of a wider project modelling normative
multiagent systems. In [8] we model normative systems by
means of the agent metaphor: we attribute them beliefs,
desires and goals: beliefs represent the constitutive rules of
the organization while regulative rules, like obligations, are
modelled in terms of goals of the system. In [6] we extend the
model to virtual communities and we use the agent metaphor
to describe local and global policies. In [9], constitutiverules

baldoni
98

are used to define contracts and games among agents are
extended to allow an agent to change the obligations enforced
by the normative system. Roles have been introduced in [23].
This paper constitutes a step forward in this project in thatthe
agent metaphor is used to explain how organizations can create
other social entities like functional areas and roles and, at the
same time, specify their behavior. In this way we account for
their definitional dependency characteristic of social entities
[24]. Our ontology of social reality is presented in [7].

Future work concerns defining the relation between roles
described as agents and the agents playing those roles. More-
over, contracts, described in [9] can be introduced to regulate
the possibility to create new obligations, new roles and new
social entities inside an organization [10].

REFERENCES

[1] N. R. Jennings, “On agent-based software engineering,”Artificial Intel-
ligence, vol. 117(2), pp. 277–296, 2000.

[2] E. Yu, “Agent orientation as a modelling paradigm,”Wirtschaftsinfor-
matik, vol. 43(2), pp. 123–132, 2001.

[3] G. Booch, Object-Oriented Analysis and Design with Applications.
Reading (MA): Addison-Wesley, 1988.

[4] B. Bauer, J. Muller, and J. Odell, “Agent UML: A formalism for specify-
ing multiagent software systems,”Int. Journal of Software Engineering
and Knowledge Engineering, vol. 11(3), pp. 207–230, 2001.

[5] F. Zambonelli, N. Jennings, and M. Wooldridge, “Developing multia-
gent systems: The Gaia methodology,”IEEE Transactions of Software
Engineering and Methodology, vol. 12(3), pp. 317–370, 2003.

[6] G. Boella and L. van der Torre, “Local policies for the control of virtual
communities,” inProcs. of IEEE/WIC WI’03. IEEE Press, 2003, pp.
161–167.

[7] ——, “An agent oriented ontology of social reality,” inProcs. of
FOIS’04, Torino, 2004.

[8] ——, “Regulative and constitutive norms in normative multiagent sys-
tems,” in Procs. of KR’04, 2004, pp. 255–265.

[9] ——, “Contracts as legal institutions in organizations of autonomous
agents,” inProcs. of AAMAS’04, 2004, pp. 948–955.

[10] J. Ferber, O. Gutknecht, and F. Michel, “From agents to organizations:
an organizational view of multiagent systems,” inLNCS n. 2935: Procs.
of AOSE’03. Springer Verlag, 2003, pp. 214–230.

[11] M. McCallum, T. Norman, and W. Vasconcelos, “A formal model of
organisations for engineering multi-agent systems,” inProcs. of CEAS
Workshop at ECAI’04, 2004.

[12] J. Searle,The Construction of Social Reality. New York: The Free
Press, 1995.

[13] D. Dennett, The intentional stance. Cambridge (MA): Bradford
Books/MIT Press, 1987.

[14] A. Ricci, A. Omicini, and E. Denti, “Activity theory as a framework for
mas coordination,” inProcs. of ESAW’02, 2002, pp. 96–110.

[15] O. Pacheco and J. Carmo, “A role based model of normative specification
of organized collective agency and agents interaction,”Autonomous
Agents and Multiagent Systems, vol. 6, pp. 145–184, 2003.

[16] V. Dignum, J.-J. Meyer, and H. Weigand, “Towards an organizational-
oriented model for agent societies using contracts,” inProcs. of AA-
MAS’02. ACM Press, 2002, pp. 694–695.

[17] J. Lang, L. van der Torre, and E. Weydert, “Utilitarian desires,” Au-
tonomous Agents and Multiagent Systems, pp. 329–363, 2002.

[18] R. Lee, “Documentary Petri nets: A modeling representation for elec-
tronic trade procedures,” inBusiness Process Management, LNCS 1806.
Berlin: Springer Verlag, 2000, pp. 359–375.

[19] A. Jones and M. Sergot, “A formal characterisation of institutionalised
power,” Journal of IGPL, vol. 3, pp. 427–443, 1996.

[20] W. Ouchi, “A conceptual framework for the design of organizational
control mechanisms,”Management Science, vol. 25(9), pp. 833–848,
1979.

[21] T. W. Finin, Y. Labrou, and J. Mayfield, “KQML as an agent commu-
nication language,” inSoftware Agents, J. Bradshaw, Ed. Cambridge:
MIT Press, 1995.

[22] M. Wooldridge, N. Jennings, and D. Kinny, “The Gaia methodology
for agent-oriented analysis and design,”Autonomous Agents and Multi-
Agent Systems, vol. 3(3), pp. 285–312, 2000.

[23] G. Boella and L. van der Torre, “Attributing mental attitudes to roles: The
agent metaphor applied to organizational design,” inProcs. of ICEC’04.
IEEE Press, 2004.

[24] C. Masolo, L. Vieu, E. Bottazzi, C. Catenacci, R. Ferrario, A. Gangemi,
and N. Guarino, “Social roles and their descriptions,” inProcs. of KR’04,
2004.

baldoni
99

A Conceptual Framework for Self-Organising MAS
Andrea Omicini∗, Alessandro Ricci∗, Mirko Viroli∗, Cristiano Castelfranchi†, Luca Tummolini†

∗DEIS, Alma Mater Studiorum, Università di Bologna
via Venezia 52, 47023 Cesena, Italy

Email: andrea.omicini@unibo.it, mirko.viroli@unibo.it, aricci@deis.unibo.it
†Institute of Cognitive Sciences and Technologies, CNR

viale Marx 15, 00137 Roma, Italy
Email: c.castelfranchi@istc.cnr.it, tummoli@ip.rm.cnr.it

Abstract— In this seminal paper, we sketch a general concep-
tual framework for self-organising systems (SOSs) that encom-
passes both stigmergy and MAS coordination, and potentially
promotes models of self-organisation for MASs where interaction
between cognitive agents is mediated by the environment, by
means of artifacts provided by the agent infrastructure. Along
this line, we first introduce the notions of Behavioural Implicit
Communication (BIC) as a generalisation of stigmergy, and of
shared environment (s-env) as a MAS environment promoting
forms of observation-based coordination (such as BIC-based
ones) that exploit cognitive capabilities of intelligent agents to
achieve MAS self-organisation.

I. INTRODUCTION

Self-organisation is typically associated to natural systems,
where global coherent behaviour emerges from a multiplicity
of local interactions between non-intelligent system compo-
nents, in absence of global centralised control. For instance,
physical systems like molecules of magnetic materials, bio-
logical systems like cytoskeletal filaments in cytoplasm of
eukaryotic cells [1], social systems like insect societies [2], all
exhibit forms of local interaction between very simple system
components that result in higher-level forms of organisation,
which can be reduced neither to the individual component’s
behaviour, nor to explicit external control or constraints over
system’s evolution. Self-organisation is also found in (human)
social systems, where it emerges from non-directed local
interactions between humans [3]. Robustness, fault-tolerance
and adaptability to changes are typical features of those sorts
of self-organising systems (SOSs henceforth) that computer
scientists and engineers are nowadays trying to capture and
bring to computational systems.

By definition, SOSs are those systems that exhibit some
forms of global order (organisation, structure, architecture,
. . .), or direction, that emerge as the result of apparently non-
ordered, non-directed local behaviour. Correspondingly, funda-
mental definitory features of SOSs are the lack of centralised
control, and locality of interaction between components.

The very fact that natural SOSs often exhibit global “in-
telligent” (in a very broad sense) behaviours in spite of their
non-intelligent individual components (magnetic particles, cy-
toskeletal filaments, ants) has led a good deal of the SOS
research in computer science to focus on SOSs based of very
simple software components. This is the case, for instance, of
most of the literature on ant-based systems, trying to capture

the principle of self-organisation by mostly focusing on the
patterns of interaction between ant-like components, rather
than on their inner structure and functioning, as in the case of
stigmergy coordination [4].

This has changed in the last few years, with Multi-Agent
Systems (MASs henceforth) taking momentum in the SOS
field [5]. There, the most typical model for local interaction be-
tween components (agents) is based on direct communication:
according to [6], self-organising MASs are typically driven by
social interaction (communication, negotiation, coordination)
among autonomous entities. This is the case, for instance, of
the AMAS theory [7], where self-organisation depends on the
ability of the agents to be locally “cooperative” – based on
their ability to subjectively interpret interactions with other
agents and the environment. Also, this corresponds to well-
known patterns of self-organisation in human organisations
[3].

On the other hand, when interaction among agents is
mediated (so indirect, as opposed to direct interaction) by
the environment, it typically happens that cognitive abilities
of agents are not adequately exploited to the aim of self-
organisation. According to [8, page 316], there is

“a fundamental flaw in many studies of self-
organisation: the assumption that the subunits of a
self-organised system are dumb”

This is the case, for instance, of stigmergy [9] and swarm
intelligence [10] applied to MAS coordination, where no use
of agent cognitive capabilities is assumed to achieve self-
organisation.

Given such premises, in this seminal paper we assume as
our conceptual target those forms of self-organisation which
are based on mediated interaction through the environment (á
la stigmergy), but where intelligence of components plays a
relevant role. So, we first demystify the apparent dichotomy
between stigmergy coordination and social communication,
showing a larger range of options: interaction between cogni-
tive agents is not always reducible to communication, commu-
nication is not always explicit, and stigmergy (once properly
defined [11]) does not exhaust the whole range of interaction
through the environment. This is achieved by adopting the
theory of Behavioural Implicit Communication (BIC), which
models a wide range of social behaviours, and works as a
critical decentralised coordination mechanism which is mainly

baldoni

responsible for social order in human societies [11]. Such a
mechanism is shared with animal societies, where it takes
the form of stigmergy (which can then be thought as a BIC
sub-category), and in the context of MAS provides a more
comprehensive theory for self-organisation based on local
interactions mediated by the environment that also covers
cognitive agents.

Then, we focus on the environmental properties that enable
BIC, and devise out the notion of shared environment (s-
env) as a MAS environment promoting forms of observation-
based coordination (such as BIC-based ones) that exploit
cognitive capabilities of intelligent agents to achieve MAS
self-organisation. In particular, the environment should support
observability of agent’s behaviour, and enable awareness of
observation, through suitably-designed MAS infrastructures.
Along this line, a formal model for MAS encompassing both
BIC and s-env is introduced, that works as a model for MAS
infrastructures enabling and promoting advanced forms of
self-organisation for MAS based on cognitive agents, where
agents interact through suitable abstractions provided by the
infrastructure.

Some meaningful examples are finally discussed, that show
how forms of self-organisation can emerge in MASs based
on cognitive agents by exploiting the observability features
provided by shared environments, focusing in particular on
the BIC approach.

II. SELF-ORGANISATION THROUGH BEHAVIOURAL
IMPLICIT COMMUNICATION

A. Interaction, Communication, Observation

In this section we briefly introduce various kind of inter-
action which can be found in complex systems, remarking
in particular the relevance of indirect interaction and implicit
communication – based on observation and awareness – as far
as coordination and self-organisation activities are concerned.

Forms of indirect interaction are pervasive in complex
systems, in particular in systemic contexts where systems take
the form of structured societies with an explicit organisa-
tion, with some cooperative activities enacted for achieving
systemic goals. In such contexts, in order to scale with
activity complexity, sorts of mediating artifacts are shared and
exploited to enable and ease interaction among the compo-
nents. Mediating artifacts of different kind can be identified
easily in human society, designed and exploited to support
coordination in social activities, and in particular in the context
of cooperative work: examples are blackboards, form sheets,
but also protocols and norms. Mediation is well focused by
some theories such as Activity Theory [12] and Distributed
Cognition, [13] adopted in the context of CSCW and HCI,
exploring how to shape the environment in terms of mediating
artifacts in order to better support cooperative work among
individuals. Stigmergy is another well-known form of indirect
interaction, exploiting directly the environment as mediating
artifact: individuals interact by exploiting shared environmen-
tal structures and mechanisms to store and sense kind of signs
(such as pheromones in the case of ant-based systems), and

processes transforming them (such as evaporation/aggregation
of pheromones) [2].

With respect to interaction, communication adds intentional-
ity. A famous claim of the Palo Alto psychotherapy school says
that “any behaviour is communication” [14]: more generally,
we consider communication as any process involving an
intentional transfer of information from an agent X (sender) to
an agent Y (receiver), where X is aimed at informing Y. Agent
X’s behaviour has the goal or the function of informing agent
Y. Agent X is executing a certain action “in order” to have
other agents receiving a message and updating their beliefs or
epistemic state. Communication is an intentional or functional
notion in the sense that it is always goal oriented such that a
behaviour is selected also for its communicative effect1. In the
context of cognitive MAS – composed by intelligent agents
– explicit types of (high level) communication are typically
adopted for supporting coordination and self-organisation,
mainly exploiting common semantics and ontologies.

However, in complex societies explicit communication is
only part of the story: not all kinds of communication exploit
codified (and hence rigid) actions. Humans and animals are
for instance able to communicate also without a predefined
conventional language, by observing their normal behaviour
and practical actions. More generally, also forms of implicit
communication play a key role as kind of interaction. Looking
to societies of individuals provided with cognitive capabilities
(humans, agents, . . .), observation and awareness can be
counted among the main basic mechanisms that enable forms
of implicit communication, which allows for coordination
and autonomous organisation activities. An agent’s behaviour
could be observed by another agent, and interpreted / used as
information by the observing agent; but also, being aware to
be observed, an agent could use its behaviour as a means to
communicate.

So, our claim here is that implicit communication – based
on observation and awareness – can be very effective as basic
brick to build flexible coordination and self-organisation in the
context of artificial societies, composed by cognitive agents.
While we agree with [15] that coordination is a causal process
of correlation between agents’ actions typically involving an
information flow between an agent and its environment, we do
not consider always this flow as a process of communication.
Consider a case where an hostile agent, whose actions are “ob-
servable”, is entering a MAS. If another agent becomes aware
of his presence, can observe him, should we say that the hostile
agent is communicating his position? Or, differently, is the
escaping prey communicating to the predator her movements?
Also, even if an agent’s perception of the action of another

1An agent’s behaviour can be goal oriented for different reasons. An
intentional agent (i.e. a BDI agent) is a goal governed agent (the goal is
internally represented) which instantiates a communicative plan to reach the
goal that another agent is informed about something. However, also simple
reactive agents (i.e. insect-like) can act purposively (hence can communicate)
if their behaviour has been shaped by natural or artificial selection, by
reinforcement learning or by design (in the interest of the agent itself). In
these latter cases the behaviour has the function of communicating in the
sense that it has been selected because of a certain communicative effect.

baldoni
101

agent is necessary implemented as information transition from
a sender to a receiver, this implementation of interaction
should not be necessarily considered as “communication” and
the passed information should not be always labelled as a
“message”. From the external viewpoint of the designer a
message passing of this sort is designed in order to inform the
agent who is observing. However from the viewpoint of the
agent a simple perception is not necessarily communication.

With respect to existing approaches on self-organisation
using intelligent agents (such the AMAS approach [7]), we
do not adopt direct communication as the main form of
interaction, instead we aim at exploring implicit communi-
cation as a form of indirect interaction, based on observation
and awareness as its basic bricks. With respect to existing
approaches based on indirect interaction – such as stigmergy
or computational fields [16] – we aim at considering societies
composed by individuals with high level cognitive capabilities
able to observe and reason about observations and actions.

B. Behavioural Implicit Communication

In cognitive MAS, communication is normally conceived
as implemented through specialised actions such as speech
acts defined in the FIPA ACL protocol [17]. Such protocols
are inspired by natural language or expressive signals where
meaning is associated to a specific action by convention.

Here we are interested in the case where the agent is aware
of being observed (other agents believe that he is performing
a given practical action) and he “intends that” [18] the other
are interpreting his action. This sort of communication without
a codified action but with a communicative intention is what
we intend for behavioural Implicit Communication [11]. What
is relevant here is that the agent’s execution plan is aimed to
achieve a pragmatic goal as usual: i.e. an agent A is collecting
trash to put it in a bin (as in [19]).

A general definition for BIC is: the agent (source) is per-
forming a usual practical action α, but he also knows and lets
or makes the other agent (addressee) to observe and understand
such a behaviour, i.e. to capture some meaning µ from that
“message”, because this is part of his (motivating or non
motivating) goals in performing α. To implicitly communicate,
the agent should be able to contextually “use” (or learn to use
or evolve to use) the observed executed plan also as a sign,
the plan is used as a message but it is not shaped, selected,
designed to be a message.

An agent B has the same goal but observing the other’s
action he decides to clean another side of the road. Since the
agent A knows that an agent B is observing him, the practical
action he is executing can be used also as a message to B such
as “I am cleaning here”. Such a possibility can lead agents to
avoid a specific negotiation process for task allocation and can
finally evolve in an implicit agreement in what to do.

Three different conditions are necessary to support such a
form of communication.

• The first is relative to environmental properties. The
“observability” of the practical actions and of their traces
is a property of the environment where agents live, one

environment can “enable” the visibility of the others
while another can “constrain” it, like sunny or foggy days
affect our perception. An environment could also enable
an agent to make himself observable or on the contrary
to hide his presence on purpose.

• The second is related to the capacity of agents to under-
stand and interpret (or to learn an appropriate reaction
to) a practical action. A usual practical action can be
a message when an agent knows the way others will
understand his behaviour. The most basic message will
be that the agent is doing the action α. More sophisti-
cated form would imply the ability to derive pragmatic
inference from it (what is the goal of doing? What can
be implied?).

• The third condition is that the agent should be able
to understand (and observe) the effect that his actions
has on the others so that he can begin acting in the
usual way also because the other understand it and react
appropriately.

behavioural Implicit Communication is in this sense a para-
sitical form of communication that exploits a given level of
visibility and the capacity of the others to categorise or react
to his behaviour.

So, BIC can be considered a generalisation of stigmergy.
The need for an environment for a MAS is often associated
with the goal of implementing stigmergy as decentralised
coordination mechanism. Besides, being the production of a
certain behaviour as a consequence of the effects produced
in the local environment by previous behaviour or indirect
communication through the environment [4], stigmergy seems
very similar to the form of communication we are arguing for.

However these general accepted definitions make the phe-
nomenon too broad. It is too broad because it is unable to
distinguish between the communication and the signification
processes. As we have seen in 2.1 we do not want to
consider the hostile agent’s actions or the escaping prey as
communicative actions notwithstanding that the effects of their
actions elicit and influence the actions of other agents. Besides,
every form of communication is mediated by the environment
exploiting some environmental channel (i.e. air).

As in BIC, real stigmergic communication does not exploit
any specialised communicative action but just usual practical
actions (i.e. the nest building actions). In fact we consider
stigmergy as a subcategory of BIC, being communication
via long term traces, physical practical outcomes, useful
environment modifications which preserve their practical end
but acquire a communicative function. We restrict stigmergy to
a special form of BIC where the addressee does not perceive
the behaviour (during its performance) but perceives other
post-hoc traces and outcomes of it.

Usually stigmergy is advocated as a coordination mecha-
nisms that can achieve very sophisticated forms of organisation
without the need for intelligent behaviour. However there also
exist interesting forms of stigmergic communication at the
intentional level. Consider a sergeant that – while crossing
a mined ground – says to his soldiers: “walk on my prints!”.

baldoni
102

From that very moment any print is a mere consequence of a
step, plus a stigmergic (descriptive “here I put my foot” and
prescriptive “put your foot here!”) message to the followers.

C. Forms of Observation-based Coordination

Coordination is that additional part or aspect of the activ-
ity of an agent specifically devoted to deal and cope with
the dynamic environmental interferences, either positive or
negative, i.e. with opportunities and dangers/obstacles [20].
Coordination can either be non social as when an agent
coordinate with a moving object. The conceptual framework
introduced so far makes it possible to frame some basic forms
of coordination in terms of observation and awareness, which
will be the key for enabling self-organisation of systems:

• Unilateral — X intends to coordinate with Y by observing
Y’s actions.

• Bilateral — In this case we have the unilateral form of
coordination for both agents, so: X intends to coordinate
with Y by observingY’s actions, and viceversa: Y intends
to coordinate with X by observing X’s actions.

• Unilateral-AW — In this case we have a unilateral form
of coordination, but with a first form of awareness: X
intends to coordinate with Y by observing Y’s actions,
and Y is aware of it (i.e. knows to be observed).

• Reciprocal — In this case the we have both a bilateral
form of observation based coordination and awareness
by both the agents: X intends to coordinate with Y by
observing Y’s actions, Y is aware of it, Y intends to
coordinate with X by observing X’s actions and X is aware
of it.

• Mutual — This case extends the reciprocal form by intro-
ducing the explicit awareness of each other intention to
coordinate: X intends to coordinate with Y by observing
Y’s actions, Y is aware of it, Y intends to coordinate with
X by observing X’s actions, X is aware of it, and X is
aware of Y intention to coordinate and Y is aware of X
intention to coordinate.

behavioural implicit communication is necessary for mutual
coordination while it is possible and useful in the other kinds
of observation-based self-organisation.

D. The Role of behavioural Implicit Communication in Dy-
namic Social Order

Global social order cannot be mainly created and maintained
by explicit and formal norms, supported only by a centralised
control, formal monitoring, reporting and surveillance proto-
cols. Social order needs to be self-organising, spontaneous
and informal, with spontaneous and decentralised forms of
control and of sanction [21]. In this respect, BIC plays a
crucial role. Sanctions like the act of excluding or avoiding
cheaters are messages; the same for the act of exiting (quitting
commitments). The act of monitoring the others’ behaviour
is a message for social order; the act of fulfilling commit-
ments, obeying to norms, are all implicitly communication
acts. Behavioural Implicit Communication has a privileged
role also for establishing commitments, locally negotiating

UNILATERAL

BILATERAL

UNILATERAL
AW

RECIPROCAL

MUTUAL

OBSERVATION AWARENESSAWARENESS 2

BIC

Fig. 1. Forms of coordination in relation to observation capability and
awareness. Squared awareness means awareness of awareness. BIC appears
with awareness, but is fully exploited when considering mutual coordination.

rules, monitoring correct behaviours, enforcing laws, letting
spontaneously emerge conventions and rules of behaviours.

Accordingly, a self-organising society of artificial agents
should be able to let emerge a sort of ‘social contract’
analogous to the one we find in human societies. Such a
social contract will first be established mainly by implicit
communication, then tacitly signed and renewed.

In what follows, we give some examples of this crucial role.

• Imitation for rule propagation — One of the main func-
tions of imitation (i.e., repeating the observed behaviour
of Y – the model) is for achieving a basic form of implicit
communication. The condition is that Y (the model) can
observe (be informed about) the imitative behaviour of
X . By simply imitating the peer, the agent can propagate
a tacit message like “I use the same behaviour as you,
I accept (and spread) it as convention; I conform to it”.
This BIC use of imitation is probably the first form of
mimetic propagation through communication and plays
a key role in convention establishment. X interprets the
fact that Y repeats its innovation as a confirmation of its
validity (good solution) and as an agreement about doing
so. Then, X will expect that Y will understand again its
behaviour next time, and that Y will use again and again
it, at least in the same context and interaction.

• The fulfilment of social commitments — Differently from
the acts of conforming to already existing norms, agents
(when observable) can implicitly communicate the ful-
filment of their social commitments. A conforming be-
haviour is a form of demonstrative act primarily intended
to show that one have done the expected action. Thus, the
performance of the act is also aimed at informing that it
has been performed.
This is especially important when the expectation of X’s
act is based on obligations impinging on X , and Y is

baldoni
103

monitoring X’s non-violation of his duty. Either X is
respecting a prohibition, or executing an order, or keeping
a promise. A social-commitment of X to Y of doing
the act, in order to be really (socially) fulfilled, requires
not only that agent X performs the promised action,
but also that the agent Y knows this. Thus, when X is
performing the act in order to keep his promise and fulfil
his commitment to Y , he also intends that Y knows this.
Even in absence of explicit and specific messages, any
act of social commitment fulfilment can be an implicit
communication act about that fulfilment.
A second order meaning of the conforming act can also
be: “I’m a respectful guy; I’m obedient; I’m trustworthy”,
but this inferential meaning is reached trough the first
meaning “I’m respecting, obeying, keeping promises”.
This second order meanings can circulate and boost the
reputation process that is a key informal sanction system
for dynamic social order [22].

• Local reissuing of norms — Moreover, one of the func-
tions of norm obedience is the confirmation of the norm
itself, of the normative authority of the group, and of con-
formity in general. Consequently, one of the functions of
norm obeying behaviours is that of informing the others
about norm obedience. At least at the functional level,
X’s behaviour is implicit behavioural communication.
Frequently, X either is aware of this function and col-
laborates on this, thus he intends to inform the others
about his respect of norms, or he is worrying about social
monitoring and sanctions or seeking for social approval,
and he wants the others see and realise that he is obeying
the norms. In both cases, his conforming behaviour is also
an intentional behavioural/implicit communication to the
others.
At the collective level, when an agent respects a norm,
he pays some costs for the commons and immediately
moves from the mental attitude of norm addressee (which
recognised and acknowledge the norm and its authority,
and decided to conform to it) to the mental set of the
norm issuer and controller [23]: he wants the others to
respect the norm, pay their own costs and contribution to
the commons.

III. A BIC-ORIENTED SHARED ENVIRONMENT FOR
SELF-ORGANISATION

So, to promote advanced forms of self-organisation in
MAS featuring cognitive agents, MAS environment should be
shaped so as to allow for observability and awareness of agents
behaviour.

Generally speaking, agents that live in a common environ-
ment (c-env) are agents whose actions and goals interfere
(positively or negatively). In a pure c-env, agent actions and
their traces are state transitions which can ease or hamper
the individual agents’ goals. An example is a ground that is
common for different insect species but where no interspecies
communication is possible. Agents can observe just the state
of the environment, and then act on that basis, achieving a

given self-organisation, still with no access to the actions of
their peers. Even a trace is seen as part of the environment
and not as a product of other agents. So, a generic property
of a c-env is that it provides agents with the means to keep
track of its state and possibly affect it.

As far as observation-based self-organisation is concerned,
we here propose a stronger notion of environment, called
shared environment (s-env). This is a particular case of a c-
env that enables (i) different forms of observability of each
other action executions, as well as (ii) awareness of such
observability, thus supporting unilateral, bilateral, reciprocal,
and mutual coordination.

A. Observability in Shared Environments

Each s-env is defined by the level of observability that it
can afford. The level of observability is the possibility for
each agent to observe another agent behaviour, namely, to
be informed when another agent executes a given action. For
instance, the most general kind of s-env can be defined by
the fact that each agent can observe the execution of all the
actions of all others agents. A prototypical model of this sort of
environment is the central ‘square’ of a town. Other levels of
observability may limit the ability of agents to observe given
actions of other agents – e.g. considering sort of invisible
actions – or to observe only given agents and not others –
e.g. considering obstacles preventing observation.

The level of observability of an s-env is easily understood
by a power relation Pow : A×A×Act, where A is the set of
agents – ranged over by meta-variables x, y, and z – and Act
is the set of usual practical actions which may be subject of
observation through the s-env – ranged over by meta-variables
α and β. When 〈x, y, α〉 ∈ Pow , also written Pow(x, y, α), it
means that action α ∈ Act executed by agent y is observable
by agent x through the s-env.2 This means that in that s-
env, it is structurally possible for x to observe the executions
of action α by y. We naturally say that x has the role of
observer agent, y that of observed agent, α that of observed
action. We extend the notation for power relation using sets
of agents or actions, e.g. writing Pow(x,B, α) with B ⊆ A
for Pow(x, y, α) holding for all y ∈ B, or Pow(x, y,Act) in
place of Pow(x, y, α) for all α ∈ Act.

Pow relation can be then conceived as specifying the rules
defining the set of ‘opportunities and constraints’ that afford
and shape agents’ observability within the environment. A
specific rule is an opportunity or a constraint for a specific
agent and in particular it is only relative to the agent’s active
goals while interacting with that environment.

Whereas relation Pow is introduced to statically describe
the set of opportunities and constraints related to agents’
observability, an observation relation Obs (a subset of Pow)
has to be introduced to characterise the state of the s-env at
a given time. When Obs(x, y, α) holds, it means that agent x

2Observability of an action should be intended here in its most general
acceptation, that is, accounting for all the properties that need to be observed
– so, not only the executing agent, but also time of execution, information
possibly carried along, and so on.

baldoni
104

is actually observing executions of action α by agent y. That
is, Obs(x, y, α) means that an execution of action α by agent
y will be perceived by x. Hence, notice that we differentiate
between the potential ability to observe, which is a typical
property of the environment where the agents live in, and the
actual observability, which might be driven by the explicit
motivation of agents. Indeed, since Obs ⊆ Pow , observation
is constrained by the level of observability featured by the
s-env.

The meaning of the observation relation can be understood
by taking into account the agent’s viewpoint over observation.
We first introduce the concept of agent epistemic state (ES),
representing the beliefs the agent has because of his obser-
vation role. The ES of an agent x includes its environmental
knowledge about observation, which is then given by informa-
tion (i) on the agents he is observing, (ii) on the agents that
are observing him, and (iii) on the action executions that he
is observing.

The first two kinds of knowledge can be addressed by sup-
posing the agent may, at a given time, have some knowledge
about the current state of relation Obs . In particular, write
Bzobs(x, y, α) for agent z believing that x is observing, from
that time on, executions of action α performed by z. On the
other hand, to represent the third kind of knowledge, we write
Bz(done(y, α)), meaning that agent z believes that y has
executed action α.3

B. Epistemic Actions

The epistemic state of an agent evolves through epistemic
actions, which are actions aimed at acquiring knowledge
from the environment [25]. Such an aim is expressed as an
agent intention: accordingly, we also define the concept of
motivational state (MS) of an agent, which includes all the
intentions an agent has at a given time. Then, an epistemic
action is fired by an agent intention, by which the s-env reacts
updating its state as well as the epistemic state of the agent.
So, we have different kinds of epistemic actions, each fired
by a different motivation: they are used e.g. to know who is
observing who, to have an agent observing another, to avoid
an agent observing another, and so on.

A first case of epistemic action is used by the agent which
is willing to know whether he is observing another agent,
whether another agent is observing him, or generally, whether
an agent x is observing actions α of an agent y. So, suppose
the MS of z includes intention Izcheck(x, y, α), which means
that agent z intends to know whether x observes executions of
α by y. Then, eventually an epistemic action is executed by
which the ES of agent z will include the belief about whether
Obs(x, y, α) holds or not.

Similarly, an agent may have the intention Ixobs(x, y, α)
in exploiting the observability power of the environment to

3The syntax we introduced clearly reminds standard modal logics for beliefs
as in [24], however, it is not our goal here to introduce any logics for agent
reasoning. This is why we still refer to the weaker notion of epistemic state
instead of beliefs state – and motivational state instead of intentional state as
described below.

observe y’s actions α. When such an intention appears in the
MS of agent x, the s-env conceptually intercepts it and enacts
the corresponding observations. This means that (i) the s-env
adds Bxobs(x, y, α) to the agent’s epistemic state (agent x
knows that he is observing actions by agent y), and (ii) relation
Obs is added the rule Obs(x, y, α) (the s-env makes agent x
observing actions α by agent y). In other words, we can think
that the appearance of an intention in the motivation state of
the agent causes the execution of an epistemic action toward
the environment, enabling agent observations.

Similarly, an agent may want to stop observing actions.
When the intention Ixdrop(x, y, α) appears in the agent
motivational state, the effects of obs(x, y, α) are reversed.

Now we are ready to link the MS state of the agent, Obs
rules and the ES state of the agent. According to the semantics
of the actions, the execution of an action α by agent y (written
done(y, α)) causes the creation of a new belief Bxdone(y, α)
in the epistemic state of all the agents x of the environment
such that Obs(x, y, α) holds.

C. Formal Model
To make our arguments more precise we introduce a formal

framework to describe the notions of ES, MS, epistemic
actions, and observation in a precise way, which is meant
to serve as an actual design for an infrastructure providing a
s-env. In particular, we provide a syntax and an operational
semantics for modelling MAS according to the conceptual
framework defined in previous sections.

Throughout this model, composition operator || is assumed
to be commutative, associative, to absorb the empty configu-
ration 0, and to consume multiple copies of the same element
– that is, x ||x ≡ x. Accordingly, any grammar definition of
the kind

X ::= 0 | x1 | . . . | xn | X ||X

defines elements of the syntactic category X as compositions
(without repetitions) of terms x1, . . . , xn. Given one such
composition X , we write xj ∈ X and xj /∈ X with
the obvious meaning. The syntax of MAS configurations is
reported in Figure 2.

Metavariable S ranges over configurations of the MAS,
which at our abstraction level are simple compositions of agent
configurations (ES and MS) and environment configurations
(Pow and Obs). Environment configurations are composition
of terms, each denoting either the power of agent x to observe
action α executed by agent y (Pow(x, y, α)), or the fact that
the environment is making x observe actions α executed by
agent y (Obs(x, y, α)). Agent configurations are compositions
of mental properties, namely beliefs (B) and intentions (I)
qualified by the agent x, and about a formula φ. As described
above, these properties are used to represent the ES and MS
of agent x, namely its knowledge and motivations. Notice that
we model a MAS configuration as a composition of both agent
and environment properties without a neat separation: in fact,
at our level of abstraction such a distinction is not necessary,
for epistemic actions involving both kinds of properties in a
uniform way.

baldoni
105

S ::= 0 | A | E | S ||S MAS configuration

E ::= 0 environment configuration
| Pow(x, y, α) x has the power to observe y’s α
| Obs(x, y, α) x is observing y’s α
| E ||E composition

A ::= 0 agent configuration
| Bxφ belief of x
| Ixφ intention of x
| A ||A composition

φ ::= formulas
obs(x, y, α) x is observing y’s α

| coord(x, y, α) x coordinates with y through α
| check(x, y, α) check whether x is observing y’s α
| drop(x, y, α) prevent x from observing y’s α
| done(x, α) x executes actions α
| ¬φ | Ixφ | Bxφ structured formulas

Fig. 2. Syntax of MAS configurations.

Elements φ are formulas which can be believed and/or
intended by an agent. Atomic formulas are: (i) obs(x, y, α),
used to express that x is observing executions of α by y, (ii)
coord(x, y, α), used to express that x coordinates its behaviour
with y by observing executions of α, (iii) check(x, y, α),
used to check if x is observing executions of α by y, (iv)
drop(x, y, α), used to prevent x from observing executions
of α by y, and (v) done(x, α), used to express that x
executes/has executed α. Moreover, formulas can be structured
ones: ¬φ expresses negation of φ, Ixφ and Bxφ that agent x
intends/believe φ. A number of assumptions on such formulas
are clearly to be made as usual, e.g. that ¬¬φ ≡ φ or
Bxφ ≡ BxBxφ. This amounts to define a logics for beliefs
and intentions: however, this aspect can be treated in a fairly
standard way, therefore its details are not reported for they play
no significant role in this paper – they are more about agent
internal architecture rather than agent interaction through the
environment.

On top of this syntax for MAS configurations, we introduce
an operational semantics, describing what are the allowed
evolutions of such configurations. This describes the dynamic
aspects of our model, providing details on preconditions and
effects to epistemic actions and observation in general. As
usual [26], operational semantics is defined by a set of
rewrite rules, reported in Figure 3. Each rule defines a MAS
configuration to be rewritten as interaction of the agent with
the s-env occurs: the left-hand side reports preconditions, the
right-hand effects, and the above part (when present) further
preconditions for the applicability of the rule.

Rule [CHECK] says that if agent z intends to check/know
if x is observing y’s action α, and this is the case, then such
an intention will be turned into a positive belief. Dually, rule
[N-CHECK] deals with the case where this is not the case
(Obs(x, y, α) does not occur in the system configuration), so

that z will believe that obs(x, y, α) does not hold.
Rule [DROP-Y] says that if agent z knows that x is

observing y’s action α (which is the case) and wants to stop
him, term Obs(x, y, α) is dropped from the environment and
z’s belief is updated correspondingly. By rule [DROP-N] we
deal with the similar case, but supposing the agent had a wrong
belief (x was not actually observing y’s actions α), which is
dealt with trivially.

Rule [ASK] is about agent z willing that x observes y’s
actions α: if this is allowed (Pow(x, y, α)), x’s beliefs will be
updated along with the environment state.

Rule [OBS-R] and [OBS-F] recursively define how the
environment broadcasts information about an action to all
the observers. When agent x wants to execute α, each ob-
server y (rule [OBS-R]) will be recursively added the belief
Bydone(x, α): when none needs to be managed, x intention
can simply become a fact, that is, he will believe the action
to be executed ([OBS-F]).

The final, trivial rule [AGENT] is used to represent the fact
that at any given time some agent configuration can change
autonomously, thus modelling any belief revision or intention
scheduling.

Notice that formulas Bzcoord(x, y, α) or Izcoord(x, y, α)
never appear in this semantics. This is because the fact that
an agent coordinates its behaviour with another is not an
aspect influencing/influenced by the environment: it is rather
a mental property characterising the forms of observation-
based coordination an agent participates to thanks to the s-env
support.

D. Formalising Observation-based Coordination

We put to test our formal framework showing how the forms
of coordination devised in Subsection II-C can be represented
through our syntax.

baldoni
106

Obs(x, y, α) ∈ S
Izcheck(x, y, α) ||S → Bzobs(x, y, α) ||S [CHECK]

Obs(x, y, α) /∈ S
Izcheck(x, y, α) ||S → Bz¬obs(x, y, α) ||S [N-CHECK]

−
Izdrop(x, y, α) ||Bzobs(x, y, α) ||Obs(x, y, α) ||S → Bz¬obs(x, y, α) ||S [DROP-Y]

Obs(x, y, α) /∈ S
Izdrop(x, y, α) ||Bzobs(x, y, α) ||S → Bz¬obs(x, y, α) ||S [DROP-N]

−
Izobs(x, y, α) ||Pow(x, y, α) ||S → Bzobs(x, y, α) ||Pow(x, y, α) ||Obs(x, y, α) ||S [ASK]

Ixdone(x, α) ||S → Ixdone(x, α) ||S′

Ixdone(x, α) ||Obs(y, x, α) ||S → Ixdone(x, α) ||Obs(y, x, α) ||Bydone(x, α) ||S′ [OBS-R]

Obs(y, x, α) /∈ S
Ixdone(x, α) ||S → Bxdone(x, α) ||S [OBS-F]

−
A ||S → A′ ||S [AGENT]

Fig. 3. Operational Semantics of Agent Configurations.

Given two agents x and y, an action α, and the system
configuration S we introduce the following predicates:

• Unilateral

Uni(x, y, α, S) ,

Obs(x, y, α) ∈ S ∧ Ixcoord(x, y, α)

Agent x is in unilateral coordination with y (in system
S, through action α), if he is observing y’s actions α and
he intends to coordinate with y through such actions.

• Unilateral with Awareness

UniAW (x, y, α, S) ,

Uni(x, y, α, S) ∧ Byobs(x, y, α) ∈ S

The form of coordination is unilateral with awareness if
x is in unilateral coordination with y and if y knows to
be observed by x.

• Bilateral

Bi(x, y, α, S) , Uni(x, y, α, S) ∧ Uni(y, x, α, S)

x and y are in bilateral coordination if they are both in
unilateral coordination with each other.

• Reciprocal

Rec(x, y, α, S) ,

UniAW (x, y, α, S) ∧ UniAW (y, x, α, S)

x and y are in reciprocal coordination if they are both in
unilateral coordination with awareness.

• Mutual

Mut(x, y, α, S) , Rec(x, y, α, S)
∧ BxIycoord(y, x, α) ∧ ByIxcoord(x, y, α)

Finally, x and y are in mutual coordination if they are in
reciprocal coordination and, moreover, they both know
that the other agent intends to coordinate through the
observed action α.

IV. CONCLUSIONS

In this paper we focused on some properties of MAS
infrastructures for cognitive agents supporting forms of self-
organisation, based on the BIC theory. Even though not
dealing with internal aspects of agents, we consider agents
provided with some cognitive capabilities, differently from
current environment-based approach in self-organisation, typ-
ically based on reactive agents (e.g. ants).

MASs built on top of a BIC-oriented infrastructure exhibit
the basic enabling principles which typically characterise self-
organisation:

• Local interaction — In the framework there is an explicit
notion of locality of interaction: agent observability and
awareness are related to a notion of locality that is
dynamic, depending on the adopted topology, which is
defined by the infrastructure and can be changed over

baldoni
107

time. The enacting of Pow(x, y, α) rules by MAS in-
frastructure implicitly defines such a topology in terms
of what actions can be observed by whom at any time.

• Decentralised control — Control is decentralised and
encapsulated in cognitive agents, which exhibits an au-
tonomous behaviour with respect to the environment.

• Emergent patterns — Patterns of MAS self-organisation
emerge from agent interacting through a suitably shaped
environment, by exploiting observation capabilities pro-
vided by the infrastructure.

Besides these basic principles, other interesting aspects that are
often considered when dealing with self-organising systems
can be re-casted in our framework:

• Individual-based models — Individual-based models are
currently considered the right approach for the quanti-
tative and qualitative study of SOS [26], tracking each
individual state and behaviour. The model presented in
the paper is indeed individual-based, since a MAS is
composed by individual agents with their own cognitive
state and behaviour, eventually playing different kinds of
roles inside the system.

• Openness (in the thermodynamic acceptation) — In order
to keep thermodynamic systems self-organised there must
be a continuous flow of energy from the environment:
our MASs are characterised by an analogous form of
openness, since agents are meant to exchange information
within the environment – which is outside the system –
by means of perceptions and actions.

• Non-linearity and feedbacks — Non-linearity and (pos-
itive) feedback that typically characterise SOS can be
obtained with forms of mutual coordination, realising
kind of non-linear chains of observation and awareness.

• Dissipative structures — In our framework, infrastructure
structure / services exploited by agents for enhancing
their observation / awareness capability can play the role
of dissipative structures, typically considered in SOS [27]
as a key to export entropy out of the system.

Most of complex system scenarios calls for systems with self-
organising capabilities but immersed in an environment that
can have (social) norms and constraints, typically specified at
design time and that enforced at runtime. We think that in
order to cope with such (apparently conflicting) aspects, MAS
infrastructure can play a key role [28]. On the one side, it
can provide mechanisms and abstractions enabling forms of
interaction enabling MAS self-organisation – thus promoting
system’s unpredictability. On the other side, such mechanisms
and abstractions can play a regulatory role, by enforcing laws
and norms constraining and ruling agent interaction space –
thus promoting system’s predictability. We believe that our
approach will support MAS engineers in finding the most
suitable balance between such a dilemma of “global vs. local
control” in MASs.

REFERENCES

[1] F. Nedelec, T. Surrey, and É. Karsenti, “Self-organisation and forces in
the microtubule cytoskeleton,” Current Opinion in Cell Biology, vol. 15,

no. 2, pp. 118–124, Feb. 2003.
[2] P.-P. Grassé, “La reconstruction du nid et les coordinations inter-

individuelles chez bellicositermes natalensis et cubitermes sp. la theorie
de la stigmergie: essai d’interpretation des termites constructeurs,”
Insectes Sociaux, vol. 6, pp. 41–83, 1959.

[3] H. Haken, Synergetics: An Introduction. Nonequilibrium Phase Tran-
sition and Self-Organization in Physics, Chemistry, and Biology.
Springer-Verlag, 1977.

[4] O. Holland and C. Melhuis, “Stigmergy, self-organization, and sorting
in collective robotics,” Artificial Life, vol. 5, no. 2, pp. 173–202, 1999.

[5] G. Di Marzo Serugendo, A. Karageorgos, O. F. Rana,
and F. Zambonelli, Eds., Engineering Self-Organising Systems:
Nature-Inspired Approaches to Software Engineering, ser. LNAI,
vol. 2977. Springer-Verlag, May 2004. [Online]. Available:
http://www.springer.de/cgi/svcat/search book.pl?isbn=3-540-21201-9

[6] G. Di Marzo Serugendo, N. Foukia, S. Hassas, A. Karageorgos,
S. Kouadri Mostéfaoui, O. F. Rana, M. Ulieru, P. Valckenaers,
and C. Van Aart, “Self-organisation: Paradigms and applications,” in
Engineering Self-Organising Systems, ser. LNAI, G. Di Marzo Seru-
gendo, A. Karageorgos, O. F. Rana, and F. Zambonelli, Eds.
Springer-Verlag, May 2004, vol. 2977, pp. 1–19. [Online]. Available:
http://www.springer.de/cgi/svcat/search book.pl?isbn=3-540-21201-9

[7] D. Capera, M.-P. Gleizes, and P. Glize, “Self-organizing agents for
mechanical design,” in Engineering Self-Organising Systems, ser. LNAI,
G. Di Marzo Serugendo, A. Karageorgos, O. F. Rana, and F. Zambonelli,
Eds. Springer-Verlag, May 2004, vol. 2977, pp. 169–185. [Online].
Available: http://www.springer.de/cgi/svcat/search book.pl?isbn=3-540-
21201-9

[8] T. D. Seeley, “When is self-organization used in biological systems?”
Biological Bulletin, vol. 202, pp. 314–318, 2002.

[9] Hadeli, P. Valckenaers, C. Zamfirescu, H. Van Brussel, B. Saint Germain,
T. Hoelvoet, and E. Steegmans, “Self-organising in multi-
agent coordination and control using stigmergy,” in Engineering
Self-Organising Systems, ser. LNAI, G. Di Marzo Serugendo,
A. Karageorgos, O. F. Rana, and F. Zambonelli, Eds. Springer-
Verlag, May 2004, vol. 2977, pp. 105–123. [Online]. Available:
http://www.springer.de/cgi/svcat/search book.pl?isbn=3-540-21201-9

[10] R. Tolksdorf and R. Menezes, “Using swarm intelligence in Linda,” in
Engineering Societies in the Agents World IV, ser. LNAI, A. Omicini,
P. Petta, and J. Pitt, Eds. Springer-Verlag, June 2004, vol. 3071, pp.
49–65, 4th International Workshop (ESAW 2003), London, UK, 29–31
Oct. 2003. Revised Selected and Invited Papers. [Online]. Available:
http://www.springer.de/cgi/svcat/search book.pl?isbn=3-540-22231-6

[11] C. Castelfranchi, “When doing is saying – the theory of
behavioral implicit communication,” 2003, draft. [Online]. Available:
http://www.istc.cnr.it/doc/62a 716p WhenDoingIsSaying.rtf

[12] B. Nardi, Ed., Context and Consciousness: Activity Theory and Human
Computer Interaction. Cambridge, MA: MIT Press, 1996.

[13] E. Hutchins, Cognition in the Wild. Cambridge, MA: MIT Press, 1995.
[14] P. Watzlavich, J. Beavin Bavelas, and D. D. Jackson, Pragmatics of

Human Communication: A Study of Interactional Patterns, Pathologies,
and Paradoxes. New York: W.W. Norton & Co., 1967.

[15] H. V. D. Parunak, S. Brueckner, M. Fleischer, and J. Odell, “A de-
sign taxonomy of multi-agent interactions,” in Agent-Oriented Software
Engineering IV, ser. LNCS, P. Giorgini, J. Müller, and J. Odell, Eds.
Springer-Verlag, 2004, pp. 123–137, 4th International Workshop (AOSE
2003), Melbourne, Australia, 15 July 2003, Revised Papers.

[16] M. Mamei and F. Zambonelli, “Self-organization in multi-
agents systems: A middelware approach,” in Engineering Self-
Organising Systems, ser. LNAI, G. Di Marzo Serugendo,
A. Karageorgos, O. F. Rana, and F. Zambonelli, Eds. Springer-
Verlag, May 2004, vol. 2977, pp. 233–248. [Online]. Available:
http://www.springer.de/cgi/svcat/search book.pl?isbn=3-540-21201-9

[17] FIPA, FIPA Communicative Act Library Specification, 2000,
http://www.fipa.org.

[18] B. J. Grosz and S. Kraus, “Collaborative plans for complex group
action,” Artificial Intelligence, vol. 86, pp. 269–357, 1996.

[19] A. S. Rao, “A unified view of plans as recipes,” in Contemporary
Action Theory, G. Hölmstrom-Hintikka and R. Tuomela, Eds. Kluwer
Academic Publishers, 1997, vol. 2: Social Action.

[20] C. Castelfranchi, “Modelling social action for AI agents,” Artificial
Intelligence, vol. 103, pp. 157–182, 1998.

[21] ——, “Engineering social order,” in Engineering Societies in the Agents
World, ser. LNAI, vol. 1972. Springer-Verlag, Dec. 2000, pp. 1–18, 1st

baldoni
108

International Workshop (ESAW’00), Berlin (Germany), 21 Aug. 2000,
Revised Papers.

[22] R. Conte and M. Paolucci, Reputation in Artificial Societies. Social
Beliefs for Social Order. Boston: Kluwer Academic Publisher, 2002.

[23] R. Conte and C. Castelfranchi, Cognitive and Social Action. London:
University College of London Press, 1995.

[24] M. D. Sadek, “A study in the logic of intention,” in 3rd Conference
on Principles of Knowledge Representation and Reasoning, Cambridge,
MA, USA, 1992, pp. 462–473.

[25] C. Castelfranchi and E. Lorini, “Cognitive anatomy and functions
of expectations,” in Cognitive Modeling of Agents and Multi-Agent
Interactions, 2003, workshop at IJCAI 2003. Proceedings.

[26] G. Plotkin, “A structural approach to operational semantics,” Department
of Computer Science, AArhus University, Denmark, Tech. Rep. DAIMI
FN-19, 1991.

[27] G. Nicolis and I. Prigogine, Exploring Complexity: An Introduction.
W.H. Freeman & Co., 1989.

[28] A. Omicini, A. Ricci, M. Viroli, C. Castelfranchi, and L. Tummolini,
“Coordination artifacts: Environment-based coordination for intelligent
agents,” in 3rd international Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2004), N. R. Jennings,
C. Sierra, L. Sonenberg, and M. Tambe, Eds., vol. 1. New York,
USA: ACM, 19–23 July 2004, pp. 286–293. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1018409.1018752

baldoni
109

Engineering Trust in Complex System
through Mediating Infrastructures

Alessandro Ricci
DEIS

Universit̀a di Bologna – Sede di Cesena
via Venezia 52, 47023 Cesena (FC), Italy

Email: aricci@deis.unibo.it

Andrea Omicini
DEIS

Universit̀a di Bologna – Sede di Cesena
via Venezia 52, 47023 Cesena (FC), Italy

Email: aomicini@deis.unibo.it

Abstract— Starting from the many research results on trust in
state-of-the-art literature, we first point out some open problems
related to trust in multiagent systems (MAS), focussing in
particular on the issue of the engineering of agent societies,
and on the role of agent infrastructures. Then, we discuss two
infrastructural abstractions – coordination artifacts, and agent
coordination contexts –, and show how they can be exploited for
modelling and engineering trust within MAS.

I. TRUST IN COMPLEX SYSTEM ENGINEERING

One of the most relevant problems of our contemporary
society is its dependency on information technologies systems
which are getting more and more complex and difficult to
control. Accordingly, the problem oftrust between humans
and information technology comes out from the inability
to provide simple and accessible models to make systems
behaviour somehow understandable and predictable for the
users themselves. This does not affect only end-users, but also
(and, in some sense, mostly) the engineers and developers that
are responsible of system design and construction. In partic-
ular, the difficulty of conceiving trustworthy models for the
engineering of complex and complex systems emphasises the
fact that the impetuous technological progress chararcterising
our society is a necessary but not sufficient condition for the
widespread generation and adoption of innovative processes.

As a simple example, the possibility of checking system
behaviour and functioning by inspecting its source code once
it is made available (the myth of Open Source wave) is simply
not feasible, according to current state-of-the-art models and
tools. Turning from the notion of ”program” to the notion of
”system” involves a paradigm shift: the behaviour of a program
(as a sequence of instructions of certain (virtual) machines)
is, in principle, inspectable, understandable and predictable.
Instead, it is typically not possible to formalise nor to have a
complete understanding of the behaviour of a software system
(as a collection of heterogeneous and independent components
interacting in a distributed environment) [23].

According to the current major research lines, the com-
plexity of modern and forthcoming systems can be managed
only by introducing models that account forsocieties of
heterogeneous actors (objects, components, agents, processes,
humans..) which interact and communicate in dynamic and
unpredictable environments: at least, this is a suitable model

for current web-based systems. So, trust is one of the most
important social issues for human as well as for artificial
systems: this is evident if we consider scenarios such as e-
commerce or e-government, where the edge between human
and artificial societies tends to blur: these contexts make it
clear that all the social issues involved in human societies, trust
in primis, must be faced also in the construction of complex
artificial systems.

Accordingly, the applicability (reuse) of models for human
societies in the context of artificial systems is a primary
issue, exploiting, for instance, the explaination and prediction
capabilities of theories both as a scientific and engineering
tool to validate engineering constraints of systems [22]. This
is especially important if we aim at considering trust beyond
conceptually simple applications such as digital signature or e-
commerce transactions, facing contexts where trust matters not
only for a human actor (users or engineers) w.r.t. the system,
but for every human and artificial actor that constitute system
society.

Trust is then recognised as a fundamental aspect of engi-
neering systems with MAS: however, trust characterisation and
models as found in state-of-the-art literature do not cover some
issues which we consider fundamental for the engineering of
agent societies. First, a well-defined notion of social trust is
missing: few approaches deal with an infrastructure (and then
social, objective) support to trust, being mostly focussed on
the subjective perception and modelling of trust by individuals.
Even the approaches considering forms of social trust (referred
as system-level trust in literature) fail to provide a compre-
hensive model of the trust phenomenon at the social level
(including the notion of observation, traceability of actions,
etc), limiting their approach to provide some specific mech-
anisms. Then, trust frameworks (models and mechanisms)
are focussed essentially on the behaviour of a individual
component (agent), and no account is given for characterising
trust at a systemic level, i.e. trust in a group or society of
agents in being able to achieve their social tasks. Linked to this
point, current models and mechanisms are developed mostly in
competitive contexts, where agents are totally self-interested;
instead we are interested in modelling trust in systems where
agent cooperatively work for a global (system) outcome. In
this case we have several points of view concerning trust: trust

baldoni

of the users relying on a systems of cooperating agents, trust of
the engineers in the system he designed, trust of the collectivity
of the components (agents) with respect to a specific one, trust
of an individual components (agent) of the system with respect
to the collectivity.

In this paper, then, first we extend the notion of trust to
consider also these issues, more related to an engineering
point of view on systems and based on infrastructural support
to trust. The extension will relate trust to coordination and
organisation issues, as fundamental engineering dimensions of
systems. Then, we show how some infrastructural abstractions
recently introduced for engineering of MAS coordination
and organisation – namely coordination artifacts and agent
coordination contexts – can play an effective role in defining
trust according to our wider vision.

The remainder of the paper is organised as follows: first, in
Section II a brief account of state-of-the-art models for trust
in MAS is provided; then, Section III remarks some points
missing from such models, discussing a wider characterisation
of trust including engineering issues. Accordingly, Section IV
and Section V discuss how coordination and organisation
infrastructural abstraction can play a fundamental role for
characterising this enhanced notion of trust. Finally, conclu-
sions are reported in Section VI.

II. M ODELLING TRUST IN AGENT SOCIETIES

Trust has been defined in several ways in distinct domains
(see [15] for a comprehensive survey, and [4] for a general
description). A definition that is frequently adopted in trust
models is:

“Trust is a belief an agent has that the other party
will do what it says it will (being honest and reliable)
or reciprocate (being reciprocative for the common
good of both), given an opportunity to defect to get
higher payoff”
(adapted from [1])

The various approaches to trust in MAS have been recently
classified in two main classes, for some extend in counter-
position and complimentary:individual-level trustandsystem-
level trust [15].

Roughly speaking, in individual-level trust all the burden
about trust is in charge of individual agents, and depends
on their ability to model and reason about the reciprocative
nature, reliability or honesty of their counter-parts. In system-
level trust instead the actors in the systems are forced to be
trustworthy by therules of the encounter[18] (i.e. protocols,
mechanisms) that regulate the systems. So the burden about
trust is shifted from agents to some system support, which is
realised by designing specific protocols and mechanisms of
interaction (i.e. the rules of the encounter). A typical example
are auctions.

So the point of view of individual-level trust accounts for
an agent situated in an open environment trying to choose
the most reliable interaction partner from a pool of potential
agents and deliberating which strategy to adopt on it. Fol-
lowing the classification described in [15], trust models for

individual-level can be classified in this case eitherlearning
(evolution) based, reputation basedor socio-cognitive based.
In the first, trust is viewed as an emergent property of direct
interaction between self-interested agents, who are endowed
with strategies that can cope with lying and non-reciprocative
agents. Reputation models [19] instead enable agents to gather
information in richer forms from their environment and make
rational inferences from the information obtained and their
counterparts. The models then specify strategies togather
ratings that define the trustworthiness of an agent, using
relationships existing between member of the community;
reasoning methods to gather information fromaggregation
of ratings retrieved from the community (borrowing the con-
cept of social network from sociology); and mechanisms to
promote ratings thattruly describe the trustworthiness of an
agent. Finally, the socio-cognitive models adopt a higher level
view, modelling the subjective perception of trust in terms of
cognitive constructs [3], in contrast to the quantitative view of
trust which characterises previous approaches. While the first
two models are all based on an assessment of the outcome
of interactions between agents, the basic context for socio-
cognitive approaches is that oftask delegationwhere an agent
x wishes to delegate a task to agenty. In doing so agentx
needs to evaluate the trust it can place iny by considering the
different beliefs it has about motivations of agenty.

In the overall, trust at the individual level concerns strategies
learnt over multiple interactions, the reputation of potential
interaction partners, and believed motivations and abilities
regarding the interaction. Some problems affecting these ap-
proaches have been remarked in the literature: it can be
computationally expensive for an agent to reason about all the
different factors affecting trust in its opponents; then, agents
are limited in gathering information from various sources
that populate its (open) environment. Given these limitations,
system-level trust approaches shift the focus on the rules of
encounter so as to ensure that interaction partners areforced
to be trustworthy. The mechanisms that dictate these rules of
encounter (auctions, voting, contract-nets, market mechanisms,
etc) enable agent to trust each other by virtue of the different
constraintsimposed by the system. Always following [15],
these system-level mechanisms can be classified intrust-
worthy interaction mechanisms, reputation mechanismsand
distributed security mechanisms. Mechanisms of the first class
are adopted to prevent agents from lying or speculating while
interacting (auctions are an example, see [20] for an overview);
reputation mechanisms [24] make it possible to model the
reputation of agents at system level, i.e. it is the system that
manage the aggregation and retrieval of ratings (as opposed
to reputation models which leave the task to the agents them-
selves). Finally, the latter class includes security mechanisms
and infrastructures which are considered essential for agents
to trust each other and each other communication (examples
are public key encryption and certificate infrastructures)[14],
[5].

According to [15], complex systems require both types
of trust approach, individual- and system-level. While the

baldoni
111

individual-level trustmodelsenable agent to reason about its
level of trust and of its opponents, the system-levelmecha-
nismsaim to ensure that opponents’ actions can be trusted.
It’s worth noting that this dichotomy have been remarked also
for another dimension focussing on interaction, i.e. coordina-
tion, where approaches have been classified as subjective (all
the coordination burden on agent and their capabilities) and
objective (the coordination burden in charge of abstractions
provided by suitable infrastructures)[10].

III. E XTENDING TRUST FORENGINEERING SOCIETIES

The characterisation of trust in state-of-the-art literature as
described in previous section do not give emphasis enough to
some issues that we consider as fundamental in the engineering
of agent societies. These aspects can be summed up in the
following points:

• Social Trust– We need to consider in a more general
and systematic way the support that infrastructures can
provide as a service for societies engineered on their top,
beyond specific mechanisms or protocols. This accounts
for generalising system-level trust approaches, devising
basic abstractions and services on top of which to build
trust strategies. Among such basic services, a support for
observationand traceability of both agent action, and
interaction among agents and agent-environment. These
basic services can be suitably exploited and composed
to keep track – for instance – of action history of a
specific agent, making it available to some other agents,
with the permissions to inspect such information. This in-
frastructural support is extremely effective when dealing
with open systems, with heterogeneous agents dynami-
cally participating to the activities of different societies
and organisations: infrastructures can provide services to
agent organisations to keep track and make information
available about agent performance in its interaction life,
acting in different contexts, as a kind of “criminal record”
publicly available; thus, respecting privacy of the agent,
i.e., making available only what is needed to be observed
according the type of activities the agent is going to
participate.

• Trust in Societies– individual-level and system-level
approaches share a focus on (trust on) the behaviour
of an individual agent. However, in the engineering of
complex systems it emerges the need of modelling the
notion of trust also related togroups or societiesof
agents, delegated of the execution of some social task.
More generally we are looking to a systemic acceptation
of trust: how much a system (as a structured society
of agents) can be trusted in its behaviour, in its ability
to achieve the global objectives as outcomes of the
cooperative work of its agents? So we are interested
in characterising trust also in cooperative scenarios, not
only in competitive ones as it typically happens in the
literature.

• Constructive Trust– As in the system-level (objective)
case, we are interested in infrastructural abstractions

(services) for creating and managing trust. However,
differently from system-level approaches, we characterise
these abstractions not only asbarriers, basically creating
trust by enforcingnormsconstraining agent actions and
interactions. We are interested also in framing trust from
a constructivepoint of view: I can have trust in an system
because of the availability of services which provide some
(objective) guarantees that not only certain interaction
cannot happen, but also that some social tasks can be
effectively executed, specifying for instance the work-
flow or plan useful for achieving the global objective.
Considering system-level approaches, it is like modelling
trust on the rules of encounters which make it possible
to achieve some social goal.

• Trust and Organisation– As mentioned in the context of
system-level trust, security support has a certain impact
on trust in a system [14]. However, when engineering
complex systems, some important aspects concerning
security – such as access control – cannot be dealt
without considering the organisation and coordination
model adopted [11]. As an important example, Role-
Based Access Control (RBAC) models and architectures
– well-known in the research literature concening security
in complex information systems, and recently introduced
also in MAS [21] – make it possible to model security
(access control) policies in the context of role-based
organisational models. Accordingly, the presence of such
an organisational model can have a significant impact on
trust models and services, which can be characterised also
considering the notions of roles and related organisational
policies.

In the overall, the social and engineering acceptation of trust
that emerges from the above points aims to be wider than
the one usually found in the literature, and can be framed in
the idea of agent societies used as metaphors to model trust in
information technology in the most general way. This includes
both trust between humans and systems – i.e. trust between
users and systems and trust between designers/engineers and
systems – and trust between systems and systems – i.e. trust
among system components and trust among components of
different systems. The interpretation of systems in terms of
societies, promoted by MAS approaches, makes it possible
to face these issues within the same conceptual framework,
adopting a uniform approach to explore general models and
solutions, relevant in computer science as well as in the other
related fields.

A possible way to bring to practice such generalised accep-
tation of trust is to relate them to the coordination and organi-
sation dimensions (and the related models) which characterise
the engineering of agent societies. In next sections we follow
this line, by presenting two infrastructural abstractions which
we have recently introduced in MAS engineering, namely
coordination artifactsand agent coordination contexts, and
discussing their role in modelling and engineering such a
notion of trust in MAS.

baldoni
112

IV. A RTIFACTS FORTRUST

From the research studies carried on in human (cooperative)
activity – mainly with Activity Theory [2], [6] – it clearly
emerges the fundamental role of tools orartifacts in the
development of (social) activities in complex systems framed
as societies [7], [16]. According to these studies, every non
trivial human activities ismediatedby some kind of artifacts.
An artifact acts as the glue among two or multiple actors,
as the tool that enables and mediates their interaction, rul-
ing / governing the resulting global and ”social” behaviour;
consequently, an artifact can be consideredthe conceptual
place encapsulating all the complexity of the social behaviour
that it enables, allowing its factorisation, explicit modeling
and engineering, and so freeing the actors of all thissocial
burden [16]. Artifacts are widespread in human society: the
language can be considered an artifact, as well as the writing,
blackboards, maps, post-its, traffic signs such as semaphores,
electoral cards or the signature on a document.

Based on this background, recentlycoordination artifacts
have been introduced as a conceptual and engineering frame-
work for MAS and agent societies [16], [12]. So the idea
here is that coordination artifacts can play a primary role for
engineering trust in MAS, providing an answer to the points
remarked in Section III.

A. Coordination Artifact Model and Framework

Coordination artifacts have been defined as embodied1

entities specialised to provide a coordination service in a
MAS [12]. As infrastructure abstractions, they are meant
to improve coordination activities automation; they can be
considered then as basic building blocks for creating effective
shared collaborative working environments, alleviating the
coordination burden for the involved agents.

As remarked for artifacts in general, human society is full
of entities like coordination artifacts, engineered by humans
in order to support and automate coordination activities: well-
known examples are street semaphores, blackboards, queuing
tools at the super-markets, maps, synchronisers and so on.

Basically, a coordination artifact(i) entails a form of me-
diation among the agents using it, and(ii) embeds and enact
effectively some coordination policy. Accordingly, two basic
aims can be identified:(i) constructive, as an abstraction es-
sential for creating/composing social activities,(ii) normative,
as an abstraction essential for ruling social activities.

From a constitutive point of view, a coordination artifact is
characterised by:

• a usage interface, defined in terms of a set ofoperations
which agents can execute in order to use the artifacts.

• a set ofoperating instructions, which formally describe
how to use the artifact in order to exploit its coordination
service.

• a coordinating behaviour, which formally describe the
coordination enacted by the artifact.

1The term embodied is used here to remark their independent existence
from the agents using them.

Then, taking the agent viewpoint, to exploit a coordination
artifact simply means to follow its operating instructions, on
a step-by-step basis.

Among the main properties which exhibit coordination arti-
facts (and which differentiate them from the agent abstraction)
we have:

• Specialisation– Coordination artifacts are specialised
in automating coordination activities. For this purpose,
they typically adopt a computational model suitable for
effective and efficient interaction management, whose
semantics can be easily expressed with concurrency
frameworks such as process algebras, Petri nets, or Event-
Condition-Reaction rules.

• Encapsulation: Abstraction and Reuse– Coordination
artifacts encapsulate a coordination service, allowing user
agents to abstract from how the service is implemented.
As such, a coordination artifact is perceived as an in-
dividual entity, but actually it can be distributed on
several nodes of the MAS infrastructure, depending on
its specific model and implementation.

• Malleability – Coordination artifacts are meant to support
coordination in open agent systems, characterised by
unpredictable events and dynamism. For this purpsose,
their coordination behaviour can be adapted and changed
dynamically, either(i) by engineers (humans) willing to
sustain the MAS behaviour, or(ii) by agents responsible
of managing the coordination artifact, with the goal
of flexibly facing possible coordination breakdowns or
evolving/improving the coordination service provided.

• Inspectability and controllability– A coordination artifact
typically supports different levels of inspectability:(i)
inspectability of its operating instructions and coordina-
tion behaviour specification, in order to let user agents
to be aware of how to use it or what coordination
service it provides;(ii) inspectability of its dynamic state
and coordination behaviour, in order to support testing
and diagnosing (debugging) stages for the engineers and
agents responsible of its management.

• Predictability and formalisability – The coordinating
behaviour of an artifact strictly follows the specifica-
tion/service for which it has been forged: given that spec-
ification and the agent interaction history, the dynamic
behaviour of the artifact can be fully predicted.

TuCSoN [13] is an example of agent coordination infras-
tructure supporting this framework:TuCSoN coordination
artifacts are calledtuple centres[9], spread over the network,
collected in the infrastructure nodes. Tuple centres technically
are programmabletuple spaces, i.e. tuple spaces [9] whose
behaviour in reaction to communicating event – the insertion,
removal, read of tuples from the spaces – can be suitably
programmed so as to realise coordination laws managing in-
teractions (ReSpecT is the language adopted for the purpose).
Tuple centres can be framed as general purpose coordination
artifacts, whose coordinating behaviour can be dynamically
customised and adapted to provide a specific coordination

baldoni
113

service.

B. Trust through Coordination Artifacts

The notion of coordination artifacts can be useful to model
trust issues as discussed in Section III.

As far as social trust is concerned, coordination artifacts
can play the role of the abstractions provided by the in-
frastructure with suitable expressiveness and effectiveness to
construct trust articulated strategies. For instance, coordination
artifacts can be used as embodiment of the rules of encounter,
being concrete shared tools which are used by the agents to
interact according a specified protocol. Operating instructions
in this case describe what agents are meant to do in order to
participate to the protocols (according to their role), artifact
state keeps track of the state of the interactions, and artifact
behaviour is concerned with the management of the interaction
according to the coordinating behaviour described by the
protocol.

More generally, as mediating abstractions, coordination
artifacts can be used for supporting theobservation and
traceability of agent actions and interactions. They can be
designed so as to log / trace all the interactions of interest
and related events occuring during its usage, in order to be
inspected / observed as interaction history concerning not
only a specific agent but also the agent society itself. Actions
and interactions history can be useful then to build trust
models concerning both the overall society, and the individual
participating agents. Such trust models could be created both
by humans and agents by inspecting and reasoning about the
information reified in the artifact interaction history, made
available by suitable infrastructure services. From this point of
view then, coordination artifacts can provide a useful support
for constructing trust model for individual-level approaches
based both on socio-cognitive capabilities and on quantitative
formulations: heterogeneous agents could exploit the same
information to build different kind of models.

Then, the basic properties characterising coordination arti-
facts impact on modelling both trust in societies and construc-
tive trust. In this case modelling trust toward a system or a
society in charge of a specific social task exploiting a specific
coordination artifact accounts for two aspects:(i) trusting
the effectiveness of the coordination artifact for achieving
the objective of the social task;(ii) trusting agents in being
able to use effectively the coordination artifact. Artifact basic
properties – concerning inspectability, predictability, etc. –
along with the fact that the correctness of artifact behaviour
could be formally verifiable and then “certifiable”, with the
availability of operating instructions and of a clear interface
– could impact effectively in both previous points. It is worth
remarking that this introduces a relatively new ontological
framework on which formulating trust, introducing new no-
tions such asusability of the artifact, thecomplexityof their
operating instructions, and so on. This could change and enrich
the cognitive model adopted by socio-cognitive approach to
model trust of agents towards the environment.

Finally, from an engineering point of view, inspectability
and controllability properties of artifacts could impact signif-
icantly on the trust toward a system engineered in terms of
coordination artifacts, both for a designer and for a user of
the system. In particular,controllability – which includes also
the possibility of making online tests and diagnosis of artifact
behaviour and then of the social core of the system, despite of
its openness – is an aspect that heavily contributes to determine
trust in the system.

V. CONTEXTS FORTRUST

The notion ofagent coordintation context(ACC) has been
introduced in [8] as infrastructural abstraction modelling the
presence of an agent inside its (organisational) environment.
As for coordination artifacts, ACCs have been brought into
practice within theTuCSoN infrastructure [17]. Here we show
their relevance for modelling and engineering the last aspects
of trust mentioned in previous chapter, i.e. trust related to
organisation and security.

A. The Agent Coordination Context Abstraction

The ACC abstraction can be framed as the conceptual
place where to set the boundary between the agent and the
environment, so as to encapsulate theinterface that enables
agent actions and perceptions inside the environment. A useful
metaphor for understanding ACCs is thecontrol room [8].
According to this metaphor, an agent entering a new envi-
ronment is assigned its own control room, which is the only
way in which it can perceive the environment, as well as the
only way in which it can interact. The control room offers the
agent a set of admissible inputs (lights, screens,. . .), admissible
outputs (buttons, cameras,. . .). How many input and output
devices are available to agents, of what sort, and for how
much time is what defines the control roomconfiguration, that
is the specific ACC. So, the ACC abstraction can be fruitfully
exploited to model thepresenceor position of an agent within
an organisation, in terms of its admissible actions with respect
to organisation resources and its admissible communications
toward the other agents belonging to the organisation.

ACCs are meant to be inspectable: it must be possible for
an agent to know what kind of ACC it can obtain from an
organisation – and so what roles and related actions it is
allowed to do.

Two basic stages characterise the ACC dynamics:ACC
negotiationandACC use. An ACC is meant to be negotiated
by the agents with the MAS infrastructure, in order to start a
working sessioninside an organisation. The agent requests an
ACC specifying which roles to activate inside the organisation.
The request can fail for instance if an agent requests to play a
role for which he is not allowed, or which is not compatible
with the other roles currently actively played by the agent
inside the organisation. If the agent request is compatible with
(current) organisation rules, a new ACC is created, configured
according to the characteristics of the specified roles, and then
released to the agent for active playing. The agent then can

baldoni
114

use the ACC to interact with the organisation environment, by
exploiting the actions/perceptions enabled by the ACC.

The ACC framework has been used to model and implement
Role-Based Access Control architecture on top ofTuCSoN
infrastructure [17].

B. Trust through Agent Coordination Contexts

ACCs – supported by suitable infrastructures – guarantee
the enforcement of organisational rules and related security
policy inside a social environment: they can act as a barriers
for agents, filtering only the patterns of actions and perceptions
allowed according to their roles. This clearly impacts on the
trust that we can have on the systems, providing a gener-
alisation of the security mechanism mentioned for system-
level trust. In particular ACC abstraction makes it possible to
link trust with the organisational model adopted: agents can
participate to activities only by playing some roles through
dynamically requested ACC enabling and ruling their actions.
In the overall, we can frame an ACC as the embodiment of a
contract established between a specific agent and the system
(organisation) where he is actively playing.

Each organisation can define (and change dynamically) the
set of available roles and rules, and then the set of ACCs which
can be released to agents. This information can be then made
available – by means of suitable infrastructure services – for
creating trust in agents and users aiming at participating at or
using the systems.

VI. CONCLUSION

The notion of trust has a deep impact on the future of
artificial systems. How trust is modelled, how it is engineered
– that is, how it is actually built into artificial systems – are
then crucial issues that are already discussed in literature, and
in particular in MAS literature. In this paper, we first shortly
summarised the many different acceptations of the trust notion,
then we pointed out some fundamental open issues that seem
to be of particular relevance to the modelling and engineering
of trust in the context of complex artificial systems, in general,
and of MAS, in particular.

As the main contribution of this seminal paper, we adopted
the viewpoint of MAS infrastructures (as the most naturalloci
where to embed trust in MAS) and showed how two different
infrastructural abstractions recently introduced (coordination
artifacts and agent coordination contexts) can be exploited for
modelling and engineering trust within MAS.

REFERENCES

[1] P. Dasgupta. Trust as a commodity. In D. Gambetta, editor,Trust:
Making and Breaking Cooperative Relations, pages 49–72. Blackwell,
1998.

[2] Y. Engestr̈om, R. Miettinen, and R.-L. Punamaki, editors.Perspectives
on Activity Theory. Cambridge University Press, 1999.

[3] R. Falcone and C. Castelfranchi. Social trust: a cognitive approach. In
R. Falcone, M. P. Singh, and Y. Tan, editors,Trust in Cyber-Societies,
Integrating the Human and Artificial Perspectives, volume 2246 of
LNCS. Springer-Verlag, 2001.

[4] R. Falcone, M. P. Singh, and Y. Tan, editors.Trust in Cyber-Societies,
Integrating the Human and Artificial Perspectives, volume 2246 of
LNCS. Springer-Verlag, 2001.

[5] Y. Mass and O. Shehory. Distributed trust in open multi-agent systems.
In R. Falcone, M. P. Singh, and Y. Tan, editors,Trust in Cyber-Societies,
Integrating the Human and Artificial Perspectives, volume 2246 of
LNCS. Springer-Verlag, 2001.

[6] B. Nardi, editor. Context and Consciousness: Activity Theory and
Human-Computer Interaction. MIT Press, 1996.

[7] B. Nardi. Studying contexts: A comparison of activity theory, situated
action models and distributed cognition. In B. Nardi, editor,Context
and Consciousness: Activity Theory and Human-Computer Interaction.
MIT Press, 1996.

[8] A. Omicini. Towards a notion of agent coordination context. In
D. Marinescu and C. Lee, editors,Process Coordination and Ubiquitous
Computing, pages 187–200. CRC Press, 2002.

[9] A. Omicini and E. Denti. From tuple spaces to tuple centres.Science
of Computer Programming, 41(3):277–294, Nov. 2001.

[10] A. Omicini and S. Ossowski. Objective versus subjective coordination
in the engineering of agent systems. In M. Klusch, S. Bergamaschi,
P. Edwards, and P. Petta, editors,Intelligent Information Agents: An
AgentLink Perspective, volume 2586 ofLNAI: State-of-the-Art Survey,
pages 179–202. Springer-Verlag, Mar. 2003.

[11] A. Omicini, A. Ricci, and M. Viroli. Formal specification and enactment
of security policies through Agent Coordination Contexts.Electronic
Notes in Theoretical Computer Science, 85(3), Aug. 2003.

[12] A. Omicini, A. Ricci, M. Viroli, and C. Castelfranchi. Coordination
artifacts: Environment-based coordination for intelligent agents. In
Proceedings of the 3rd International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2004), New York, USA, 2004.
ACM Press.

[13] A. Omicini and F. Zambonelli. Coordination for Internet application
development.Autonomous Agents and Multi-Agent Systems, 2(3):251–
269, Sept. 1999. Special Issue: Coordination Mechanisms for Web
Agents.

[14] S. Poslad, M. Calisti, and P. Charlton. Specifying standard security
mechanisms in multi-agent systems. InWorkshop on Deception, Fraud
and Trust in Agent Societies, pages 122–127, Bologna, Italy, 2002.
AAMAS 2002, Proceedings.

[15] S. D. Ramchurn, D. Hunyh, and N. R. Jennings. Trust in multi-agent
systems.Knowledge Engineering Review, 2004. to appear.

[16] A. Ricci, A. Omicini, and E. Denti. Activity Theory as a framework for
MAS coordination. In P. Petta, R. Tolksdorf, and F. Zambonelli, editors,
Engineering Societies in the Agents World III, volume 2577 ofLNCS,
pages 96–110. Springer-Verlag, Apr. 2003. 3rd International Workshop
(ESAW 2002), Madrid, Spain, 16–17 Sept. 2002. Revised Papers.

[17] A. Ricci, M. Viroli, and A. Omicini. Agent coordination contexts: From
theory to practice. In R. Trappl, editor,Cybernetics and Systems 2004,
Vienna, Austria, 2004. Austrian Society for Cybernetic Studies. 17th
European Meeting on Cybernetics and System Research (EMCSR 2004),
Vienna, Austria, 2004. Proceedings.

[18] J. Rosenschein and G. Zlotkin.Rules of Encounter: Designing Conven-
tions for Automated Negotiation among Computers. MIT Press, 1994.

[19] J. Sabater and C. Sierra. REGRET: A reputational model for gregarious
societies. In1st International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2002), pages 475–482, Bologna, Italy,
2002. ACM Press. Proceedings.

[20] T. Sandholm. Distributed rational decision making. In G. Weiss and
S. Sen, editors,Multi-Agent Systems: A Modern Approach to Distributed
Artificial Intelligence, pages 299–330. AAAI/MIT Press, 1999.

[21] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-
based access control models.IEEE Computer, 29(2):38–47, 1996.

[22] M. Viroli and A. Omicini. Coordination as a service: Ontological
and formal foundation. Electronic Notes in Theoretical Computer
Science, 68(3), Mar. 2003. 1st International Workshop “Foundations of
Coordination Languages and Software Architecture” (FOCLASA 2002),
Brno, Czech Republic, 24 Aug. 2002. Proceedings.

[23] P. Wegner. Why interaction is more powerful than algorithms.Commu-
nication of ACM, 40(5):80–91, May 1997.

[24] G. Zacharia and P. Maes. Trust through reputation mechanisms.Applied
Artificial Intelligence, (14):881–907, 2000.

baldoni
115

Abstract — The Semantic Web is an effort to build a global

network of machine-understandable information. Software
agents should be enhanced with tools and mechanisms to
autonomously access this information. The objective of this
paper is to present a toolkit for extracting a subset of the
relations expressed in an OWL document. It generates data
structures and artifacts that can be handy for autonomous
software agents to access semantically annotated information
provided on the web.

Index Terms — Semantic web, ontology, object-oriented
systems, autonomous agents, multi-agent systems.

I. INTRODUCTION

emantic web promises to build a network of machine
understandable information [4],[5],[9]. But to become a

widespread reality, this vision has to demonstrate innovative
applications, and so it is fundamental for its success to have
software libraries and toolkits, enabling autonomous software
agents to interface this huge source of information.

The OWLBeans toolkit, which is going to be presented in
this paper, does not deal with the whole complexity of a
semantically annotated web. Instead, its purpose is precisely
to cut off this complexity, and provide simple artefacts to
access structured information.

In general, interfacing agents with the Semantic Web
implies the deployment of an inference engine or a theorem
prover. In fact, this is the approach we’re currently following
to implement an agent-based server to manage OWL
ontologies [15].

Instead, in many cases, autonomous software agents
cannot, or don’t need to, face the computational complexity of
performing inferences on large, distributed information
sources. The OWLBeans toolkit is mainly thought for these
agents, for which an object-oriented view of the application

Manuscript received September 27, 2004.
M. Tomaiuolo is with DII, University of Parma, Parco Area delle Scienze

181A, 43100, Parma, Italy (phone: +39 0521 905712; e-mail:
tomamic@ce.unipr.it).

F. Bergenti is with DII, University of Parma, Parco Area delle Scienze 181A,
43100, Parma, Italy (phone: +39 0521 905708; e-mail: bergenti@ce.unipr.it).

A. Poggi is with DII, University of Parma, Parco Area delle Scienze 181A,
43100, Parma, Italy (phone: +39 0521 905728; e-mail: poggi@ce.unipr.it).

P. Turci is with DII, University of Parma, Parco Area delle Scienze 181A,
43100, Parma, Italy (phone: +39 0521 905708; e-mail: turci@ce.unipr.it).

domain is enough to complete their tasks.
The software artefacts produced by the toolkit, i.e., mainly

JavaBeans [12] and simple metadata representations used by
JADE [10], are not able to express all the relationships that
are present in the source. But in some context this is not
required. Conversely, especially if software and hardware
resources are very limited, it is often preferable to deal only
with common Java interfaces, classes, properties and objects.

The main functionality of the presented toolkit is to extract
a subset of the relations expressed in an OWL document for
generating a hierarchy of JavaBeans reflecting them, and
possibly an associated JADE ontology to represent metadata.
But, given its modular architecture, it also allows other kinds
of conversions, for example to save a JADE ontology into an
OWL file, or to generate a package of JavaBeans from the
description provided by a JADE ontology.

II. INTERMEDIATE MODEL

The main objective of the OWLBeans toolkit is to extract
JavaBeans from an OWL ontology. But to keep the code
maintainable and modular, we decided to create first an
internal, intermediate representation of the ontology. In fact
our tool, translating OWL ontologies to JavaBeans or vice-
versa, can be viewed as a sort of compiler, and virtually every
compiler builds its own intermediate model before producing
the desired output. In compilers, this helps to separate the
problems of the parser from those of the lexical analyzer and
moreover, the same internal representation can so be used to
produce different outputs. In the case of the OWLBeans
toolkit, the intermediate model can be used to generate the
sources of some Java classes, a JADE ontology, or an OWL
file. And the intermediate model itself can be filled with data
coming from different sources, obtained, for example, by
reading an OWL file or by inspecting a JADE ontology.

A. Requirements

The main features we wanted for the internal ontology
representation were:

• Simplicity: it had to include only few simple classes, to
allow a fast and easy traversal of the ontology. The
model had to be simple enough to be managed in
scripts and templates; in fact, one of the main design
goals was to have a model to be passed to a template
engine, for generating the code directly from it.

OWLBeans
From ontologies to Java classes

Michele Tomaiuolo, Federico Bergenti, Agostino Poggi, Paola Turci

S

baldoni

• Richness: it had to include the information needed to
generate JavaBeans and all other wanted artefacts. The
main guideline in the whole design was to avoid
limiting the translation process. The intermediate
model had to be as simple as possible, though not
creating a metadata bottleneck in the translation of an
OWL ontology to JavaBeans. All metadata needed in
the following steps of the translation pipeline had to be
represented in the intermediate model. Moreover,
though it had to be used mainly by template engines to
generate JavaBeans, it had to be general enough to
allow other uses, too.

• Primitive data-types: it had to handle not only classes,
but even primitive data-types, as both Java and OWL
classes can have properties with primitive data-types
as their range.

• External references: often ontologies are built
extending more general classifications an taxonomies,
for example to detail the description of some products
in the context of a more general trade ontology. We
wanted our model not to be limited to single
ontologies, but to allow the representation of external
entities, too: classes had to extend other classes,
defined locally or in other ontologies, and property
ranges had to allow not only primitive data-types and
internal classes, but even classes defined in external
ontologies.

One of the main issues regarded properties, as they are
handled in different ways in description logics and in object
oriented systems. While they are first level entities in
Semantic Web languages, they are more strictly related to
their “owner” class in the latter model. In particular, property
names must be unique only in the scope of their own class in
object-oriented systems, while the have global scope in
description logics. Our choice was to have properties “owned”
by classes. This allows an easier manipulation of the meta-
objects while generating the code for the JavaBeans, and a
more immediate mapping of internal description of classes to
the desired output artefacts.

B. Other models

Before deciding to create a specific internal representation
of the ontology, we evaluated two existing models: the one
provided by Jena [13], which of course is very close to the
Semantic Web model, and the one used internally by JADE,
which instead is quite close to the object-oriented model.

The first one had the obvious advantage to be the most
complete model of the ontology. According to Brooks, “the
world is its own best model” [22]. Nevertheless it was too
complex for our scopes. For example, we wanted it to be
handled by template engines, to generate Java code directly
from it.

The other one, used by JADE, had most of the features we
desired. But it had some major disadvantages, too. First of all,

it cannot easily manage external entities; though ontologies
can be organized in hierarchies, it is not possible to define the
namespace of classes. Another issue is that the classes of a
JADE ontology are distinguished as predicates or concepts,
and predicates for example cannot be used as range of
properties; this matches the semantics of the FIPA SL
language [6], but could be a problem for the representation of
generic OWL ontologies, as such distinction does not exist in
the language. The third, and perhaps most important, issue is
it does not allow exploring the tree of classes and properties
from the outside.

The internal field to store classes defined in the Ontology
class, for example, is marked private; obviously, this is a good
choice to encapsulate data, but no accessor methods are
provided to get the names of all classes. Other problems
regard the ObjectSchema class that does not provide a way to
get all directly extended super-classes and all locally defined
slots. Finally, the CardinalityFacet class does not expose
minimum and maximum allowed values.

In fact, the JADE ontology model was designed to allow
automatic marshalling and un-marshalling of objects from
FIPA ACL messages [8], and not to reason about ontology
elements.

Obviously, these limitations of the JADE ontology model,
proved to be a serious problem when trying to save it in an
OWL file, too. This facet will be discussed in more detail in
the following sections.

C. Core classes

The intermediate model designed for the OWLBeans
toolkit is made of just few, very simple classes. The simple
UML class diagram shown in figure 1 describes the whole
intermediate model package.

OWLResource

OWLOntology

OWLReference

OWLProperty

minCardinality : int
maxCardinality : int

+domain+range

OWLClass

1..*1..*
1..*

+parent

1..*

1..*1..*

Fig. 1 - Class diagram of the intermediate model

The root class here is OwlResource, which is extended by
all the others. It has just two fields: a local name, and a
namespace, which are intended to store the same data as
resources defined in OWL files. All the resources of the

baldoni
117

intermediate model – refernces, ontologies, classes and
properties – are implicitly OwlResource objects.

OwlReference is used as a simple reference, to point to
super-classes and range types, and don’t add anything to the
OwlResource class definition. It is defined to underline the
fact that classes cannot be used directly as ranges or parents.

OwlOntology is nothing more than a container for classes.
In fact it owns a list of OwlClass objects. It inherits from
OwlResource the name and namespace fields. In this case the
namespace is mandatory and is supposed to be the namespace
of all local resources, for which in fact it is optional.

OwlClass represents OWL classes. It points to a list of
parents, or super-classes, and owns a list of properties. Each
parent in the list is a OwlReference object, i.e. a name and a
namespace, and not an OwlClass object. Its name must be
searched in the owner ontology to get the real OwlClass
object. Properties instead are owned by the OwlClass object,
and are stored in the properties list as instances of the
OwlProperty class.

OwlProperty is the class representing OWL properties. As
in UML, their name is supposed to be unique only in the
scope of their “owner” class. Each property points to a
domain class and to a range class or data-type. Both these
fields are simple OwlReference objects: while the first
contains the name of the owner class, the latter can indicate
an OwlClass, or an XML data-type, according to the
namespace. Two more fields are present in this class:
minCardinality and maxCardinality. They are used to store
respectively the minimum and maximum allowed cardinality
for the property values. Moreover, a minCardinality = 0 has
the implicit meaning of an optional property, while
maxCardinality = 1 has the implicit meaning of a functional
property.

Probably you have already noticed the design choice to
have indirect references to OwlClass objects in some places,
in particular to point to super-classes and to allowed ranges.
This decision has two main advantages over direct Java
references to final objects: parsing an OWL file is a bit
simpler, as references can point to classes that are not yet
defined, and above all in this way super-classes and ranges
are not forced to be local classes, but can be references to
resources defined somewhere else.

III. PLUGGABLE READERS AND WRITERS

In our toolkit, the intermediate model is used as the glue to
put together the various components needed to perform the
desired, customizable task. These components are classes
implementing one of the two interfaces (OwlReader and
OwlWriter) representing ontology readers and writers,
respectively. Not very surprisingly, readers can build an
intermediate representation of the ontology, acquiring
metadata from different kinds of sources, while writers can
use this model to produce the desired artefacts.

The current version the toolkit provides readers to inspect

OWL files and JADE ontologies, and writers to generate
OWL files, source files of JavaBeans and JADE ontologies.

A very simple, yet handy application is provided, which
can be customized with pluggable readers and writers, thus
performing all the possible translations. While not pluggable
into the main application, other components are implemented
to provide additional features. For example, one of them
allows to instantiate at runtime a JADE ontology and add
classes to it from an intermediate ontology representation.
Another component allows to load the generated code for
JavaBeans directly into the Java Virtual Machine, using an
embedded Java scripting engine. These components can be
exploited, for example, by agent-based applications designed
to be ontology agnostic, like some of those deployed in the
Agentcities network [1],[2].

A. OWL files

Two classes are provided to manage OWL files.
OwlFileReader allows reading an intermediate model from an
OWL file, while OwlFileWriter allows saving an intermediate
model to an OWL file. These two classes respectively
implement the OwlReader and OwlWriter interfaces and are
defined in the package confining all the dependencies from
the Jena toolkit.

The latter process is quite straightforward, as all the
information stored in the intermediate model can easily fit
into an OWL ontology, in particular into a Jena OntModel
object. But one particular point deserves attention. While the
property names in the OWLBeans model are defined in the
scope of their owner class, all OWL properties instead are
first level elements and share the same namespace. This poses
serious problems if two or more classes own properties with
the same name, and above all if these properties have
different ranges or cardinality restrictions.

In the first version of the OWLBeans toolkit, this issue is
faced in two ways: if a property is defined by two or more
classes then a complex domain is created in the OWL
ontology for it; in particular the domain is defined as the
union of all the classes that share the property, using an
owl:UnionClass element. Cardinality restrictions are specific
to classes in both models, and are not an issue. Currently, the
range is instead assigned to the property by the first class that
defines it, and is kept constant for the other classes in the
domain. But this obviously could be incorrect in some cases.
Using some class-scoped owl:allValuesFrom restrictions
could solve most of the problems, but nevertheless difficulties
would arise in the case of a property defined in some classes
as a data-type property, and somewhere else as an object
property.

Another mechanism allows to optionally use the class
name as a prefix for the names of all its properties, hence
automatically enforcing different names for properties defined
in different classes. Obviously this solution is appropriate
only for ontologies where names can be decided arbitrarily;

baldoni
118

moreover it is appropriate when resulting OWL ontologies
will be used only to generate JavaBeans and JADE ontologies,
as in this case the leading class name would be automatically
stripped off by the OwlFileReader class.

The inverse process, i.e. converting an OWL ontology into
the intermediate representation, is instead possible only under
very restrictive limitations, mainly caused by the rather strong
differences between Semantic Web and object oriented
languages. In fact, only few, basic features of the OWL
language are currently supported.

Basically, the OWL file is first read into a Jena OntModel
object and then all classes are analyzed. In this step all
anonymous classes are just discarded. For each one of the
remaining classes, a corresponding OwlClass object is created
in the internal representation. Then all properties listing the
class directly in their domain are considered and added to the
intermediate model as OwlProperty objects. Here, each
defined property points to a single class as domain and to a
single class or data-type as range. Set of classes are not
actually supported. Data-type properties are distinguished in
our model by the namespace of their range, which is
http://www.w3.org/2001/XMLSchema#. The only handled
restrictions are owl:cardinality, owl:minCardinality and
owl:maxCardinality, which are used to set the minCardinality
and maxCardinality fields of the new OwlProperty object.
The rdfs:subClassOf element is handled in a similar way:
only parents being simple classes are taken into
consideration, and added to the model.

All the rest of the information eventually being in the file is
lost in the translation.

Inverse conversions are applied when writing an
intermediate ontology model into an OWL file. Table 1
provides a synthetic view of these mappings.

OWL OWLBeans
owl:Class OwlClass
owl:ObjectProperty,
owl:DatatypeProperty

OwlProperty

rdfs:range OwlProperty.range
rdfs:domain OwlProperty.domain
owl:FunctionalProperty OwlProperty.maxCardinality
owl:minCardinality OwlProperty.minCardinality
owl:maxCardinality OwlProperty.maxCardinality
owl:cardinality OwlProperty.minCardinality,

OwlProperty.maxCardinality

Tab. 1 – Mappings between OWL/OWLBeans elements

B. Template engine

Rather than generating the source files of the desired
JavaBeans directly from the application code, we decided to
integrate a template engine in our project. This eventually
helped to keep the templates out of the application code, and
centralized in specific files, where they can be analyzed and
debugged much more easily. Moreover, new templates can be
added and existing ones can be customized without modifying

the application code.
The chosen template engine was Velocity [19], distributed

under LGPL licence from the Apache Group. It’s an open
source project enjoying widespread use. While its fame
mainly comes from being integrated into the Turbine web
framework, where it is often preferred to other available
technologies, as JSP pages, it can be effortlessly integrated in
custom applications, too.

Velocity template engine integration is performed through
the VelocityFormatter class. This class hides all the
implementation details of applying desired templates to an
intermediate ontology and encapsulates all the dependencies
from the Velocity engine. Two different types of templates are
allowed, ontology templates and class templates. While the
first ones only need an OwlOntology as parameter, the other
ones also need an OwlClass. Ontology templates are used to
generate as output the source code of JADE ontologies, for
example. Class templates are instead applied to each
OwlClass of the ontology to generate a Java interface and a
corresponding implementation class, for example.

Currently, the OWLBeans toolkit provides templates to
generate the source file for JavaBeans and JADE ontologies.
JavaBeans are organized in a common package where, first of
all, some interfaces mapping the classes defined in the
ontology are written. Then, for each interface, a Java class is
generated, implementing the interface and all accessor
methods needed to get or set properties.

Creating an interface and then a separate implementing
Java class for each ontology class is necessary to overcome
the single-inheritance limitation that applies to Java classes.
Each interface, instead, can extend an arbitrary number of
parent interfaces. The corresponding class is eventually
obliged to provide an implementation for all the methods
defined by one of the directly or indirectly implemented
interfaces.

The generated JADE ontology file can be compiled and
used to import an OWL ontology into the JADE framework,
thus allowing agents to communicate about the concepts
defined in the ontology. The JavaBeans will be automatically
marshalled and un-marshalled from ACL messages in a
completely transparent way.

Translating an intermediate ontology to Java classes cuts
off some details of the metadata level. In particular, no checks
are imposed on the cardinality of property values, but only a
rough distinction is made to associate non-functional
properties (where maxCardinality is >1) with a Java List, to
hold the sequence of values. Moreover, the class of the items
of the list is not enforced, so the range information associated
with the OwlProperty object is effectively lost. Instead,
generating the JADE ontology does not impose the same loss
of range and cardinality metadata. But nonetheless, the
available set of primitive data-types is poor compared to the
one of XML Schema, used in the intermediate model.

baldoni
119

XSD Java JADE
xsd:Boolean boolean BOOLEAN
xsd:decimal, xsd:float, xsd:double double FLOAT
xsd:integer, xsd:nonNegativeInteger,
xsd:positiveInteger, xsd:nonPositiveInteger,
xsd:negativeInteger, xsd:long, xsd:int, xsd:short,
xsd:byte, xsd:unsignedLong, xsd:unsignedInt,
xsd:unsignedShort, xsd:unsignedByte

int INTEGER

xsd:base64Binary, xsd:hexBinary Object BYTE_SEQ
UENCE

xsd:dateTime, xsd:time, xsd:date,
xsd:gYearMonth, xsd:gYear, xsd:gMonthDay,
xsd:gDay, xsd:gMonth, xsd:duration

Date DATE

xsd:string, xsd:normalizedString, xsd:anyURI,
xsd:token, xsd:language, xsd:NMTOKEN,
xsd:Name, xsd:NCName

String STRING

Tab. 2 – Mappings between XSD/Java types

The XML data-types supported by the OWL syntax are

listed in [16]. For each of them a corresponding primitive
Java or JADE type must be provided. Both these conversions
are not zero-cost transformations, as the target types do not
express the precise meaning of their corresponding XML
Schema types. Table 2 shows these conversions, as they are
defined in the default templates; the “Java” column indicates
the Java data types, while in the “JADE” column indicates the
name of the corresponding constants defined in the JADE
BasicOntology class.

C. Scripting engine

An additional template is provided to put the source of all
interfaces, classes and JADE ontologies together, into a single
stream or file, where the package and imports statements are
listed only once, at the beginning of the whole file. This
proves useful to load generated classes directly into the Java
Virtual Machine.

In fact, if a Java scripting engine like Janino [11] is
embedded into the toolkit, it can be exploited as a special
class-loader, to load classes directly from Java source files
without first compiling them into byte-code. Source files
don’t even need to be written to the file system first. So, at the
end, JavaBeans can be loaded into the Java Virtual Machine
directly from an OWL file.

Obviously, pre-compiled application code will not be able
to access newly loaded classes, which are not supposed to be
known at compile time. But the same embedded scripting
engine can be used to interpret some ontology specific code,
which could be loaded at run time from the same source of
the OWL ontology file, for example, or provided to the
application in other ways.

Among the various existing Java scripting engines we
tested for integration into the toolkit, currently Janino proves
to be the best choice. It is developed as open source project
and released under LGPL license. It is an embedded compiler
that can read Java expressions, blocks, class bodies and sets of
source files. The Java byte-code it generates can be loaded
and executed directly into the Java Virtual Machine.

While other similar engines were not able to correctly read
the source files produced by the template engine, Janino made
its work promptly. For example, Beanshell was not able to
parse source files of interfaces with multiple inheritance,
which instead is an important feature required by the
OWLBeans toolkit. Thanks to its features, and to its clean
design, Janino is gaining popularity. Drools, a powerful rule
engine for Java, uses Janino to interpret rule scripts, and even
Ant and Tomcat can be configure to use Janino as their
default compiler.

The possibilities open by embedding a scripting engine into
an agent system are numerous. For example, software agents
for e-commerce often need to trade goods and services
described by a number of different, custom ontologies. This
happens in the Agentcities network, where different basic
services can be composed dynamically to create new
compound services.

To increase adaptability, these agents should be able to
load needed classes and code at runtime. The OWLBeans
package allows them to load into the Java Virtual Machine
some JavaBeans directly from an OWL file, together with the
ontology-specific code needed to reason about the new
concepts.

D. JADE ontologies

Probably one of most interesting application of the
Semantic Web is its use by autonomous software agents,
which could use ontologies to reason and manipulate their
environment. Their world would be made of resources and
services described in ontologies, which would not be supposed
to be known a priori, at compile time. The OWLBeans toolkit
provides software agents the ability to load ontologies and
defined classes at run time, just when they’re needed or when
they’re discovered.

Apart from using the embedded Velocity template engine
and the embedded Janino scripting engine to load generated
classes at run time into the Java Virtual Machine, another
component is provided to instantiate an empty JADE ontology
at run time, and populate it with classes and properties read
from an OWL file, or from other supported sources.

This proves useful when the agent doesn’t really need
JavaBeans, but can use the internal ontology model of JADE
to understand the content of received messages, and to write
the content of messages to send to others. The generated
JADE ontology is very similar to the one produced by the
Velocity template, but it doesn’t need to be compiled, as no
source code is generated. Instead Java objects are manipulated
to create a new instance of the Ontology class containing all
the classes and properties of the intermediate model.

The class providing this functionality is defined in the
JadeOwlOntology class. This class does not implement the
OwlWriter interface, but extends the Ontology class of JADE,
adding the ability to read classes from an OWLBeans
intermediate model.

baldoni
120

Table 3 shows how the entities of one model can be
mapped to the other.

Creating and populating a JADE ontology from an
intermediate model is quite a straightforward process. In fact
an OwlClass can be mapped without particular difficulties
into a JADE Schema, while an OwlProperty can easily fit into
a JADE SlotDescriptor (a private inner class of
ObjectSchemaImpl, which can be inspected through some
public methods of the outer class). The only significant
difference is JADE making explicit the AggregateSchema, for
the range of slots with maxCardinality > 1, and having a
TypedAggregateFacet (i.e. a restriction) to enforce the
schema of the single elements. Moreover, in a JADE
ontology, maxCardinality and minCardinality are added to a
slot through a CardinalityFacet, while in the OWLBeans
model, for simplicity, they are two fields of the OwlProperty
class.

JADE OWLBeans
ObjectSchema OwlClass
SlotDescriptor OwlProperty
SlotDescriptor.schema OwlProperty.range
SlotDescriptor.optionality OwlProperty.minCardinality
CardinalityFacet.cardMin OwlProperty.minCardinality
CardinalityFacet.cardMax OwlProperty.maxCardinality
TypedAggregateFacet.type OwlProperty.range

Tab. 3 – Mappings between JADE/OWLBeans elements

It is interesting to note that JADE defines facets, which are
very similar to OWL restrictions, and which instead are
missing in the OWLBeans model. This was a precise design
choice to make traversing the model easier, without
sacrificing needed metadata but probably loosing a bit of
generality.

The JadeReader class encapsulates all the dependencies
from the JADE framework This class does exactly what its
name suggests: it “reads” an instance of a JADE ontology,
and generates an intermediate model from it. Unfortunately,
as we already underlined, JADE ontologies are not designed
to be traversed from the outside. To be useful to inspect the
content of an ontology, the model JADE uses internally lacks
few accessor methods:
• it lacks a method, in the Ontology class, to obtain the

name of all defined classes;
• it lacks a method in the ObjectSchema class to get the

name of all defined properties;
• finally it lacks two methods to read minimum and

maximum allowed cardinality, in CardinalityFacet.
In the implementation of the JadeReader class, these

limitations are circumvented by using the reflection API of
Java to access hidden fields and methods when necessary.
Obviously, this solution can only be thought as a temporary,
very limited and well documented, patch to allow JADE
ontologies to be fully inspected from external code. In fact,

since encapsulation is broken, even minimal modifications to
the internal state representation of one of the three listed
classes would stop JadeReader from working. We valued the
possibility to export JADE ontologies to OWL files important
enough to be released very soon, and thus creating such a
patch proved necessary.

Anyway, the proposed modifications to the ontology API of
JADE are going to be submitted to the JADE Board and to
the JADE community for their introduction into the official
distribution. They would make the API useful not only to
extract the content of ACL messages, or to compose such
messages, but even to inspect the described entities and
discover some simple relationships among them. Moreover,
they would not break backward compatibility, as just few
methods need to be added or made public. Nothing else needs
to be changed.

A particularity of the JadeReader class is that it silently
adds some classes to the ontology it generates. These classes
represent some basic FIPA types for ontology classes. FIPA
SL in fact distinguishes ontology classes as concepts,
representing objects of the model, or predicates, representing
beliefs about the objects. Then there are more specific
concepts representing actions, i.e. some tasks that agents can
be requested to execute. The last basic class that’s silently
added is a concept for agent identifiers, or AIDs, a class used
for assigning unique names to FIPA agents [7]. Figure 2,
captured from the Protégé ontology editor [17],[18], shows
the hierarchy of the basic FIPA classes.

Fig. 2 – Basic FIPA classes

When the JADE ontology is traversed, each one of its
schemas is checked for being an instance of a particular basic
class and, accordingly, it is placed in the right branch of the
generated hierarchy of classes. For example, a
ConceptSchema class will be mapped into an OwlClass class
having “Concept” among its ancestors, one of the classes
added by default to the intermediate ontology soon after its
creation. Similarly, a PredicateSchema class will instead
have “Predicate” among its direct parents, or among its
ancestors.

IV. USING THE TOOLKIT

A customizable Java application is distributed with the
toolkit. Thanks to the modular design of the whole project,
this application is very simple, yet allowing to exploit almost

baldoni
121

all the functionalities of the toolkit. It simply takes the
intermediate model produced by a pluggable reader, and feeds
with it a pluggable writer. In this way, it can be used to
realize all the format conversions made possible by
combining available readers and writers. It can be used to
generate Java classes from an OWL file, or to save a JADE
ontology into an OWL file, or even to generate some
JavaBeans adhering the descriptions provided by a JADE
ontology.

The application can be execute from a shell, using the
following syntax:

java it.unipr.aot.owl.Main [–input <input>] [-
output <output>] [-package <package>] [-ontology
<ontology>] [-imports (true|false)]

The optional arguments include the input file, the output
folder for generated sources, the name of the package and the
one of the ontology, and a flag to process imported ontologies.
The last option is currently not yet implemented.

The following subsections show an example of execution.
The first subsection shows the input ontology. The following
one shows the source code generated by applying the default
templates.

A. Input OWL ontology

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syn tax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schem a#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns="http://www.owl-ontologies.com/unnamed.ow l#"
 xml:base="http://www.owl-ontologies.com/unnamed.o wl">
 <owl:Ontology rdf:about="">
 <rdfs:label>Test</rdfs:label>
 </owl:Ontology>
 <owl:Class rdf:ID="AID">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Concept"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="Price">
 <rdfs:subClassOf rdf:resource="#Concept"/>
 </owl:Class>
 <owl:Class rdf:ID="Tradeable">
 <rdfs:subClassOf rdf:resource="#Concept"/>
 </owl:Class>
 <owl:Class rdf:ID="Predicate"/>
 <owl:Class rdf:ID="Book">
 <rdfs:subClassOf rdf:resource="#Tradeable"/>
 </owl:Class>
 <owl:Class rdf:ID="AgentAction">
 <rdfs:subClassOf rdf:resource="#Concept"/>
 </owl:Class>
 <owl:ObjectProperty rdf:ID="price">
 <rdf:type rdf:resource="http://www.w3.org/2002/ 07/owl#FunctionalProperty"/>
 <rdfs:domain rdf:resource="#Tradeable"/>
 <rdfs:range rdf:resource="#Price"/>
 </owl:ObjectProperty>
 <owl:DatatypeProperty rdf:ID="authors">
 <rdfs:range rdf:resource="http://www.w3.org/200 1/XMLSchema#string"/>
 <rdfs:domain rdf:resource="#Book"/>
 </owl:DatatypeProperty>
 <owl:FunctionalProperty rdf:ID="currency">
 <rdfs:domain rdf:resource="#Price"/>
 <rdfs:range rdf:resource="http://www.w3.org/200 1/XMLSchema#string"/>
 <rdf:type rdf:resource="http://www.w3.org/2002/ 07/owl#DatatypeProperty"/>
 </owl:FunctionalProperty>
 <owl:FunctionalProperty rdf:ID="value">
 <rdfs:range rdf:resource="http://www.w3.org/200 1/XMLSchema#double"/>
 <rdf:type rdf:resource="http://www.w3.org/2002/ 07/owl#DatatypeProperty"/>
 <rdfs:domain rdf:resource="#Price"/>
 </owl:FunctionalProperty>
 <owl:FunctionalProperty rdf:ID="title">
 <rdfs:domain rdf:resource="#Book"/>
 <rdf:type rdf:resource="http://www.w3.org/2002/ 07/owl#DatatypeProperty"/>
 <rdfs:range rdf:resource="http://www.w3.org/200 1/XMLSchema#string"/>
 </owl:FunctionalProperty>
</rdf:RDF>

baldoni
122

B. Generated Java source code

package bookstore;

import jade.util.leap.List;
import jade.content.onto.*;
import jade.content.schema.*;

public interface Price extends jade.content.Concept {

 public double getValue();
 public void setValue(double value);

 public String getCurrency();
 public void setCurrency(String currency);
}

public interface Tradeable extends jade.content.Concept {

 public Price getPrice();
 public void setPrice(Price price);
}

public interface Book extends Tradeable {

 public String getTitle();
 public void setTitle(String title);

 public List getAuthors();
 public void setAuthors(List authors);
}

public class PriceImpl implements Price {

 String currency;
 public String getCurrency() { return currency; }
 public void setCurrency(String currency) { this.c urrency = currency; }

 double value;
 public double getValue() { return value; }
 public void setValue(double value) { this.value = value; }
}

public class TradeableImpl implements Tradeable {

 Price price;
 public Price getPrice() { return price; }
 public void setPrice(Price price) { this.price = price; }
}

public class BookImpl implements Book {

 String title;
 public String getTitle() { return title; }
 public void setTitle(String title) { this.title = title; }

 List authors;
 public List getAuthors() { return authors; }
 public void setAuthors(List authors) { this.autho rs = authors; }

 Price price;
 public Price getPrice() { return price; }
 public void setPrice(Price price) { this.price = price; }
}

public class BookstoreOntology extends Ontology {
 public static final String ONTOLOGY_NAME = "Books tore";

 // The singleton instance of this ontology
 private static Ontology theInstance = new Booksto reOntology();
 public static Ontology getInstance() { return the Instance; }

 // Vocabulary
 public static final String TRADEABLE = "Tradeable ";
 public static final String TRADEABLE_PRICE = "pri ce";
 public static final String PRICE = "Price";
 public static final String PRICE_VALUE = "value";

baldoni
123

 public static final String PRICE_CURRENCY = "curr ency";
 public static final String BOOK = "Book";
 public static final String BOOK_TITLE = "title";
 public static final String BOOK_AUTHORS = "author s";

 public void addSlot(ConceptSchema schema, String slot, TermSchema type, int minCard, int maxCard) {
 int optionality = (minCard > 0) ? ObjectSchema. MANDATORY : ObjectSchema.OPTIONAL;
 if (maxCard == 1) schema.add(slot, type, option ality);
 else schema.add(slot, type, minCard, maxCard);
 }

 public void addSlot(PredicateSchema schema, Strin g slot, TermSchema type, int minCard, int maxCard) {
 int optionality = (minCard > 0) ? ObjectSchema. MANDATORY : ObjectSchema.OPTIONAL;
 if (maxCard == 1) schema.add(slot, type, option ality);
 else schema.add(slot, type, minCard, maxCard);
 }

 public BookstoreOntology() {
 super(ONTOLOGY_NAME, BasicOntology.getInstance());

 try {
 PrimitiveSchema stringSchema = (PrimitiveSche ma)getSchema(BasicOntology.STRING);
 PrimitiveSchema floatSchema = (PrimitiveSchem a)getSchema(BasicOntology.FLOAT);
 PrimitiveSchema intSchema = (PrimitiveSchema) getSchema(BasicOntology.INTEGER);
 PrimitiveSchema booleanSchema = (PrimitiveSch ema)getSchema(BasicOntology.BOOLEAN);
 PrimitiveSchema dateSchema = (PrimitiveSchema)getSchema(BasicOntology.DATE);
 ConceptSchema aidSchema = (ConceptSchema)getS chema(BasicOntology.AID);

 // Adding schemas
 ConceptSchema tradeableSchema = new ConceptSc hema(TRADEABLE);
 add(tradeableSchema, Class.forName("bookstore .TradeableImpl"));

 ConceptSchema priceSchema = new ConceptSchema (PRICE);
 add(priceSchema, Class.forName("bookstore.Pri ceImpl"));

 ConceptSchema bookSchema = new ConceptSchema(BOOK);
 add(bookSchema, Class.forName("bookstore.Book Impl"));

 // Adding properties
 addSlot(priceSchema, PRICE_VALUE, doubleSchem a, 0, 1);
 addSlot(priceSchema, PRICE_CURRENCY, stringSc hema, 0, 1);

 addSlot(tradeableSchema, TRADEABLE_PRICE, pri ceSchema, 0, 1);

 addSlot(bookSchema, BOOK_TITLE, stringSchema, 0, 1);
 addSlot(bookSchema, BOOK_AUTHORS, stringSchem a, 0, -1);

 // Adding parents
 bookSchema.addSuperSchema(tradeableSchema);

 } catch (Exception e) { e.printStackTrace(); }
 }
}

V. CONCLUSIONS

The OWLBeans toolkit we presented in this paper ease the
access to semantically annotated information by software
agents. Its main functionality is to generate JavaBeans and
other artefacts, that can be used by agents needing just an
object-oriented model of their application domain.

Given its modular design, the toolkit is able to process
various kinds of input and produce different outputs. So,
while the main purpose is to extract relations from an OWL
ontology and generate JavaBeans, it can also be used to
perform all other conversions allowed by combining available
readers and writers.

Possible improvements include a better management of
name conflicts that can arise while converting properties from
an object oriented system to an ontology, where their scope is

not limited to a single class. A new reader should be added to
build an ontology model, using Java reflection to analyze a
package of Java classes and extract needed metedata.

Above all, some relations among ontologies should be
recognized and handled. In fact, having a hierarchy of
ontologies, with terms of an ontology referencing terms of
parent ontologies, is quite common.

REFERENCES
[1] The Agentcities Network. http://www.agentcities.net/
[2] Agentcities.RTD. http://www.agentcities.org/EURTD/
[3] BeanShell. http://www.beanshell.org
[4] Berners-Lee, Tim. Hendler, James, Lassila, Ora. The Semantic Web,

Scientific American, May 2001.
[5] Berners-Lee, Tim Semantic Web Road map, September, 1998. Available

from http://www.w3.org/DesignIssues/Semantic.html
[6] FIPA spec. XC00008. FIPA SL Content Language Specification.

Available from http://www.fipa.org/specs/fipa00008/

baldoni
124

[7] Available from FIPA spec. XC00023. FIPA Agent Management
Specification. Available from http://www.fipa.org/specs/fipa00023/

[8] FIPA spec. XC00037. FIPA Communicative Act Library Specification.
Available from http://www.fipa.org/specs/fipa00037/

[9] Hendler, James, Berners-Lee, Tim and Miller, Eric Integrating
Applications on the Semantic Web, Journal of the Institute of Electrical
Engineers of Japan, Vol 122(10): 676-680, 2002.

[10] JADE. Available from http://jade.tilab.it
[11] Janino. http://janino.net
[12] JavaBeans. http://java.sun.com/products/javabeans/
[13] Jena Semantic Web Framework. http://jena.sourceforge.net/
[14] Java Server Pages. http://java.sun.com/products/jsp/
[15] OWL. http://www.w3c.org/OWL

[16] http://www.w3.org/TR/2003/WD-owl-semantics-20030203/syntax.html
[17] Protégé Ontology Editor and Knowledge Acquisition System.

http://protege.stanford.edu/
[18] Protégé OWL Plugin - Ontology Editor for the Semantic Web.

http://protege.stanford.edu/plugins/owl/
[19] Velocity http://jakarta.apache.org/velocity/
[20] W3C Web Pages on Semantic Web. http://www.w3.org/2001/sw/
[21] XML Schema http://www.w3.org/XML/Schema
[22] Brooks, R.A., How to build complete creatures rather than isolated

cognitive simulators, in K. VanLehn (ed.), Architectures for Intelligence,
pp. 225-239, Lawrence Erlbaum Assosiates, Hillsdale, NJ, 1991.

baldoni
125

Spatial Computing: the TOTA Approach

Marco Mamei, Franco Zambonelli

DISMI - Università di Modena e Reggio Emilia
Via Allegri 13, 42100 Reggio Emilia – ITALY

mamei.marco@unimore.it, franco.zambonelli@unimore.it

Abstract. Spatial abstractions promise to be basic necessary ingredients for
a novel “spatial computing” approach to distributed systems development
and management, suitable to tackle the complexity of modern distributed
computing scenarios and promoting self-organization and self-adaptation.
In this paper, we analyze the key concepts underlying spatial computing
and show how they can be organized around a sort of “spatial computing
stack”, in which a variety of apparently very diverse mechanisms and
approaches can be properly framed. Following, we present our current
research work on the TOTA middleware as a representative example of a
general-purpose approach to spatial computing. In particular, we discuss
how TOTA can be exploited to support the development and execution of
self-organizing and self-adaptive spatial computing applications.

1. Introduction

During the nineties, most researches in distributed computing have focused on the
“network of workstations” scenario [CouDK94]. However, in the past few years, a
number of novel scenarios have emerged including: (i) micro-networks, i.e., networks of
low-end computing devices typically distributed over a geographically small area (e.g.,
sensor networks [Est02], smart dusts [Pis00] and spray computers [Zam04]); (ii)
ubiquitous networks, i.e., networks of medium-end devices, distributed over a
geographically bounded area, and typically interacting with each other via short/medium
range wireless connections (pervasive computing systems and smart environments
[GelSB02] and cooperative robot teams); (iii) global networks, characterized by high-end
computing systems interacting at a world-wide scale (the physical Internet, the Web, P2P
networks [RipIF02] and multiagent systems ecologies [Kep02].

Despite clear dissimilarities in structure and goals, one can recognize some key
common characteristics distinguishing the above scenarios from more traditional ones:
• Large Scale: the number of nodes and, consequently, the number of components

involved in a distributed application is typically very high and, due to decentralization,
hardly controllable. It is not possible to enforce a strict control over their
configuration (consider e.g., the nodes of a P2P network) or to directly control them
during execution (consider e.g., the nodes of a sensor network distributed in a
landscape).

baldoni

• Network dynamism: the activities of components will take place in network whose
structure derives from an almost random deployment process, likely to change over
time with unpredictable dynamics. This may be due to factors such as environmental
contingencies, failures (very likely e.g., in sensor networks and pervasive computing
systems), and mobility of nodes (as e.g. in robot teams and in networks of smart
appliances). In addition, at the application level, software components can be of an
ephemeral or temporary nature (as e.g. the peers of a P2P network).

• Situatedness: The activities of components will be strongly related to their location in
either a physical or a virtual environment. On the one hand, situatedness can be at the
very core of the application goal (as e.g. in sensor networks and pervasive computing
systems devoted to improve our interaction with the physical world). On the other
hand, situatedness can relate to the fact that components can take advantage of the
presence of a structured virtual environment to organize the access to distributed
resources (as e.g., in P2P data sharing networks).

The first two characteristics compulsory require systems to exhibit – both at the network
and at the application level – properties of self-organization and self-adaptation (or
generally, “self-*” properties). In fact, if the dynamics of the network and of the
environment compulsory require dynamic adaptation, the impossibility of enforcing a
direct control over each component of the system implies that such adaptation must occur
without any human intervention, in an autonomic way. The last characteristic calls for an
approach that elects the environment, its spatial distribution, and its dynamics, to primary
design dimensions. In any case, the three aspects are strictly inter-related, in that the
enforcement of self-* properties cannot abstract from the capability of the system to
become “context-aware”, i.e., to have components perceive the local properties of the
environment in which they are situated and adapt their behavior accordingly.

In the past few years, a variety of solutions exploiting specific self-* properties to
solve specific application problems for large-scale systems in dynamic networks are being
proposed [Dim04]. The question of whether it is possible to devise a single unifying
conceptual approach, applicable with little or no adaptations to a variety of application
problems and to scenarios as diverse as P2P networks and local networks of embedded
sensors, is still open.

In this paper, we identify the important role that will likely be played in that process
by spatial abstractions, and by their adoption as building blocks for a novel general-
purpose “spatial computing” approach for distributed system development and
management. A spatial computing approach – by abstracting the network as a continuum
space and by having application level activities expressed in terms of sensing the
properties of space and navigating in it – can effectively deal with network dynamics in
large scale systems, can facilitate the integration of variety of self-* properties in
distributed systems, and also suit systems whose activities are situated in an environment.

The remainder of this paper elaborates on spatial computing and is organized as
follows. Section 2 introduces the basic concepts underlying spatial computing and
discusses their relations with self-* properties. Section 3 proposes a framework around
which to organize the basic abstractions and mechanisms involved in spatial computing.
Section 4 presents our current research work on the TOTA middleware, as a
representative example of a general-purpose approach to spatial computing. Section 5
concludes by sketching a rough research agenda in the area.

baldoni
127

2. Spatial Computing

The key principles underlying spatial computing are that:
(i) the central role of the network – a discrete system of variously interconnected nodes

– evolves into a concept of space – i.e., an abstraction of a metric continuum built
over the network;

(ii) all application-level activities are abstracted as taking place in such space, and rely
on the capability of application components of locally perceiving (and possibly
influencing) the local properties of space;

In particular, in spatial computing, any type of networked environment is hidden below
some of virtual metric n-dimensional space, mapped as an overlay over the physical
network. The nodes of the network are assigned a specific area of the virtual space, and
are logically connected to each other accordingly to the spatial neighborhood relations.
Accordingly, each and every entity in the network, being allocated in some nodes of the
network, is also automatically situated in a specific position in space.

In this way, components in the network become “space-aware”. On the one hand, they
perceive their local position in space as well as the local properties of space (e.g., the
locally available data and services) and possibly change them. On the other hand, the
activities of components in that space are related to some sort of “navigation” in that
space, which may include moving themselves to a specific different position of space or
moving data and events in space according to “geographical” routing algorithms. The
primary way to refer to entities in the network is thus by “position”, i.e., any entity is
characterized by being situated in a specific position in the physical space.

The above characteristics notably distinguish spatial computing from traditional
distributed computing models. In transparent distributed computing models [CouDK94,
ChiC91], components are identified by logical names, applications abstract from the
presence of a distributed environment, and only a priori known interaction patterns can be
effectively supported. This makes them unable to deal with large-scale systems and with
network dynamics. In network-aware models [Wal97], components are typically aware of
executing in a network and are identified by their location in it (e.g.., the IP). This enables
dealing also with applications executing in large-scale networks, but still call for an
explicit and complex handling of dynamic changes in the network or in the position of
components. Neither of the two promotes suitable abstractions of environment.

Spatial computing overcomes the above limitations in a very effective way:
• Large scale: the size of a network does not influence the models or the mechanisms,

which are the same for a small network and for a dramatically large one.
• Network dynamics: the presence of a dynamic network is not directly perceived by

components, being hidden behind a stable structure of space that is maintained
despite network dynamism.

• Situatedness: the abstraction of space is a conceptually simple abstraction of
environment, which also perfectly matches the needs of those systems whose
activities are strictly intertwined with a physical or computational environment.

In addition, as discussed in the following sub-section, spatial computing promotes and
support self-* computing.

baldoni
128

3.1 Self-* Properties in Spatial Computing
Self-* properties, including the capability of a distributed system of self-configuring its
activity, self-inspecting and self-tuning its behavior in response to changed conditions, or
self-healing it in the presence of faults, are necessary for enabling spatial computing and,
at the same time, are also promoted by the adoption of a spatial computing model.

On the one hand, to enable a spatial computing model, it is necessary to envision
mechanisms to build the appropriate overlay spatial abstraction and to have such spatial
abstraction be coherently preserved despite network dynamics. In other words, this
requires the nodes of a network to be able to autonomously connect with each other, set
up some sort of common coordinate systems, and self-position themselves in such space.
In addition, this requires the nodes of the network to be able to self-reorganize their
distribution in the virtual space so as to (i) make room for new nodes joining the network
(i.e., allocate a portion of the virtual space to these nodes); (ii) fill the space left by nodes
that for any reason leave the network; (iii) re-allocate the spatial distribution of nodes to
react to node mobility. It is also worth outlining that, since the defined spatial structure
completely shields the application from the network, it is also possible for a system to
dynamically tune the structure of the space so as enforce some sorts of self-management
of the network, transparently to the higher application levels. As an example, load
unbalances in the network can be dynamically dealt, transparently from the application
level, by simply re-organizing the spatial structure so as to have overloaded nodes occupy
a more limited portion of the space.

On the other hand, the so defined spatial structure can be exploited by application
level components to organize their activities in space in an autonomous and adaptive way.
First of all, it is a rather assessed fact that “context-awareness” and “contextual activity”,
i.e., the capabilities of a component to perceive the properties of the operational
environment and of influencing them, respectively, are basic ingredients to enable any
form of adaptive self-organization and to establish the necessary feedback promoting self-
adaptation. In spatial computing, this simply translates in the capability of perceiving the
local properties of space, which in the end reflect some specific characteristics of either
the network or of some application-level characteristics and of changing them. Second,
one should also recognize that the vast majority of known phenomena of self-organization
and self-adaptation in nature (from ant-foraging to reaction-diffusion systems, just to
mention two examples in biology and physics) are actually phenomena of self-
organization in space, emerging from the related effect of some “component” reacting to
some property of space and, by this reaction, influencing at its turn the properties of
space. Clearly, a spatial computing model makes it rather trivial to reproduce in
computational terms such types of self-organization phenomena, whenever they may be
of some use in a distributed system.

1.1 Examples of Spatial Computing Approaches
The shift towards spatial computing is an emerging trend in diverse scenarios.

As an example, consider a sensor network scenario with a multitude of wireless
sensors randomly deployed in a landscape to perform some monitoring of environmental
conditions [Est02]. There, all activities of sensors are intrinsically of a spatial nature.
First, each sensor is devoted to local monitoring a specific portion of the physical space
(that it can reach with its sensing capabilities). Second, components must coordinate with

baldoni
129

each other based on their local positions, rather than on their IDs, to perform activities
such as detecting the presence and the size of pollution clouds, and the speed of their
spreading in the landscape. All of this implies that components must be made aware of
their relative positions in the spatial environment by self-constructing a virtual
representation of the physical space [NagSB03]. Moreover, they can take advantage of
“geographical” communication and routing protocols: messages and events flow towards
specific position of the physical/virtual space rather than towards specific nodes, thus
surviving in an self-adaptive way the possible dismissing of some nodes [RaoP03].

Another example in which spatial concepts appear in a less trivial way is world-wide
P2P computing. In P2P computing, an overlay network of peers is built over the physical
network and, in that networks, peers act cooperatively to search specific data and
services. In first generation P2P systems (e.g., Gnutella [RipIF02]), the overlay network
is totally unstructured, being built by having peers randomly connect to a limited number
of other peers. Therefore, in these networks, the only effective way to search for
information is message flooding. More recent proposals [Rat01] suggest structuring the
network of acquaintances into specific regular “spatial shapes”, e.g., a ring or an N-
dimensional torus. When a peer connects to the networks, it occupies a portion of that
spatial space, and networks with those other peers that are neighbors accordingly to the
occupied position of space. Then, data and services are allocated in specific positions in
the network (i.e., by those peers occupying that position) depending on their
content/description (as can be provided by a function hashing the content into specific
coordinates). In this way, by knowing the shape of the network and the
content/description of what data/services one is looking for, it is possible to effectively
navigate in the network to reach the required data/services. That is, P2P networks define a
spatial computing scenario in which all activities of application components are strongly
related to self-positioning themselves and navigating in an abstract metric space. It is also
worth outlining that recent researches promote mapping such spatial abstractions over the
physical Internet network so as to reflect the geographical distribution of Internet nodes
(i.e., by mapping IP addressed into geographical physical coordinates [Row04]) and,
therefore improve efficiency.

In addition to the above examples, other proposals in areas such as pervasive
computing [Bor04] and self-assembly [MamVZ04] explicitly exploit spatial abstractions
(and, therefore, a sort of spatial computing model) to organize distributed activities.

3. Framing Spatial Computing

Let us now have a more systematic look at the basic mechanisms that have been
exploited so far in distributed computing to promote self-* properties in distributed
systems. We will show that most of these mechanisms can be easily interpreted and
mapped into very similar spatial concepts, and that they can be framed in a unifying
flexible framework.

3.1. A Spatial Computing Stack
In this section, we introduce the “space-oriented” stack of levels (see Figure 1) as a

framework for spatial computing mechanisms. In each level of the stack, by introducing a
new paradigm rooted on spatial concepts, it is possible to interpret a lot of proposed self-*

baldoni
130

approaches, in different scenarios, in terms of mechanisms to manage and exploit the
space (see Table 1). On this basis, it is likely that a simply unifying model for self-*
distributed computing – leading to a single programming model and methodology and –
can be actually identified.

The “physical level” deals on how components start interacting – in a dynamic and
spontaneous way – with other components in the systems. This is a very basic expression
of self-organizing behavior which is a pre-requisite to support more complex forms of
autonomy and of self-organization at higher levels. To this end, the basic mechanism
exploited is broadcast (i.e. communicate with whoever is available). Radio broadcast is
used in sensor networks and in pervasive computing systems, and different forms of
TCP/IP broadcast (or of dynamic lookup) are used as a basis for the establishment of
overlay networks in wide area P2P computing. Whatever the case, this physical level can
be considered as in charge of enabling a component of a dynamic network application to
get into existence and to start interacting with each other.

Figure 2. A Spatial Computing Stack.

The “structure level” is the level at which a spatial structure is built and maintained

by components existing in the physical network. The fact that a system is able to create a
stable spatial structure capable of surviving network dynamics and adapting the working
conditions of the network is an important expression of self-organizing and self-adapting
behavior per se. However, such spatial structure is not a goal for the application, and it is
instead used as the basic spatial arena to support higher levels activities.

The various mechanisms that are used at the structure level in different scenarios are –
again – very similar to each other. Sensor networks as well as self-assembly systems
typically structure the space accordingly to their positions in the physical space, by
exploiting mechanisms of geographical self-localization. Pervasive computing systems, in
addition to mechanisms of geographical localization, often exploit logical spatial
structures reflecting some sorts of abstract spatial relationships of the physical world (e.g.,

Physical Level

Communication Services in
an Unstructured Network

Structure
Level

Provisioning of a Structured
(Adaptive) Space Abstraction

Mechanism of Spatial
Localization and Self-inspection

Navigation
Level

Services to Navigate in the
Spatial Abstraction

Mechanism of Local Spatial
Local Sensing and Effecting

Application
Level Self-* Spatial Computing

Applications

Mechanisms to get into
existence in a network

baldoni
131

rooms in a building) [Bor04]. Global scale systems, as already anticipated, exploits
overlay networks built over a physical communication network.

The “navigation level” regards to the basic mechanisms that components exploit to
orient their activities in the spatial structure and to sense and affect the local properties of
space. If the spatial structure has not any well-defined metric, the only navigation
approaches are flooding and gossiping. However, if some sort of metric structure is
defined at the structure level (as, e.g., in the geographical spatial structures of sensor
networks or in metric overlay networks) navigation approaches relate in following the
metrics defined at the structure level. For instance, navigation can imply the capability of
components to reach specific points (or of directing messages and data) in the space based
on simple geometric considerations as in, e.g., geographical routing [BosM01].

Starting from the basic navigation capability, is also possible to enrich the structure of
the space by propagating additional information to describe “something” which is
happening in that space, and to differentiate the properties of the space in different areas.
One can say that the structure of space may be characterized by additional types of spatial
structures propagating in it, and that components may direct their activities based on
navigating these additional structures. In other words, the basic navigation capabilities
can be used to build additional spatial structures with different navigation mechanisms.
Typical mechanisms exploited at these additional levels are computational fields and
pheromones. Despite the different inspiration of the two approaches (physical versus
biological), we emphasize that they can be modeled in a uniform way, e.g., in terms of
time-varying properties defined over a space [MamZ03]. The basic expression of self-
organization that arises here derives from the fact that the structures propagated in the
space – and thus the navigation activity of application components – are updated and
maintained to continuously reflect the actual structure and situation of the space.

 At the “application level”, navigation mechanisms are exploited by application
components to interact and organize their activities. Applications can be conveniently
built on the following self-organizing feedback loop: (i) having components navigate in
the space (i.e., discriminating their activities depending on the locally perceived structure
and properties of the space) and (ii) having components, at the same time, modifying
existing structure due to the evolution of their activities.

Depending on the types of structures propagated in the space, and on the way
components react to them, different phenomena of self-organization can be achieved and
modeled. For example, processes of morphogenesis (as needed in self-assembly, modular
robots and mobile robotics), phenomena mimicking the behavior of ant-colonies and of
flocks, phenomena mimicking the behavior of granular media and of weakly correlated
particles, as well as a variety of social phenomena, can all be modeled in terms of:
• entities getting to existence in a space;
• having a position in a structured space and possibly influencing its structure;
• capable of perceiving properties spread in that space;
• capable of directing their actions based on perceived properties of such space and

capable of acting in that space by influencing its properties at their turn.

baldoni
132

4.2 Multiple Spaces and Nested Spaces
In general, different scenarios and different application problems may require different
perceptions of space and different spatial structures. For instance, a world-wide resource-
sharing P2P network over the Internet may require – for efficiency reason – a 2-D spatial
abstraction capable of reflecting the geographical distribution of Internet nodes over the
earth surface. On the other hand, a P2P network for social interactions may require a
spatial abstraction capable of aggregating in close regions of the virtual space users with
similar interests. Also, one must consider that in the near future, the different network
scenarios we have identified will be possibly part of a unique huge network (consider that
IPv6 addressing will make it possible to assign an IP address to each and every square
millimeter on the earth surface). Therefore, it is hard to imagine that a unique flat spatial
abstraction can be effectively built over such a network and satisfy all possible
management and application needs.

 MICRO NETWORKS
Nano Networks, Sensor
Networks, Smart Dust, Self-
Assembly, Modular Robots

UBIQUITOUS NETWORKS
Home Networks, MANETs,
Pervasive Environments, Mobile
Robotics

GLOBAL NETWORKS
Internet, Web, P2P networks,
multiagent systems

“Application”
Level
(exploiting the
spatial
organization to
achieve in a self-
organizing and
adaptive way
specific app.
goals)

Spatial Queries
Spatial Self-Organization and
Differentiation of Activities
Spatial Displacement
Motion Coordination & pattern
formation

DATA: environmental data

Discovery of Services
Spatial Displacement
Coordination and Distribution of
Task and Activities
Motion coordination & pattern
formation

DATA: local resources and
environmental data

P2P Queries as Spatial Queries in
the Overlay
Motion Coordination on the
Overlay
Pattern formation (e.g., for
network monitoring)

DATA: files, services, knowledge

“Navigation”
Level
(dealing with the
mechanism
exploited by the
entities living in
the space to
direct activities
and movements
in that space)

Flooding
Gossiping (random navigation)
Geographical Routing (selecting
and reaching specific physical
coordinates)
Directed Diffusion (navigation
following sorts of computational
fields)
Stigmergy (navigation following
pheromone gradients)

Computational fields
Multi-hop routing based on
Spanning Trees
Pattern-matching and Localized
Tuple-based systems

Flooding
Gossiping (random navigation)
Metric-based (moving towards
specific coordinates in the
abstract space)
Gossiping (random navigation)
Stigmergy (navigation following
pheromone gradients distributed
in the overlay network)

“Structure”
Level
(dealing with
mechanisms and
policies to
adaptively shape
a metric space
and let
components find
their position in
that space)

Self-localization (beacon-based
triangulation)

Self-localization (Wi-Fi or RFID
triangulation)
Definition and Maintenance of a
Spanning Tree (as a sort of
navigable overlay)

Establishment and Maintenance
of an Overlay Network (for P2P
systems)
Referral Networks and e-
Institutions (for multiagent
systems)

“Physical”
Level
(dealing with the
mechanism to
interact)

Radio Broadcast
Radar-like localization

Radio Broadcast
RF-ID identification

TCP broadcast – IP identification
Directed TCP/UDP messages
Location-dependent Directory
services

Table 1. Spatial Mechanisms in Modern Distributed Computing Scenarios

baldoni
133

With this regard, the adoption of the spatial computing paradigm does not prescribe at
all to adopt the same set of mechanisms and the same type of spatial structure for all
networks and for applications. Instead, being the spatial structure a virtual one, it is
possible to conceive both (i) the existence, over the same physical network, of multiple
complimentary spatial abstraction independently used by different types of applications;
and (ii) the existence of multiple layers of spatial abstractions, built one over the other in
a multi-layered system.

With regard to the former point, in addition to the example of the different types of
P2P networks calling for different types of spatial abstractions, one could also think at
how different problems such as Internet routing, Web caching, virtual meeting points,
introduce very different problems and may require the exploitation of very different
spatial concepts.

With regard to the latter point, one can consider two different possibilities. Firstly, one
can think at exploiting a first-level spatial abstractions (and the services it provides) to
offer a second-level spatial abstraction enriching it with additional specific characteristics.
For examples, one can consider that a spatial abstraction capable of mapping the nodes of
the Internet into geographical coordinates can be exploited, within a campus, to build an
additional overlay spatial abstraction mapping such coordinates into logical location (e.g.,
the library, the canteen, the Computer Science department and, within it, the office of
Prof. Zambonelli). Such additional spatial abstraction could then be used to build
semantically-enriched location dependent services. Secondly, one could think at
conceiving a hierarchy of spatial abstractions that provides different levels of information
about the space depending on the level at which they are observed, the same as the
information we get on a geographical region are very different depending on the scaling
of the map on which we study it. As an example, we can consider that the spatial
abstraction of a wide-area network can map a sensor network – connected to the large
network via a gateway – as a “point” in that space, and that the distributed nature of the
sensor networks (with nodes having in turn a specific physical location in space) becomes
apparent only when some activity takes place in that point of space (or very close to it).

4. TOTA: a Middleware Approach to Spatial Computing

The ambitious goal of a uniform modeling approach capable of effectively capturing
the basic properties of self-organizing computing, and possibly leading to practical and
useful general-purpose modeling and programming tools, is far from close. Earlier in this
paper we have strongly advocated the generality, flexibility, and modularity of a spatial
computing approach. Although we have do not have the ultimate proof that spatial
computing can be effectively put to practice and fulfill all its promises, our experience in
spatial computing with the TOTA [MamZ04] middleware can support in part our claims.

The TOTA middleware (short for “Tuples On The Air”), gathers concepts from both
tuple space approaches [Cab03, MamZL04] and event-based ones [Car01, Jini] and
extends them to provide applications with simple and flexible mechanisms to create, self-
maintain, and exploit at the application level a variety of spatial structures, implemented
by means of distributed tuples. Unlike traditional shared data space models, tuples are not
associated to a specific node (or to a specific data space) of the network. Instead, tuples
are injected in the network and can autonomously propagate and diffuse in the network

baldoni
134

accordingly to a specified pattern.
To support this idea, the typical scenario of a TOTA application is that of a peer-to-

peer network of possibly mobile nodes, each running a local version of the TOTA
middleware. Each TOTA node holds references to a limited set of neighboring nodes and
can communicate directly only with them.

Upon the distributed space identified by the dynamic network of TOTA nodes, each
component is capable of locally storing tuples and letting them diffuse through the
network. Tuples are injected in the system from a particular node, and spread hop-by-hop
accordingly to their propagation rule. In fact, a TOTA tuple is defined in terms of a
“content”, and a “propagation rule”. T=(C,P). The content C is an ordered set of typed
fields representing the information carried on by the tuple. The propagation rule P
determines how the tuple should be distributed and propagated across the network. This
includes determining the “scope” of the tuple (i.e. the distance at which such tuple should
be propagated and possibly the spatial direction of propagation) and how such
propagation can be affected by the presence or the absence of other tuples in the system.
In addition, the propagation rules can determine how the content of a tuple should change
while it is propagated. Tuples are not necessarily distributed replicas: by assuming
different values in different nodes, tuples can be effectively used to build a distributed
data structure expressing contextual and spatial information. So, unlike traditional event
based models, propagation of tuples is not driven by a publish-subscribe schema, but it is
encoded in tuples' propagation rule and, unlike an event, can change its content during
propagation (see figure 3).

Distributed tuples must be maintained coherent despite network dynamism. To this
end, the TOTA middleware supports tuples propagation actively and adaptively: by
constantly monitoring the network local topology and the income of new tuples, the
middleware automatically re-propagates tuples as soon as appropriate conditions occur.
For instance, when new nodes get in touch with a network, TOTA automatically checks
the propagation rules of the already stored tuples and eventually propagates the tuples to
the new nodes. Similarly, when the topology changes due to nodes' movements, the
distributed tuple structure automatically changes to reflect the new topology.

baldoni
135

High-level
interaction and
coordination

Application
Components

Navigation
Direction

Physical Level

TX

TX

TX
TX TX

TX
TX

TX

TX

Strucutre Level

TOTA Middleware

TX
Tuple

Tuple Sources

Tuple Propagation

Application Level

Navigation Level

Figure 3: The General Scenario of TOTA in the spatial computing stack: at the
physical level there is the network, communication is broadcast of messages
encoding TOTA tuples. At the structure level, the space is represented by means of
the TOTA distributed tuples. At the navigation level spatial structures can provide
basic navigation directions. At the Application level complex coordination tasks can
be achieved.

The TOTA middleware supports the spatial computing stack introduced in section 4.
In fact, from the application components’ point of view, executing and interacting
basically reduces to create distributed spatial structures in the network (inject tuples),
navigate such spatial structures (sense tuples in a neighborhood), and act accordingly to
some application-specific policy.

To clarify and ground the discussion we introduce the following exemplary pervasive
computing case study application: tourists with wireless PDAs visit a museum provided
with an embedded computer network. We suppose that the PDAs and the embedded
devices run the TOTA middleware and that they connect with each other forming a multi-
hop mobile wireless network. In the following subsections, working on this case study
application, we will detail how TOTA deals with all the levels in the spatial computing
stack.

baldoni
136

4.1. Physical Level
The physical level deals with how components find and start communicating with each

other. At this level, the specific nature of the network scenario has an important role.
Since our primary focus is pervasive computing, we mainly consider a wireless network
scenario without long-range routing protocols available (like in a “bare” mobile ad-hoc
network). In such scenario, it is easy to identify the node's neighborhood with the network
local topology (e.g. all the nodes within 10m, for a Bluetooth network). In this case, a
TOTA node detects in-range nodes via one-hop message broadcast.

Turning the attention to the case study, each PDA detects neighbor devices, by
broadcasting and receiving “here I am” messages. Such discovery operations is executed
periodically to take into account the possible movements of users. Upon injecting a tuple,
the TOTA middleware broadcasts the tuple to its current neighbors. There, the tuple will
be recursively broadcasted hop-by-hop to travel across the network, accordingly to its
propagation rule.

To support our experiments, we developed a first prototype of TOTA running on HP
IPAQs 36xx equipped with 802.11b wireless card, Familiar LINUX and J2ME-CDC
(Personal Profile). IPAQs connect locally in the MANET mode (i.e. without requiring
access points) creating the skeleton of the TOTA network. Tuples are being propagated
through multicast sockets to all the nodes in the one-hop neighborhood. The use of
multicast sockets has been chosen to improve the communication speed by avoiding
802.11b unicast handshake. By considering the way in which tuples are propagated,
TOTA is very well suited for this kind of broadcast communication. We think that this is
a very important feature, because it will allow in the future implementing TOTA also on
really simple devices (e.g. micro mote sensors [Pis00]) that cannot be provided with
sophisticate communication mechanisms.

It is important to remark that, despite our focus to wireless networks and pervasive
computing, the TOTA mechanisms are general and independent from the underlying
physical network. For example, in an Internet scenario (where a long-range routing
protocol is available), TOTA identifies the neighborhood of a node with the nodes whose
IP address is known (a node can communicate directly with another, only if it knows the
other node's address). To realize neighbors discovery, TOTA can either download from a
well-known server the list addresses representing its neighbors or it can start an
expanding-ring search to detect close nodes [RipIF02]). Given that, the multi-hop
propagation of a tuple proceeds as previously described.

4.2. Structure Level
TOTA tuples create a “structure of space” in the network. At the basic level, once a

tuple is injected from a node and propagates across the network, it creates a source-
centered spatial structure identifying some spatial features relative to the source.

For example, a tuple incrementing one of its fields as it gets propagated identifies a
spatial structure defining the network distances from the source. This kind of structure of
space provides spatial awareness to application agents. In fact, an agent is both able to
infer its approximate distance from the source (in terms of hops – i.e. network link range),
and the direction of the source by looking at where the gradient of the tuple descends.

Moreover, TOTA allows to combine different tuples to create more complex spatial
representations. A particularly significant example of these mechanisms is the creation of

baldoni
137

shared coordinate systems in the network on the basis of mere connectivity. Localization,
in general, can rely on the (geometrically intuitive) fact that the position of a point on a
surface can be uniquely determined by measuring its distance from at least three non-
aligned reference points (“beacons”), via a process of “triangulation” [NagSB03].
Implementing such localization mechanism in TOTA is rather easy. (i) A leader election
algorithm can elect three beacons nodes. (ii) Each beacon “arbitrarily” locates at specific
coordinates (without external location information the coordinate system can only be
internally coherent [NagSB03]). (iii) Each beacon injects a TOTA tuple, increasing its
content hop-by-hop and marked with the beacon coordinates. As previously pointed out,
this tuple allows other nodes to estimate their distance from the beacon. (iv) After at least
three beacons had propagated their ranging tuples, nodes can apply a triangulation
algorithm to infer their coordinates. Moreover, since TOTA tuples self-maintain, the
coordinate system remains up to date and coherent despite network dynamism. If upon a
node movement the topology of the network changes, the tuples maintenance triggers an
update in the coordinate system, making the latter robust.

A shared coordinate system provides a powerful spatial structure in a network and
allows to realize complex navigation and coordination tasks (see later).

In addition, although at the primitive level the space is the network space and distances
are measured in terms of hops between nodes, TOTA allows to exploit a much more
physically-grounded concept of space.

This may be required by several pervasive computing scenarios in which application
agents need to interact with and acquire awareness of the physical space. For instance,
one can bound the propagation of a tuple to a portion of physical space by having the
propagation procedure - as the tuple propagates from node to node - to check the local
spatial coordinates, so as to decide whether to further propagate the tuple or not. In order
to bound agents' and tuples' behavior to the physical space, nodes must be provided with
some kind of localization mechanism [HigB01]. From our perspective, such mechanisms
can be roughly divided into two categories:
• A GPS-like localization mechanism provides absolute spatial information (e.g. it

provides latitude and longitude of a node in the network). An actual GPS (Global
Positioning System) getting spatial coordinates from satellites naturally belongs to
this category. Beacon-based signal triangulation (coupled with beacons actual
physical location) is anther example of this category (nodes get their coordinates in
an absolute coordinate-frame defined by the beacons [NagSB03])

• A RADAR-like localization mechanism provides local information (e.g. relative
distances and orientations between nodes). An actual radar or sonar device belongs
to this category (radio and sound waves reflected by neighbor devices enable to infer
their distance and orientation). A videocamera installed on a node can serve the
same purpose (processing the image coming from the camera, a node can infer
where other nodes are). Also network roundtrip-time and signal-strength attenuation
may serve this purpose.

The kind of localization mechanism being available strongly influences how nodes can
express and use spatial information. GPS-like mechanism are more suitable at defining
“absolute” regions. For example, they allow to easily create tuples that propagate across a
region defined by means of the coordinates of its corners (e.g. propagate in the square
area defined by (0,0) and (100,100)). RADAR-like mechanism are more suitable at

baldoni
138

defining “relative” regions, where for example tuples are constrained to travel north form
the source or within a specified distance.

It is fair to report that a similar idea has been developed and exploited in the context of
a recently proposed language to program a vast number of devices dispersed in an
environment [Bor04]. The idea of this programming language is to identify a number of
spatial regions relevant for a given application and to access the devices through the
mediation of these regions (e.g. for all the devices on the “hill” do that). In [Bor04], the
definition of the regions is performed adopting GPS devices and distributed data
structures similar to TOTA tuples.

Other than the network and the physical space, one could think at mapping the peers of
a TOTA network in any sort of virtual space. This space must be supported by an
appropriate routing mechanism allowing distant peers to be neighbors in the virtual space.
Such virtual spaces are particularly useful and enable the definition of advanced
application such as content-based routing, as in CAN [Rat01]. TOTA concretely supports
the definition of these kinds of applications. Also in this case it is fair to report that
similar principles have been used in the Multilayered Multi Agent Situated System
(MMASS) model [BanMV04]. In MMASS agents' actions take place in a multilayered
environment. Each layer provides agents with some contextual information supporting
agents' activities. The MMASS environment is thus a hierarchy of virtual spaces built
upon one another, where lower layers provide the routing infrastructure for upper ones.

4.3. Navigation Level
TOTA defines a set of API to allow application components to sense TOTA tuples in

their one-hop neighborhood and to locally perceive the space defined by them.
Navigation in the space consists in having agents act on the basis of the local shape of
specific tuples.

As a first simple example we can consider physical navigation. Turning the attention to
our case study, it is clear that a PDA injecting a hop-increasing tuple in the network,
becomes immediately reachable by other users. Users, in fact, can move following the
gradient of the tuple downhill, to reach the tuple source. Moreover, since the tuple shape
is maintained despite network dynamism, users can reach the source of a tuple even if it
moves.

Navigation is not related to physical movement only. TOTA allows to relate the
propagation of a tuple to other tuples already propagated (e.g. a tuple can propagate
following another tuple). This can be at the basis of the routing algorithm detailed in the
following [Poo00]. In very general terms, when a node “A” wants to send a message to a
node “B”, it actually injects the network with a TOTA tuple, that holds: the source
identifier i.e. “A”, the message, and the number of hops from the source of the message to
the current node. Such structure not only trivially hand-off the message to “B”, but
creates a path leading to “A” that can be exploited for further uses. If node “B” wants to
reply, it can just send a message that follows the “A”-field downhill towards node “A”. In
this case no flooding is involved. The field-like distributed data structures created in this
process, can be used further also by other peers to communicate.

Complex spaces enable advanced navigation strategies. A shared coordinate system,
like the one described in the previous section, allows, for example, to set-up geographic
routing algorithm [BosM01]. A geographic routing algorithm is a mechanism that takes

baldoni
139

advantage of the established coordinate frame to send messages to the node closer to a
specific location. Such algorithm is suitable in a lot of application scenarios because it
inherently supports communication decoupling in that senders and receivers are
decoupled by the coordinate frame. For example, a sender can send a message to an
unknown receiver located at a specific location and the message will be received by
whoever is closer to that location.

4.4. Application Level
The spatial abstractions and tools promoted by TOTA enable to easily realize complex

coordination tasks in a robust and flexible way.
Our research, up to now, has mainly focused on the problem of enabling a group of

agents to coordinate their respective movements (i.e. distributed motion coordination).
Specifically, considering our case study, we focus on how tourists can be supported in
planning their movements across a possibly large and unfamiliar museum and in
coordinating such movements with other, possible unknown, tourists. Such coordination
activities may include scheduling attendance at specific exhibitions occurring at specific
times, having a group of students split in the museum according to teacher-specific laws,
helping a tourist to avoid crowd or queues, letting a group of tourist to meet together at a
suitable location, and even helping to escape accordingly to specific evacuation plans.

An intriguing possibility to realize motion coordination is to take inspiration from the
physical world, and in particular from the way masses in our universe move accordingly
to the gravitational field. By interpreting (rather roughly) the General Relativity Theory,
we can say that the gravitational field actually changes the structure of the space letting
particles to globally self-organize their movements. Under this interpretation, particles
achieve their “tasks” by simply following the structure of the space.

Realizing this kind of idea with the spatial abstraction promoted by TOTA is rather
easy. Under the assumption that users spread hop-counting tuples in the network, it is
possible to realize several coordination tasks. A group of tourist following downhill each
other tuples will collapse in a single location allowing the tourists to meet somewhere in
the building. Analogously, museum’s guides could decide to sense each other's tuples (i.e.
spaces) so as to maintain a certain distance from each other to improve their reachability
by tourists. If a guide has to go away, the same tuples would allows the others to
automatically and adaptively re-shape their formation.

Following this approach, agents achieve their goals not because of their capabilities as
single individuals, but because they are part of an auto-organized system that leads them
to the goal achievement. Such characteristics also imply that the agents’ activities are
automatically adapted to the environmental dynamism, which is reflected in a changing
spatial representation, without forcing agents to re-adapt themselves.

Motion coordination with spatial abstractions is by no means limited to the presented
case study. It can be applied to a wide range of scenarios ranging from urban traffic
management, mobile software agents on Internet and even self-assembly in modular
robots (detailed in the following). A modular or self-reconfigurable robot is a collection
of simple autonomous mobile robots with few degrees of freedom. A distributed control
algorithm is executed by all the robots that coordinate their respective positions to let the
robot assume a global coherent shape or a global coherent motion pattern (i.e. gait).

From a methodological viewpoint, robots can exploit spatial abstraction and TOTA

baldoni
140

tuples to self-organize their respective positions in space. In particular, starting from any
spatial configuration of robots: (i) robots start diffusing specific types TOTA tuples; (ii)
robots react to locally perceived tuples by trying to follow them downhill/uphill, or by
changing their activity state possibly depending on the perceived values of the tuples (i.e.
depending on their position in some abstract space); (iii) changes in the activity state of
robots can lead to inhibiting the propagation of some tuples and/or to the diffusion of new
types of tuples in the system, leading back to point (i). One can then apply this process
several times, with new types of tuples being propagated in different phases, so as to
incrementally have robots self-organize into the required shape [MamVZ04].

In all these application scenario, we verified that the spatial abstractions promoted by
TOTA effectively support robust and flexible self-organizing behaviors.

5. Conclusions

By abstracting the execution of distributed applications around spatial concepts,
spatial computing promises to be an effective approach towards the identification of
general and widely applicable self-* approaches to distributed systems development and
management. Our experiences with the TOTA middleware confirm the effectiveness of
the approach.

However, besides the claims of this paper and our personal experience, much work is
needed to asses the potentials of spatial abstractions in distributed computing, and to
verify whether they can actually pave the way to a sound and general-purpose approach to
self*- computing. In particular:
• Is the spatial computing stack depicted in Table 1 meaningful and useful, or a better

and more practical framing can be proposed?
• If and when such a unifying model will be found, will it be possible to translate it into

a limited set of programming abstractions and lead to the identification of a practical
methodology for developing self-organizing distributed computing systems?

• Is a middleware-centered approach like that of TOTA the best direction to follow?
• Several self-organization phenomena disregarded by this paper, deals with concepts

that can be hardly intuitively mapped into spatial concepts. Would exploring some
sorts of spatial mapping be still useful and practical? Would it carry advantages?

• Possibly most important of all questions: is the search for a unifying model fueled by
enough applications? Or it is rather the search for specific solutions to specific
problems the best direction to follow?

In our hope, further researches and a larger variety of studies about self-* properties in
distributed systems will soon provide the correct answers to the above questions.

References

[BanMV04] S. Bandini, S. Manzoni, G. Vizzari, “Towards a Specification and Execution
Environment for Simulations based on MMASS: Managing at-a-distance Interaction”, Fourth
International Symposium From Agent Theory to Agent Implementation (AT2AI'04), Vienna,
Austria, 2004.

[Bor04] C. Borcea, “Spatial Programming Using Smart Messages: Design and Implementation”,
24th Int.l Conference on Distributed Computing Systems, Tokio (J), May 2004.

[BosM01] P. Bose, P. Morin, I. Stojmenovic, J. Urrutia, “Routing with Guaranteed Delivery in Ad
Hoc Wireless Networks”, Wirleless Networks 7:609-616, Kluwer Academic Publisher, 2001.

baldoni
141

[Cab03] G. Cabri, L. Leonardi, M. Mamei, F. Zambonelli, Location-dependent Services for Mobile
Users, IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems And Humans,
Vol. 33, No. 6, pp. 667-681, November 2003

[Car01] A. Carzaniga, D. Rosenblum, A. Wolf, “Design and Evaluation of a Wide-Area Event
Notification Service”, ACM Transaction on Computer System, 19(3):332-383.

[ChiC91] R. S. Chin, S. T. Chanson, “Distributed Object-Based Programming Systems”, ACM
Computing Surveys, 23(1), March 1991.

[CouDK94] G.Coulouris, J. Dollimore, T. Kindberg,
Distributed Systems. Concepts and Design
Addison-Wesley, second edition, 1994.

[Dim04] G. Di Marzo, A. Karageorgos, O. Rana, F. Zambonelli (Eds.), Engineering Self-organizing
Systems: Nature Inspired Approaches to Software Engineering, LNCS No. 2977, Springer
Verlag, May 2004.

[Est02] D. Estrin, D. Culler, K. Pister, G. Sukjatme, “Connecting the Physical World with Pervasive
Networks”, IEEE Pervasive Computing, 1(1):59-69, 2002.

[GelSB02] H.W. Gellersen, A. Schmidt, M. Beigl, “Multi-Sensor Context-Awareness in Mobile
Devices and Smart Artefacts”, Mobile Networks and Applications, 7(5): 341-351, Oct. 2002.

[HigB01] Hightower and G. Borriello, “Location Systems for Ubiquitous Computing,”
Computer, vol. 34, no. 8, Aug. 2001, pp. 57–66.

[Jini] JINI, http://www.jini.org
[Kep02] J. Kephart, “Software Agents and the Route to the Information Economy”, Proceedings of

the National Academy of Science, 99(3):7207-7213, May 2002.
[MamVZ04] M. Mamei, M. Vasirani, F. Zambonelli, “Experiments of Morphogenesis in Swarm os

Simple Mobile Robots”, Journal of Applied Artificial Intelligence (to appear) 2004.
[MamZ03] M. Mamei, F. Zambonelli, “Co-Fields: a Unifying Approach to Swarm Intelligence”, 3rd

Workshop on Engineering Societies in the Agents’ Word, LNCS No. 2677, April 2003.
[MamZ04] M. Mamei, F. Zambonelli, “Programming Pervasive and Mobile Computing

Applications with the TOTA Middleware”, 2nd IEEE Conference on Pervasive Computing
and Communications, Orlando (FL), IEEE CS Press, March 2004.

[MamZL04] Mamei, M., and F. Zambonelli. 2004b. Co-Fields: a Physically Inspired Approach to
Distributed Motion Coordination. IEEE Pervasive Computing, 3(2):52-60.

[NagSB03] R. Nagpal, H. Shrobe, J. Bachrach, “Organizing a Global Coordinate System from
Local Information on an Ad Hoc Sensor Network”, 2nd International Workshop on Information
Processing in Sensor Networks, Palo Alto (CA), April, 2003.

[Pis00] K. Pister, “On the Limits and Applicability of MEMS Technology”, Defense Science
Study Group Report, Institute for Defense Analysis, Alexandria (VA), 2000.

[Poo00] R. Poor, Embedded Networks: Pervasive, Low-Power, Wireless Connectivity, PhD Thesis,
Massachusstes Institute of Technology, 2001.

[RaoP03] A. Rao, C. Papadimitriou, S. Ratnasamy, S. Shenker, I. Stoica. “Geographic Routing
Without Location Information”. ACM Mobicom Conference. San Diego (CA), USA, 2003.

[Rat01] S. Ratsanamy,, P. Francis, M. Handley, R. Karp, ”A Scalable Content-Addressable
Network”, ACM SIGCOMM Conference 2001, Aug. 2001.

[RipIF02] M. Ripeani, A. Iamnitchi, I. Foster, “Mapping the Gnutella Network”, IEEE Internet
Computing, 6(1):50-57, Jan.-Feb. 2002.

 [Row04] A. Rowstron et al., “PIC: Practical Internet Coordinates”, 24th International Conference
on Distributed Computing Systems, IEEE CS Press, Tokyo (J), May 2004.

[Wal97] J. Waldo et al., “A Note on Distributed Computing”, Mobile Object Systems, LNCS No.
1222, Feb. 1997.

[Zam04] F. Zambonelli, M.P. Gleizes, R. Tolksdorf, M. Mamei, Spray Computers: Frontiers of
Self-organization“, 1st International Conference on Autonomic Computing, IEEE CS Press,
New York (I), May 2004.

baldoni
142

SIMULATION IN THE TEXTILE INDUSTRY:
PRODUCTION PLANNING OPTIMIZATION

Gianluigi Ferraris
University of Turin

Email: ferraris@econ.unito.it

Matteo Morini, corresponding author
University of Turin and LABORatorio ’R. Revelli’

Email: matteo.morini@unito.it

Abstract— The work being introduced is aimed at supporting
the crucial activity of deciding what is to be done, and when,
within an industrial, applied, real-world situation. More specif-
ically: matching assorted tasks to applicable production units,
and deciding the priority every job is to be given. The problem,
common to many different industries, arises when a considerable
amount of different articles must be produced on a relatively
small number of reconfigurable units. Similar issues have a
strong impact on an essential concern, eminently in the textile
industrial domain: satisfying the always-in-a-rush customers,
while keeping accessory production costs (set-up costs, machinery
cleaning costs, . . .) under control, keeping at a minimum the
losses related to wasteful resource-management practices, due to
“under pressure” decision making.

Given the real-world situation, where human planners tend to
be the only ones considered able to tackle such a problem, the
innovation hereby suggested consists of an automated, artificial
intelligence based, system capable of objectively driving the
search and implementation of good solutions, without being
influenced by pre-existing knowledge, mimicking a powerful
lateral-thinking approach, so difficult to accomplish when man-
agement pressure impedes and daunting tasks bound the human
rationality.

Ranking the effectiveness of a candidate solution, where path-
dependency and unexpected complex effects may bias the final
outcome, is not a matter trivially manageable by traditional
operational research-style systems where no dynamics (recur-
sive phenomena, feedbacks, non-linearity) appear. In order to
overcome the limitations that an analytical specification of the
problem imposes, the Agent-Based Modelling paradigm had to
be taken into consideration.

Thanks to ABM we’re provided with the opportunity of “in-
silico” experimenting every imaginable scenario, by executing the
planning in a virtual lab, where the production events happen
instead of simplistically being computed. In this way we avoid
following a reductionist approach, clumsily based on the usage
of a static representation of the enterprise world, squashed into
a cumbersome system of equations.

The model have been built resorting to the Swarm toolkit
(see [Bur94], [JLS99], [MBLA96]); the underlying programming
language (Objective-C) made the procedure of mapping the
agents involved in the process onto software objects a plain and
consistent task.

The problem presented belongs to the “shop problems” family
in general, although many peculiarities make it an unconventional
and distinguished one. When referring to “production planning”,
the authors have in mind the scheduling problem rather than
ERP/MRP issues. In fact, the stage of the production on which
the work is focused gives the availability of raw and semi-
finished materials for granted. The up- and down-streams of the
supply chain are normally performed by significantly oversized
equipment, in the textile industry. On the other side, “core”

processes, spinning and weaving in particular, require peak
exploitation of the available production units.

KEYWORDS:

Production, Scheduling, Optimization, Industrial Processes,
Manufacturing

I. THE PROBLEM

Matching tasks to units, under additional constraints, is the
key issue. While certain constraints are to be regarded as
“hard” (let’s think of a technical issue rendering some of the
production units useless in working on particular a (sub)task,
thus reducing the set of available units), others are “soft”
constraints: different units perform better on certain tasks,
whereas others can suboptimally do, maybe with worse (yet
acceptable) results, or take a longer time.

The sequencing of tasks is, on the other hand, one of the
degrees of freedom of the problem, being the choice of giving
priority to one task driven by timely delivery constraints.

For the sake of readability in this paper the words “order”,
“task”, “job” will be used interchangeably.

A. Minimizing the productionoverall cost

Different production plans result in varying (aggregate)
production costs. Each evaluation in terms of costs is made
by adding several components: some of them are costs in a
proper sense, others are more like abstract values by which we
try to capture the economical impact of undesirable situations.
Examples of the first kind are the setup costs; on the other
hand delayed deliveries are certainly unwanted, even if not
directly expressible as economical losses. Being considered an
unreliable supplier because of repeated delays, in the long run,
leads to unsatisfied customers being lost. This is, of course, an
hardly economically quantifiable loss: it depends on how the
firm’s management perceives the importance of reliability, and
how strongly is feared the risk of losing a repeatedly “deluded”
customer.

B. Textile technicalitiesexplained

The simulation is performed on and limited to, for the
sake of simplicity, one of the production chain tasks only:
proper spinning. Previous and successive operations can be
overlooked, since they normally take place in oversized depart-
ments. Warping and combing, for instance, require relatively
inexpensive machinery to be completed: it is common practice

baldoni

to buy extra units ’just in case’, since most of the plants
value comes from spinners. The department where extreme
care must be taken in avoiding any bottleneck effect is the
spinning room.

We may confidently say that, should a good production plan
be found for the spinning, the raw materials availability could
be taken for granted, and the operations due to be performed
up- and downwards the production chain could be arranged
easily, not acting as constraints.

Finding a good production plan often implies dealing with
mutually exclusive goals, in situations ridden with trade-offs.
The only reasonable way to manage so many different aspects
simultaneously is to reduce everything to its economical
meaning, and it is hardly a straightforward task.

1) Production units setup: Spinners are complicated ma-
chines that can be adapted to produce many different kinds
of yarns: apart from technical-mechanical parameters that can
be tuned (speed, crossing angle, twisting. . .), each head (see
Glossary) can be set up, by physically substituting some
parts, to make for a wide range of technical specifications.
Every kind of yarn features specific technical parameters and
may require different parts to be mounted. At least three
families (each one made by three types or more) of mechanical
parts must be kept into account: cards, rotors, nozzles (see
Glossary).

The act of setting up a spinning unit in order to have it ready
to produce a certain kind of yarn may take a considerable
amount of time: up to three hours may be spent removing and
re-inserting a big amount of different mechanical parts, apart
from trimming the appropriate software controls.

Of course putting similar products in sequence saves setup
time: the least different two lots put in sequence are, the
simplest and quicker the setup operations will be.

SCi,j = f(ṗ1,i,j , ṗ2,i,j , . . . , ṗN,i,j)

The setup cost SC for order i placed after order j (or on
a stopped production unit) depends on the dummy variables
p{1<n<N},i,j : each of them expressing the fact that the spinner
part enumerated as the n-th (out of N) needs being exchanged
when order j comes after order i (regardless of the spinner
involved).

This seems a good enough reason to keep similar, if not
identical lots, together, sticking them one after another. We’ll
see later why it’s not that simple.

Nevertheless, the cost of setup can simply and accurately
be accounted for in terms of man/hours spent performing the
operation: after all, it consists of a sort of opportunity cost.

2) Timelydelivery: Each order the firm is asked to produce
is labelled with an “expected delivery date”: customers are
promised their yarn will be ready to ship by an approved
calendar date (sometimes stringent conditions are imposed by
“big” buyers), which they expect to be reliable. Should the
delivery constraints be missed, a disappointed customer would,
to say the least, complain bitterly. We have a situation which
is very difficult to express in economical terms; very seldom a

penalty is contractually established, rather the firm reputation
is at stake, and the risk is to lose customers.

In order to keep into account, besides of the setup constraint
(“less is better”), this additional constraint, a figurative cost has
been introduced. It consists of an amount of money associated
with the delay and the importance, positively correlated with
both: the longer the delay and the bigger the order, the higher
the (not-so-metaphorical) cost to be charged. Expressed in
symbols:

DCi = f(d+

i , w+

i)

where the delay cost DC for order i grows as the delay d and
weight w (in kilograms) grow.

It becomes clear that sequencing similar orders on the same
spinner is not an option: the freedom to save setup costs is at
odds with the need to satisfy the timely delivery condition. A
simplified example is presented (see Appendix, gantt sample).

3) Simultaneoussetups,patrolling: To make things even
worse (and almost impossible to deal with “by hand”, which is
nowadays the only viable way available to enterprises) further
constraints are to be kept into account.

Production units setups, for instance, are performed by
specialized workers; the number of setup teams available is
limited, thus limiting the amount of setup operations which
can happen at the same time. The effect of a missed setup
(because of the unavailability of a team) on the production is
simply a delay in the production of the order: no setup can
be performed until one of the busy setup teams is available
again. The total production time, and the time the order will
be ready to ship, will be determined by the actual production
time plus the initial delay.

Other employees are committed to the so-called spinners
“patrolling”: they are required to follow the ongoing produc-
tion, ready to fix any problem should occur. A patroller is
normally assigned 4 to 6 spinners to watch; the complication
here arises from heterogeneity in the behaviour of different
spinners: every different yarn features a specific likelihood to
create (generically speaking) problems, that is to draw more
or less attention from the patrollers. A patroller will be able to
follow productions that are problematic up to a certain point:
the average must be kept below this critical point. Above the
limit, production times will grow (in a more or less foreseeable
way) for all of the spinners under the overloaded patroller.

An index of “problematicity” is needed in order to manage
such a subtle issue. The patroller load PL corresponds (for the
n-th patroller) to the sum of the “problematicity index” p for
each order i multiplied by the number of heads, h, available
on the spinner j.

PLn =

S∑

i=1

hipj

Index PL is normalized in order to have 1 as the maximum
tolerable patrolling load. Above this load, orders production
times increase by empirically determined amounts:

baldoni
144

PL ∆PT

0 < PL ≤ 1 0 normal load
1 < PL ≤ 1.2 +10% slight overload

1.2 < PL ≤ 1.5 +25% severe overload
PL > 1.5 > +25% unacceptable overload

PT = production time

C. Evaluationby simulation

In order to evaluate the alternative candidate production
plans, being able to rank them by “goodness”, it takes a
metric: a measurement of their own figurative cost. Such an
operation needs to take into account the intrinsic complexity
of executing the plan: each decision taken with regard to
the assignment of a certain task conditions the subsequent
decisions. While executing a plan two dimensions come into
place: time and space; its evaluation cannot overlook this
crucial assumption. Setup teams, for instance, may grant a
total availability, compatibly with daily timetables, yet this
can be suboptimal if compressed in a limited amount of time:
queues tend to form.

A simulation was introduced, based on the enterprise de-
sign, which let us overcome the hard - if not impossible -
problem of keeping track of such effects in the accounting.
By simulating, all the production events are “made happen”:
formation of queues, delays, interaction among entities emerge
spontaneously and are accounted for, when evaluating the total
cost. This way avoids introducing tricks and approximations
such as assigning pre-digested costs to unforeseeable events,
using average (yet reliable?) values that render the accounting
less accurate.

Exploiting a simulation also gives the advantageous chance
to experiment with unlikely settings, or hard to observe in real-
world situations. The need to evaluate by traditional compu-
tational techniques a production unit breakdown, for instance,
one would be compelled to resort to an average “expected
time between failures”: this implies accepting two unrealistic
assumptions, that we deal with a continuous phenomenon,
and that the events are evenly distributed. By simulating,
randomly occurring (and randomly lasting) events can be
generated, while keeping probabilities within a pre-defined
range: instead of an unrealistic continuous distribution we are
correctly working on discrete events, with different durations.

An accurate cost tracking and accounting is instrumental to
a good final result: the figurative cost of each plan enters the
solutions generator (the genetic algorithm), where it is used to
evolve subsequent generations of solutions. Even small distor-
tions may disrupt the search process towards inefficient regions
of the solutions space, prolonging computational times and
considerably worsening the quality and reliability produced
solutions.

II. EXPERIMENTING SOLUTIONS

A. Agents:a local definition for an umbrella-term

The wealth of definitions and interpretations that coexist
when “agents” come into play calls for a clarification: the

agents hereby presented are to be intended as interacting no-
minded software objects (in the Object-Oriented programming
sense), whose main role is to encapsulate data, to make
(mostly basic) computations and to pass informations back
and forth. There is no communication protocol specification
apart from the well-known getters/setters; the Swarm toolkit is
used as an useful framework (see also [LS00a], [Ter98]) where
software agents perform actions in a (perhaps sophisticated)
time sequence by means of a scheduler triggering events, in
this specific case in a deterministic way.

B. An Enterpriseto experimentupon

The Enterprise Simulator is the module where solutions
are experimented, that is where the simulation takes place.
A model of the supply chain under scrutiny is used in order
to watch candidate plans ’happen’: the production process
is represented in abstract, resorting to representative agents.
Production units agents, setup agents, patrollers agents have
been developed with the aim of giving simple yet exhaus-
tive representations of their respective roles. Even production
orders are embodied by dumb agents: objects encapsulating
all the informations pertaining to the tasks to be performed,
which are bounced between proper agents that act based on
the informations they achieve from the orders themselves.

Presenting how the process takes place in the model is out of
the scope of this paper; the steps - in a way absolutely adherent
to the real process - implemented are: orders reception (in
batch), orders dispatching to production units (filling queues),
PUs setups, involving setup time computation after setup teams
gathering, patrollers capacity reservation, production, repeat.

Ongoing and predetermined orders, already loaded on PUs
and/or already due, are completed before initiating the candi-
date plan evaluation.

III. INVENTING SOLUTIONS (ENTER THE GOLEM)

To find a good planning solution, given the enormous1 set
presenting itself, a Genetic Algorithm has been implemented,
based on the well known AI paradigm first introduced by J.
Holland (in [Hol75]).

The idea was to emulate the natural evolutionary process
performing reproduction and death of structures that are rep-
resenting a strategy. Provided that a whole set of structures
is normally called “the population” of the GA, each of them
is analogously named “an individual”; each one encodes a
strategy into a binary string called “a genome”. After having
created an initial random set of structures, each of them is
evaluated, one item at a time, by performing the strategy it
represents, encoded, into an appropriate simulated environ-
ment. In this way a serial2 evaluation of each structure can be

1An average spinning mill needs to plan about 50 jobs onto about 15
spinners at a time, which results in circa 10

67 different feasible schedules.
The weaving industry involves even bigger figures: up to 100-120 jobs to plan
on 50-60 weavers, giving 10

120 schedules.
2The process of evaluating populations is intrinsically parallel, being the

population refresh step the only “pivot” operation which needs to wait for
the completion of the individual-by-individual fitness assignments. For an in-
depth presentation of the authors’ works in this direction, see [Mor04], and
thereafter in this article.

baldoni
145

performed, in order to assign every strategy a value measuring
its goodness: the so-called fitness of the individual. When the
whole set has been evaluated, an evolution step can be taken:
each individual is assigned a probability to reproduce itself
(give birth to “offspring”) and a probability to die, according
to its fitness value: better-fitted genomes are assigned a higher
probability to reproduce and a lower probability to die, and
vice versa. Reproduction is made by copying and crossing
two individual’s genomes to obtain a couple of new structures
to put into two new individuals; these newborn individuals
will replace two old structures selected - from the previous
generation - to die. By performing this algorithm in a loop
the population becomes more and more fitted and the better
types tend to spread into the population. The GA method is
very useful when a wide set of alternatives has to be explored:
it is general-purpose, it does not require any previous coded
knowledge about the problem and it allows finding reasonable
solutions in a short time.

To face the scheduling problem a special, but general,
implementation of a GA has been employed. The goal was
to set up a boosted GA, able to handle individuals composed
by more than one structure, and structures defined on a very
large alphabet. Another requirement was that this special
implementation of a GA, the Golem, needed to handle special
structures where all the alphabet symbols appeared only once3.

The decision to write a special GA was due to the peculiar-
ities of the problem to tackle. Each candidate strategy aimed
to solve it can be split into two parts:

1) which machine will have to make an order
2) which priority will be assigned to each order

The two parts interact between each other in a complex way
so the goodness of a solution depends on the goodness of each
of them, but it is not possible to determine the contribution
of each part to the performance of the solution. Both have to
be evaluated simultaneously. Unless that, the contents of each
part are very different and they could be coded in a highly
different way. The first part could be expressed by a sequence
of numbers, each of them identifies a unit, whereas the position
of each code number identifies the order to be made. Adopting
the same structure for the priorities the problem to assign
univocal values to each order has to be faced. In addition
the code numbers are defined on a set which cardinality is
given by the number of machines the enterprise owns, while
the cardinality of the priority set is defined by the number of
orders the enterprise is going to plan. Resorting to the standard
two-symbol (0, 1) alphabet would have caused an ineffective
representation of the solutions space, given the problem to
represent each number in binary code every time the number
of orders, or the number of machines, is not a power of two.

The Golem tackles the aforementioned issues by allowing
the user:

1) to decide independently for each genome how many
symbols need to be used by the coding alphabet, i.e.

3The so-called “univocal” genomes, where every symbol representing a job
must not be repeated nor left out of every perspective solultion.

how many different values will be used in it
2) to decide a different length for each genome, i.e. how

many positions it will include
3) to handle genomes where each symbol of the related

alphabet will appear only once.

In addition the Golem was written taking into consideration:

1) the robustness of the methods exposed to the user, who
can hardly misuse them

2) the efficiency (performance-wise) of the program

The Golem features methods to let the users’ applications
smoothly handle and control the search process. The user
has simply to define the structure of the strings/individuals
by coding the number and specific parameters for each of
them: type (univocal or random), length, alphabet cardinal-
ity. The application (the Enterprise Simulator in this case)
can conveniently interact with the Golem, demanding for
an individual to evaluate and, after having performed the
evaluation, returning the fitness value to the Golem. When all
the population’s individuals have been evaluated, the Golem
automatically performs the evolutionary step. The Golem code
has been optimized to ensure a high performance level, and
has been regression–tested versus the earlier, more readable
versions.

IV. EXPERIMENTING INVENTED SOLUTIONS, ERGO

SUGGESTING THE GOOD ONES

The evolution process performed by the Golem is driven
by evaluating each single candidate solution appearing in the
GA population. The production plans require an estimation
as accurate as possible, incorporating every element of the
dynamic interaction characteristic of the enterprise operations.
It is the existence of such relationships among the intervening
parts which distinguishes the problem as one of a complex
kind: the aggregated outcome differs from what is obtained
by the single components.

Keeping in mind the facts mentioned above, the un-
feasibility of operating by decomposing the problem in parts is
self-evident: the interactional effect would be totally missed;
likewise, resorting to mathematical functions, static by their
own nature, would imply neglecting all the time-related fea-
tures, which are fundamental when it comes to plan actions
intended to happen over time, being themselves subject to
scheduling.

Computer simulation, by allowing management facts to hap-
pen in an artificial laboratory (the enterprise model), permits to
quantify and express costs, whether figurated or not, generated
by each candidate schedule, accurately and significantly, in
order to promote the search for the best solution to the given
problem.

The very same tool can be exploited in performing what-
if analyses driven by human decisions, in order to rank GA-
made solutions; this allows comparing what’s produced by the
human heuristics versus what’s suggested by AI techniques,
in a straightforward way. Plausibly it’s the only viable method
to provide a shared metric which permits, given the amplitude

baldoni
146

of the problem, to decide whether the search direction is a
productive one or not.

In order to exploit the enterprise simulation to these pur-
poses, the modelled objects are required to act as a bridge
between the (scheduling) plan from the inferential method (the
Golem) to the enterpreneurial metric.

In designing the Golem, that concerning this activity is
just one of the advantages aimed at: the chance to use an
extended (symbolic) alphabet solved some coding issues that
during the first trials performed by standard AGs hindered
the search process. An alphabet restricted to binary digits
forces production units and orders number to be expressed by
grouped symbols (as many as needed in order to the maximum
value in the definition domain to fit); wherever the defined
domain is less dense than the set of the natural numbers (when
dealing with orders classified by differentiating their number
by thousands or tenths of thousands, for instance), several
non-significant solutions may appear. In such circumstances
translation algorithms need to be employed, which, keeping
such unfavorable factors into account, operate extraneous
transformations (i.e. back-and-forth remapping) unknown to
the AG; in the worst cases the same value gets assigned to
formally different structures. Such behaviours can sensibly
mislead the solutions learning and refinement process, keeping
effective results from being efficiently achieved: execution
times may stretch considerably.

A further issue emerged from the orders execution priorities.
A standard GA in this case tended to produce non-univocal
outcomes: the same priority may have been assigned to several
different orders. Artificially differentiating equal values, based
on the position within the structure for instance, might have
impaired the GA abilities also in this situation. The system
would have somehow been “deceived” by such artifacts. Pro-
viding the ability to opt between different operators, applicable
to different kinds of genomes, the Golem could solve this issue
too.

Achieving reasonable solutions quickly is fundamental to
the enterprise: by analysing the experimental results a loga-
rithmic trend of the solutions goodness have emerged clearly,
functional to the number of evolutions performed. Practically
speaking, the Golem is able to rapidly improve the solutions
during the early stages of learning, while its productivity
decreases as the optimum is approached. Going for popula-
tion convergence appeared a suboptimal behaviour: halting
the system after a certain number of evolutions seems way
better than comsuming a long time in exchange for marginal
improvements.

V. PRELIMINARY RESULTS

Although the system hereby presented is, from a develope-
ment standpoint, mature, its adoption at a production stage by
the pilot plants involved is at its early phase. Nevertheless,
batteries of tests on real-world data have been thoroughly
performed.

The typical set-up involved sampling batches of orders from
a random date in the past (picking up real-time fresh data

very seldom, for reasons to be explain afterward). The results
obtained were measured against random plans (averaged over
multiple runs with different random seeds), against an ingen-
uous strategy4, against human solutions.

The system has been evaluated at various stages of the
search: although only after a 5-minutes run on an ordinary
desktop PC (details in Appendix) the proposed solution is
already better then the human-made, the performance level
(the costs saved) improves quickly, yet asymptotically (see
fig. 1).

A systematic comparison between results is hard to perform:
historical data on previous production plans isn’t always
available; asking human planners to re-evaluate prior data sets
is very likely to lead to biased solutions; the same happens
with “live” data. Additional problems associated with hard-
to-extract implicit knowledge are very likely to arise, when
dealing with real-world situations. This has been kept into
account, and comparisons have been performed both against
ad-hoc solutions on datasets expressly and silently submitted
to human planners and historical data, when available, hoping
to level out bias.

Early - yet consistent - results have been presented and
discussed with managers and experts, and they clearly show
the superiority of the system presented. In the following table,
results are shown as an indicator normalized versus the human
performance (made equal a hundred), and represent the overall
costs kept into account by the system, which of course neglects
exogenous costs.

random 100.00
pseudo-FIFO (see note 4) 92.05

human 82.27
5’ run 68.75

30’ run 62.25
6h run 60.62

VI. CONCLUSIONS

Production planning constitutes a typically complex prob-
lem: the interacting parts taking part in the process makes
impossible the application of traditional search procedures,
based for most part on the decomposability of the problem
as a prerequisite.

Given an (although limited) number of tasks to schedule,
even the plain enumeration of the possible solution becomes
practically unfeasible, given the combinatorial explosion im-
plied. In this scenario the limits of applying heuristics based
on human experience have appeared: the human mind attempts
to solve the problem operating on limited subsets at a time,
implicitly decomposing the complex problem, thus missing an

4The strategy, which is an oversimplification of the human way of schedul-
ing jobs, consists of a sort of modified and refined “First-In-First-Out”method:
jobs are appended to jobs with similar set-ups requirements that are already
in queue on a given production unit; jobs with different set-up requirements
are scheduled either on free PU’s, if any, or the first PU expected to become
available.

baldoni
147

overall view on it. Every single decision taken on the assign-
ment of a task onto a production unit constitutes a sensible
“cut-off” on the solutions space, resulting in neglecting the
exploration of large areas.

Implementing GAs let us exploit their implicit parallelism,
both from a computational and an investigative point of view:
starting from randomly generated solutions, avoiding pre-
digested strategies, the GA also considers solutions that would
be rejected by a human solver as absurd ones; not seldom
innovative ideas are found among such apparently suboptimal
candidates, and they are the ones that give superior results.

Apparently this is the main reason for the superiority of the
system with respect to the human approach. It demonstrates
itself far superior both in computation duration - efficiency -
and final results - efficacy.

The system put into place constitutes, though, just a starting
point: ways to improve the efficiency are being investigated
and experimented, by distributing the “thinking” part of
the work, the simulation, on several distributed nodes of
a computer network, drastically incrementing the degree of
parallelism of the computational process. At the same time
work is being done on making the inferential engine (the
Golem) more powerful, by introducing even more dramatic
variations with respect to the standard GA’s. The ongoing
tests concern: clustered, cooperating GA’s, and GA’s featuring
varying populations and variable-length individuals.

GLOSSARY

A brief list of technical terms relevant to the textile industry.
head: one of the (tenths to hundreds of) elements working

on a single thread, constituting a spinning mill.
card: a toothed brush used to disentangle fibers.
rotor: a rotating device used in transporting fibers.
nozzle: a v-shaped element through which air flows.

APPENDIX

• Gantt example:

Customers a and b demanded, respectively, for [A1, A2] and
[B1, B2]. Orders A1 and A2 are, from a technical standpoint,
similar, and require a negligible setup time between them. B1
and B2 are also very similar. Ignoring (by now) the delivery
constraints the obvious plan is to sequence similar orders on
the same spinner (solution i):

spinner # t0 t1 . . . tn

1 A1 q-A2
2 B1 q-B2

. . .

The two customers, on the other hand, have different timing
requests: a needs A1 and A2 as soon as possible; b is not
pressing very much for a quick delivery and is fine for him to
receive B1 and B2 by a later date. The most appropriate plan
in this case would appear as follows (solution ii, grid entries
changed from solution i have been italicized in order to let
them stand out):

Fig. 1. Evolution of solutions in successive generations, over time

spinner # t0 t1 . . . tn

1 A1 l-B1
2 A2 l-B2

. . .

The small letters preceding the second orders are meant to
show the different setup times required in both situations: as
expected, q stands for ’quick’ setup, l for ’long’ setup.

Even in an oversimplified situation like the one described
above, the complicated management of incompatible con-
straints appears; what makes solution i preferable over ii are
the actual setup and delivery “costs”, which must be accounted
for as accurately as possible.

• Experimental set-up: technical details

The experimental gear used consisted of a rather aged
desktop PC equipped with a single 800-Mhz Pentium-III CPU
and 256 MB RAM. The amount of available memory becomes
relevant when the GenomaBucket solutions caching system
comes into play. It is beyond the scope of this article to present
it; refer to [Mor03] for details.

REFERENCES

[AE94] R. L. Axtell and J. M. Epstein. Agent-based modelling: Under-
standing our creations. Bulletin of the Santa Fe Institute, 9(2),
1994.

[Axt99] R. Axtell. The Emergence of Firms in a Population of Agents.
Brookings Institution, Washington, 1999.

[Axt00] R. Axtell. Why Agents? On the Varied Motivations for Agent
Computing in the Social Sciences. Center on Social and Eco-
nomic Dynamics, November 2000. Working Paper No. 17.

[BMVf] S. Bandini, S. Manzoni and G. Vizzari. Multi Agent Systems
in Computer Science: Focusing on MAS Based Modelling and
Agent Interaction, EXYSTENCE Thematic Institute for Com-
plexity and Innovation, forthcoming.

[Bur94] R. Burkhart. The Swarm Multi-Agent Simulation System, Posi-
tion Paper for OOPSLA ’94 Workshop on “The Object Engine”,
http://www.swarm.org/archive/oopsla94.html

[DG88] J.H. Holland D.E. Goldberg. Genetic algorithms and machine
learning. Machine Learning, 3:95 104, 1988.

[Eps96] J. M. Epstein. Growing Artificial Societies. Brookings Institution
Press,Washington, D. C., 1996.

[Eps99a] J. M. Epstein. Agent-based computational models and generative
social science. Complexity, 4(5):41 60, 1999.

baldoni
148

Fig. 2. Architectural overview

GA

E S

GB

D B

Data interfaces:
- W eb fo rm s
- X M L u p l o ad
- L eg acy E R P
- . . .

[Eps99b] J. M. Epstein. Learning To Be Thoughtless: Social Norms and
Individual Computation. Center on Social and Economic Dynam-
ics, September 1999. Working Paper No. 6.

[Fer01] G. Ferraris. GAMES: Algoritmi Genetici per l’Economia. Num-
ber 51 in Quaderni del Dipartimento di Scienze Economiche e
Finanziarie G. Prato . Universit degli studi di Torino, Facolt di
Economia, March 2001.

[GT00] N. Gilbert and P. Terna. How to build and use agent-based models
in social science. Mind & society, 1(1), 2000.

[Hol75] J. H. Holland. Adaptation in Natural and Artificial Systems. MIT
Press, Cambridge, MA, 1975.

[Hol98] B. Holmstrom. The firm as a subeconomy. In Bureaucracy: Issues
and Apparatus, October 1998.

[HR99] M. Harris and A. Raviv. Organization Design. University of
Chicago, July 1999.

[JLS99] P. Johnson, A. Lancaster, and B. Stefansson. Swarm User Guide.
Swarm Development Group, November 1999.

[LS00a] Francesco Luna and Benedikt Stefansson, editors. Economic Sim-
ulations in Swarm: Agent-Based Modelling and Object Oriented
Programming. Kluwer Academic Publishers, 2000.

[LS00b] Francesco Luna and Benedikt Stefansson, editors. Economic Sim-
ulations in Swarm: Agent-Based Modelling and Object Oriented
Programming, chapter 9. Kluwer Academic Publishers, 2000. F.-
R. Lin, T. J. Strader, M. J. Shaw, Using Swarm for Simulation the
Order Fulfillment Process in Divergent Assembly Supply Chains.

[LS00c] Francesco Luna and Benedikt Stefansson, editors. Economic Sim-
ulations in Swarm: Agent-Based Modelling and Object Oriented
Programming, chapter 10. Kluwer Academic Publishers, 2000. C.
Schlueter-Langdon, P. Bruhn, M. J. Shaw, Online Supply Chain
Modelling and Simulation.

[LTS96] F.-R. Lin, G.W. Tan, and M. J. Shaw. Multi-Agent Enterprise
Modelling. University of Illinois at Urbana-Champaign, October
1996. Office of Research Working Paper 96-0134.

[MBLA96] N. Minar, R. Burkhart, C. Langton, and M. Askenazi.
The Swarm Simulation System: A Toolkit for Building
Multi-agent Simulations. Santa Fe Institute, June 1996.
http://www.swarm.org/

[MT00a] J. P. Marney and H. F. E. Tarbert. Why do simulation? toward a
working epistemology for practitioners of the dark arts. Journal
of Artificial Societies and Social Simulation, 3(4), October 2000.

[Mor03] M. Morini, Penelope Project: Web-Based Textile Production
Planning, SwarmFest 2003, University of Notre Dame, IN.
http://www.nd.edu/swarm03/

[Mor04] M.Morini, Penelope Meets NEMOTE: Distributed
Production Planning Optimization, SwarmFest
2004, University of Michigan, Ann Arbor, MI.
http://cscs.umich.edu/swarmfest04/

[PCG99] M. J. Prietula, K. M. Carley, and L. Gasser, editors. Simulating
Organizations, Computational Models of Institutions and Groups.
AAAI Press The MIT Press, 1999.

[SLS96] T. J. Strader, F.-R. Lin, and M. J. Shaw. Information infrastructure
for electronic virtual organization management. University of
Illinois at Urbana-Champaign, October 1996. Office of Research
Working Paper 96-0135.

[SLS98] T. J. Strader, F.-R. Lin, and M. J. Shaw. Simulation of order ful-
fillment in divergent assembly supply chains. Journal of Artificial
Societies and Social Simulation, 1(2), March 1998.

[Ter98] P. Terna. Simulation tools for social scientists:
Building agent based models with swarm. Journal of
Artificial Societies and Social Simulation, 1(2), 1998.
http://www.soc.surrey.ac.uk/JASSS/1/2/4.html

baldoni
149

An Agent-based Matchmaker
(A case study in biomedical services discovery)

Flavio Corradini, Chiara Ercoli, Emanuela Merelli and Barbara Re Dipartimento di Matematica e Informatica,
Università di Camerino
62032 Camerino, Italy

Email: {flavio.corradini,emanuela.merelli}@unicam.it, {chiara.ercoli,barbara.re}@studenti.unicam.it

Abstract— Service discovery is the process of localizing re-
sources and services available in large scale open and distributed
systems. In a distributed and redundant system as the Web, it
is necessary, beside localizing services, to filter them in order to
obtain those which are best for the activities for which they have
been requested. By the termmatchmaker we mean a software
entity which monitors services availability, maintains an updated
file of all useful information for using services and possibly
ensures a quality choice of them. In this paper we propose an
architecture for an agent-basedmatchmaker. The matchmaker
that takes part in the request process has been developed by using
the potential of a quality model based on suitable parameters
to ensure the proper choice of a service to be consumed in a
specific application domain. A case study in biomedical domain
is presented. This case study is concerned with the development
of a multi-agent system including a Bio-certifier in support of
service discovery activity.

I. I NTRODUCTION

Service discovery is the process of localizing services and
resources in the Web that best fit the requests of potential
users.

The Web main feature is the interconnection of an ever
increasing number of open, dynamic and geographically dis-
tributed systems which have an high heterogeneity of re-
sources, information systems and tools for specific application
domains. Hence the Web is a rather complex environment for
service discovery activities as can be seen, for example, in the
biomedical domain.

Biological and medical research is characterized by a global
distribution of information and by an almost complete au-
tonomy of research groups, from which an heterogeneous,
redundant, incomplete and rapidly aging access to resources
derives. Hence the choice of what could be the most suitable
tool or service for biomedical work activities is often difficult
and time consuming. From these considerations there follows
the need of building a quality model to support the discovery
process which will be based in symbolic descriptions of
relations among concepts of one or more domains of inter-
est allowing classification of services which are functionally
similar [1].

Quality can be defined as all the features of an entity
(resource, service, tool) that influence its capability to satisfy
declared or implicit needs [2]. From this definition it is clear

This work was supported by the by the MURST strategic project ‘Oncology
Over Internet’, by the CIPE project ‘SICOM: Sistemi Coperativi Multi-agente’
and the Center of Excellence for Research ‘DEWS: Architectures and Design
Methodologies for Embedded Controllers, Wireless Interconnect and System-
on-chip’.

that it is difficult if not impossible, until today, to define a
specific metrics capable of measuring the quality of resources
available through the Web. Although there exists several
criteria to evaluate consistency and internal correctness of a
resource, true evaluation of its quality, that of interest to users,
relies on the effectiveness of the resource itself. In other words,
one has to ascertain if a specific group of users considers
the use of that resource satisfactory for its information needs.
In fact, before finding the ideal requirements for the quality
model, it is necessary to carefully analyze the application
domain in which the quality model has to be used. Hence
the quality model has two main components, the general one
which describes the quality aspects of the distributed system,
e.g. the Web, and the other which describes the specific quality
aspects of the application domain; the biomedical in our case
study. The established quality model then becomes a tool
of consultation for the software entity in charge of service
discovery.

In this paper an architecture for a quality of service (QoS)
agent-based matchmaker is presented. The termmatchmaker
[3], [4] means a software entity capable of monitoring the
availability of services, maintaining an updated file of all
information on service use and, we add, of providing a quality
choice of service. The matchmaker is an agent contacted by
other agents wanting to obtain a quality service with respect to
the activity where the service will be used. In order to ensure
a choice of quality of a requested service, the matchmaker
communicates with the QoScertification authority, i.e. an
agent capable of implementing the established quality model.

Briefly, an agent is a software system capable of acting with
the aim of solving a problem in a flexible and autonomous way
and in an open, dynamic, unpredictable environment which is
typically populated by other agents. Often agents are created to
interact and cooperate with each other. The need of making an
agent interacting and communicating with other agents leads
to the need of coordinating the activities of the agents involved
in a system [5], [6]. In order to coordinate a pool of agents
(MAS: Multi-Agent System) it is necessary and fundamental
to understand which are the actors involved in the system,
their roles and which information are more important. In so
doing, we also achieve the result of specifying the importance
and true value of the parameters that characterize the quality
model.

The coordination model we have followed is the match-
making model presented in [7] which is based on a process of
mediation that implements direct communication among the
providers and the consumers of services and resources.

baldoni

To the aim of showing the applicability of matchmaker
architecture enriched with the QoS component, we have exam-
ined a case study in the biomedical domain, and developed a
multi-agent system for the discovery of quality services based
on JADE1 platform.

The remaining of the paper is organized as follows. Section
II is an introduction to the case study. Section III presents the
architecture of the multi-agent system for service discovery
and introduces the quality model. Section IV describes the
architecture of the system, defines the quality model for
biomedical domain and debates some experimental results. In
section V different approaches proposed in the literature for
the service discovery are analyzed and future extension of the
paper are presented.

II. A C ASE STUDY IN THE BIOMEDICAL DOMAIN

Health science is the applied science discipline that deals
with human and animal health by means of study, research and
application of knowledge with the aim of improving general
health. Biomedicine is a branch of health science that applies
biological and physiological principles to clinical practice.
Support to biomedicine is given by the understanding of the
way in which both human and animal biological systems
work and by the analysis of the (sometimes hidden) existing
relations between medical reports and results of performed
therapies. In both cases, the use of computational tools allows
us to find and analyse biological and clinical information
in order to answer complex questions in biological domain.
Moreover, appropriate computational models would also allow
to simulate biological systems [8], [9] with the aim of verifying
properties useful both for diagnosis and therapy.

The Web is an endless source of information of fundamental
importance to increase knowledge in the biomedical domain,
however it is often difficult and complex to retrieve this
information.

In several disciplines, complex questions are stated by
means of workflow of activities representing different in-
stances of problems which are simpler to solve. Carrying
out these activities implies the use of resources (tools and
services) usually accessible through the Web [10]. Introducing
quality in a workflow means giving a way of finding the most
appropriate resource/service to effectively satisfy the requests
of each activity. The following two scenarios are presented
as examples in order to introduce the workflow concept in
biomedicine:

“Let us assume that a biomedical researcher be an expert of
a gene, of the corresponding protein, of the known mutations
of that protein, and of consequent pathologies as well. This
biomedical researcher wants to design a microarray2 experi-
ment to analyse the gene expression (i.e. how much the gene
produces) in different normal and pathological tissues. This
experiment allows him to also find out the genic expression
of other genes in addition to the one of the gene being studied
and hence he needs to have an updated list of the genes that

1http://jade.tilab.com
2A DNA microarray is a piece of slide with a microscopic array on which

single DNA pieces are placed.

could be involved in the same biochemical pathway (i.e. chain
of biochemical reactions). For this purpose, the biomedical
researcher decides to use the Gene Ontology (GO) annotation3

to find out the relations among genes, biological processes
and biochemical pathway.” In this example GO is used as a
domain-specific language to specify the request, thus GO terms
will effect the domain specific quality aspects of the proposed
model.
“A doctor is treating a patient that has some constant slight
temperature (37,5 C). The temperature persists after antibiotics
therapy and hence the doctor decides to control the protein
level of the patient and prescribes some blood tests and urine
test. The performed tests show that the level of some proteins
is not normal but no sure conclusion can be drawn (no certain
diagnosis). The doctor then decides to search the possible
interactions among these proteins.” Instead, this example does
not use any domain specific language (ontology) to describe
the service, thus the quality model consists only of the general
quality aspects.

In these and similar situations the search for useful informa-
tion with the aim of giving an answer to the questions being
asked implies the choice and use of several resources. The
discovery process should be capable of identifying the best
service which will give the sought result in the shortest time,
so making the system efficient and effective.

III. T HE MULTI -AGENT ARCHITECTURE FORSERVICE

DISCOVERY

In this section we present the architecture of the multi-agent
system and the quality model defined to support the service
discovery in a distributed environment.

The system supporting service discovery has been designed
using agent technology because the problem dealt with was
suitable to be described in terms of autonomous, flexible actors
which operate in a dynamic and unpredictable environment
and are created to cooperate with each other. Our choice has
also been affected by such parameters as development and
administration costs of the discovery system, implementation
of interoperability among the different active systems, and
guarantee of an acceptable security level.

The proposed system architecture is an extension of the one
defined in Retsina [11] infrastructure and its main feature is a
group of three actors (agents) that communicate and exchange
information among themselves with service discovery as their
common goal.

The service providersupplies the services by which it is
possible to find the required information or solve specific
computational problems related to an application domain. The
service requesteris the user (or consumer) of the services
offered by theservice provider, and finally themiddle-agent
is the software entity that mediates between the previous two
in order to find the sought services.

In the literature [11]middle-agentsare classified according
to their functionalities as mediators, brokers and matchmakers.
In its original definition, given by Wiederhold in 1992 [12], a
mediatoris the active and dynamic interface by which a given

3www.geneontology.org/

baldoni
151

user (service requester) access data and knowledge owned by
itself.

A broker, sometimes also called afacilitator, is the existing
interface between aservice requesterand aservice provider
which acts as a mediator for service requests. All com-
munications between pairs ofservice providersand service
requestersflow into the broker which typically contacts the
more importantservice providersnegotiating execution of and
access control to the most appropriate service and returning
the service result to theservice requester.

On the contrary, the task of amatchmakeris to create
a connection between theservice requesterand theservice
provider, matching the request of a given service requester
to the offer of service of aservice provider. In this case an
autonomous interaction will take place. Unlike the function-
alities of both the broker and the mediator, the functionality
of the matchmaker is to return to the service requesting agent
an ordered list ofservice providers. Consequently theservice
requesterhas to directly contact theservice providerand
negotiate with it in order to get the desired service.
One could then consider matchmaking as a subset of brokering
but at the same time it can be seen as an extension of it because
matchmaking allows theservice requestera subsequent choice
of service providerin a way independent of the match found
by the matchmaker. The matchmaker has one weak point:
each agent needs to be smart enough to form a query and
evaluate how to choose among alternativeservice providers,
this features being not always present in MAS systems.

The coordination model describing dependencies and inter-
actions between the matchmaker and the other agents is called
matchmaking [7]. When an agent publishes a service, the
matchmaker records the name of the agent in his knowledge
base together with the description of offered service according
to the ontology used during the communication act. In this
way, when an agent requests a service, the matchmaker looks
in his knowledge base for a server capable of satisfying the
request (service matching). Then the agent requesting service
directly interacts with the chosen server in order to get the
desired service and data (service gathering) so avoiding a pos-
sible bottleneck in data transmission or a possible interruption
of the matchmaker activity, as described in Figure 1.

Fig. 1. Matchmaking coordination model [4]

A. The Proposed Agent-based Matchmaker

To the classical matchmaking model, as presented in [11],
our architecture introduces a fourth kind of agent (see Figure
2) representing the QoScertification authority. This agent,
through certification, ensures that resources, services and tools
be consistent with the user request non-functional require-
ments. In the proposed extended model, the duties of the
matchmaker also include coordination of available services
in accordance with specific protocols, agreements and policies,
and mediation to obtain reliable services both in terms of
quality and confidence, the latter being due to the multi-agent
system.
Such a process of quality service discovery must include a
component capable of analysing certain fundamental require-
ments that are made appropriate to the domain to which
they belong. Verification of these requirements will allow
the QoS certification authorityto give a quality level to
each registered services taken into consideration. In particular
the general evaluation criteria of our authority include some
macro-categories as aim of resource, user target, reliability,
contents, privacy, updating of formal features and quantitative
functions.

The main functionalities of each actor in the dynamics of
mediation systems are as follows:

1) a service provideradvertises its services to amatch-
makervia WSDL-URI;

2) thematchmakerstores this information in an hash table
and notifies the new services to the QoS certification
authority;

3) the QoS certification authoritycontacts theservice
provider and verifies the quality service;

4) theQoS certification authoritycertifies the service to the
matchmakervia an XML document;

5) a service requesterasksmatchmakerto find a service
provider that provides the best services;

6) thematchmakerprocesses the request within his knowl-
edge base (collection of information on services and
service providers) and it yields either some information
regarding theservice provideror possibly the result of
the application of the requested service;

7) theservice requestersend the request (service input) to
the selectedservice provider;

8) after the executing of service, theservice providerre-
turns the result (service output) to theservice requester.

This model, while looking extremely simple at first sight,
is instead a rather complex one mainly because the Web is an
open system, with plenty of information, subject to continuous
changes of available resource location, heterogeneity and con-
tents. The complexity of the model can increase when different
user groups and different MAS come into play because each
has its own goal which may be in conflict with those of the
others.

The choice of integrating matchmaking with a QoS autho-
rization component is a consequence of matchmaking being
well suitable to the scenario proposed by the case study, whose
features are distributed systems into which agents come in and
out and the offering of multiple answers with the possibility

baldoni
152

Fig. 2. The MAS architecture extended with the QoS certification authority

for each agent to keep control of its choices. The proposed
matchmaker limits the choice among alternative.

B. The Proposed Quality Model

When a user looks for a service (resource, tool, etc), the
system ideally should fetch the service exactly matching the
one requested. It is practically unlikely that such a service
be available and hence a service with “sufficiently similar
features” is fetched.

What do we mean by “sufficiently similar”?
In its strongest meaning a service offered in the network and a
requested service are “sufficiently similar” when they exactly
contain the same functionalities. This is a too restrictive
definition since the requesting user does not know in advance
how a service is represented in the network and has an own
idea of what the service should do. An acceptable definition
of similarity can be one with less constraints so to accept a
more flexible exactness degree.
Hence localizing services which can be used by the user
despite the existing differences between request and offer
represents a challenge for the system. Metrics measuring the
distance between request and offer can be of help to the user
in making a deliberate choice [13].

As above mentioned, the proposed quality model consists of
two components, the one describing general quality aspects of
the distributed computational environment where the service
is offered, and the other including quality features of the
application domain. In particular, the quality aspects chosen
for the first component have been derived by analyzing the
Web, and concluding that a qualitative web resource must
provide information to satisfy the following requirements:
• Aim is the purpose for which the resource has been

developed;
• User targetis the list of hypothetical users;
• Reliability is the probability of successfully using a

resource;
• Feasibility is the measurement of the easiness to access

the resource;
• Usability is the measurement of the easiness to use the

resource;
• Originality is the degree of correctness of the resource

and its information;

• Privacy captures the legal conditions of using the re-
source;

• Updating is the attendance of the resource updating;
• Uptiming is the maximum length of time between two

resource failures;
• Timing is the daily time of resource activity;
• Speedyis the measurement of the execution time;
• Browsing is the measurement of the human easiness to

find a resource;
• Popularity is the number of active consumers;

Each quality aspect above defined is quantitative measured
on the basis of several parameters not listed in this work, but
available in [14], [15]. While the domain-dependent quality
aspects are described in the Section IV-A dedicated to the
case study quality model.

Our system draws a distinction among three matching
levels:

Exact match is the highest degree of matching and takes
place when requests are satisfied by the server with
a percentage higher than 90%.

Plug-in match takes place when a service more general than
the requested one is supplied but that can be used
instead of the ideal requested service. This kind of
matching happens when requests are satisfied with a
percentage between 10 and 90%.

Relaxedmatch is the lowest degree of matching and takes
place when requests are satisfied by the server with
a percentage lower than 10%.

The matching algorithm measures the distance between the
quality aspects and the user requirements for a request service.
The matching algorithm developed in this work is carried out
within the QoScertification authorityto support the following
actions:

• supporting the semantic matches in a flexible way on the
basis of existing ontology;

• achieving matches with a minimum number of positive
false matches and negative false ones.

• encouraging correct registrations and requests that take
into account the cost of a mismatch due to false declara-
tions;

• carrying out efficient matches that give results in a short
time.

The main cycle of the matching algorithm is shown in the
code below. It can be seen that the requests are compared
with all parameters of the services which are stored in the
knowledge base and that the coefficient measuring the degree
of matching is evaluated for each service.

match (request){
recordMatch = empty list
forall service in mirror do{

recordMatch.addElement(service, coff)
}
return best(recordMatch);

}

Through our research we have found some general criteria
for evaluating quality of resources, services or tools. These

baldoni
153

criteria can be grouped in macro categories as: purpose, user
target, reliability, privacy, updating, formal aspect adherence,
interactivity, stability, ease of use and use of and access to
established standards.

IV. T HE QOS MATCHMAKER IN THE CASE STUDY

As a case study we have chosen the biomedical domain for
its complexity and because from carried out researches come
out that quality of Internet medical information is affected by
heterogeneity and dispersion of resources and inaccuracy and
incompleteness of available information. These factors are well
suitable for the definition of a quality model to be integrated
in a matchmaker architecture.

Defining a quality model means quantifying the parameters
that are typical of the application domain and specifying the
framework in which the model will be used. We assume to
be in a simplified situation in which biomedical information
and services are supplied by information repository which
are distributed in the network, called MOBY-Central [16]
in our case. Figure 3 shows the components of matchmaker
architecture and their interactions.

Fig. 3. The matchmaker architecture in the case study

The central element, that is thematchmaker, represents the
knowledge base of the poll of agents involved in the biomed-
ical system (BioMAS). Amatchmakerinteracts with three
separate components (agents): the BioMOBYservice provider
through which increases the system knowledge base which is
used in the discovery of new biomedical services, the QoS
certification authoritysupporting the discovery service and the
service requesterthat carries out the user side application for
locating services that satisfy given properties.

In details, the BioMAS consists of four kinds of agents:
the BioMobyServiceAgent , which is the system main
actor because all other agents refer to it. This agent has three
different roles: (i) coordinates all other agents; (ii) manages the
system knowledge base, and (iii) carries out the discovery of
a quality service. TheBioMobyDiscoverServiceAgent
is the interface between the biological information repos-
itory and the BioMobyServiceAgent with the aims
of discovering the requested service on the one side

and of advertising any newly offered service on the
other side. TheBioMobyApplicationAgent helps the
user in the search of the best service among those ad-
vertised by the BioMobyServiceAgent . Finally, the
BioQualityServiceAgent is the authority that certifies
services according to the quality model defined for the bio-
logical domain.

A. The Quality Model for the Biomedical Domain

TheQoS certification authoritydeveloped in this work used
an instance of the quality model introduced in III-B. The first
component is characterized by the quality aspects of a Web
Services (i.e.BioMOBY), while the second is characterized by
information introduced by the biomedical domain. The subset
of quality aspects chosen for the first component are:
• the Reliability based on three parameters: the first one

assigns a value to the author based on his professional
competence, the second allows to find whether the author
adheres to certified standards and the last allows to find
out whether the supplier of service is profit oriented;

• theOriginality based on two boolean parameters: public-
ity policy, that is whether there are sponsors and official
agencies financing the resource and fidelity procedure,
that is the monitoring of consumer surveys;

• thePrivacybased on a boolean parameter that makes sure
that privacy policies, data security, personal data process-
ing (including that of unaware users) are in accordance
with existing laws;

• theUpdatingbased on a parameter that addresses the time
period (daily, monthly, yearly) the resource is updated;

• the Usability based on a parameter that measures the
easiness in using a resource:

Finally, by formal aspect concept we mean two strictly
technical parameters which give a measure of the daily service
performance:
• the Timing that is a measurement of the time period that

a service is active;
• the Speedthat is a measurement of the service execution

time.
The matching algorithm, after having analysed the above

listed information and after having made a classification of
services, goes on to examining the information made available
by biomedical domain.

In this second part of the model,
• name, represents the most important parameter be-

cause the knowledge of it by the user will cause the
search necessarily returning the specified service (match
weight=51);

• description, made of keywords which will be sought
inside every individual service stored in the knowledge
base (match weight=4);

• type, has little importance in the model because can
only be one of seven kinds (service, retrieval, resolu-
tion, parsing, registration, analysis, NCBI_Blast) (match
weight=2);

• author, it simply represents his name and does not carry
his credentials with it (match weight=4);

baldoni
154

• input and output, they are fundamental parameters
because the user already knows what he has got and
what he wants to get (match weight=17 and 22);

A more detailed description of the model of quality can be
found in [14], [15].

B. Examples

As explained in Section II, as of today the huge amount of
information and services in the biomedical domain which are
in the Web makes rather difficult to the user to understand
which is the best service for his needs. Our contribution to
solving this problem has been the implementation of a model
based on a qualitative matching algorithm by which it is
possible to make the correct choice. Moreover, by the use of
an agent based technology, waiting time and interaction time
by the user with the system have been considerably reduced
because of the presence of a software assistant. In order to
show some preliminary results of the effectiveness of the
proposed model we will consider the two simple examples
previously shown.

In the first case “the biomedical researcher decides to use
the Gene Ontology (GO) annotation to find out the relations
among genes, biological processes and biochemical courses.”
The results we would get from BioMOBY by making the
following query with keywords ’GO’, ’Gene’ and ’Ontology’:

select servicename, url
from service_instance
where description like %Gene%
and description like %Ontology%
and description like %GO%

are:

servicename: getGoTerm
url: http://mobycentral.cbr.nrc.ca

/cgi-bin/Services/Services.cgi

servicename: getSHoundGODBGetParentOf
url: http://mobycentral.cbr.nrc.ca

/cgi-bin/Services/Services.cgi

servicename: getSHoundGODBGetChildrenOf
url: http://mobycentral.cbr.nrc.ca

/cgi-bin/Services/Services.cgi

While the result obtained by the QoS matchmaker is:

servicename: getGoTerm
url: http://mobycentral.cbr.nrc.ca

/cgi-bin/Services/Services.cgi

It can be noticed that in the first case the answer also
contains addresses which are not meaningful for the made
query forcing the user to a kind of classification or to repeated
trials before singling out the service which best fits his needs.
In the second case, the QoS machmaker, on the bases of the

matching algorithm filters the best service.

Let us analyse the second example “the doctor then decides
to search the possible interactions among these proteins.” By
making the following query to BioMOBY with keywords
’protein’ and ’interact’:

select servicename, url
from service_instance
where description like %interact%
and description like %protein%

we would get the following results:

servicename: getInteractions
url: http://www.pdg.cnb.uam.es/moby

/cgi-bin/mobyservice

servicename: getInteractionsXML
url: http://www.pdg.cnb.uam.es/moby

/cgi-bin/mobyservice

servicename: getInteractingMethods
url: http://www.pdg.cnb.uam.es/moby

/cgi-bin/mobyservice

While, through the middle-agent mediation and use of the
model of quality, we obtain:

servicename: getInteractions
url: http://www.pdg.cnb.uam.es/moby

/cgi-bin/mobyservice

Also from this second case, it can be seen that the use of
a quality model has the same effect of applying a filter to the
set of possible answers.

V. RELATED AND FUTURE WORK

Many works have been presented in the literature to support
service discovery in the Web environment [3], [4]. Some use
UDDI technology and Web Services, others use the agent
technology, a few just use a mediator. None of these suggests
the integration of a quality model within the matchmaker
architecture in support to service discovery in a biomedical
domain.

UDDI4 (Universal Description, Discovery, and Integration)
has become a de-facto standard for service discovery in the
community of Web Service and it is commonly looked at as
a “yellow pages” service. In the UDDI model services are
localized through their description by the supplier or by the
type of service and both ways of service discovery are built
with a limited number of high level sentences that produce a
rigid scheme. Although UDDI is a de-facto standard, it does
not allow neither a quantitative nor a semantic discovery but
only a keyword based search.

Retsina [3] is an open infrastructure for MAS which is
capable of supporting communities (oppure populations) of

4http://www.uddi.org

baldoni
155

heterogeneous agents. Service discovery is based on OWL-
S5 ontological language for service functionality description.
The resulting matching process is only a semantic one and not
necessarily of quality.

DiscoveryLink6 is a product developed by IBM that al-
lows a discovery process on many specialized heterogeneous
databases by means of a single query that uses specialized
wrappers. The resulting system is a rigid one again and forces
the user to predefined and limited choices without offering
either a semantic service discovery or one of quality.

MyGrid7 is a pilot project of UK e-Science that provides
a middleware open-source Grid developed to supply a virtual
workbench in bioinformatics domain. Emphasis is placed on
the workflow as an integration tool and on the customisation
and source of data. Resources are considered as services that
can be statically or dynamically combined within a given
framework. However also in this product no quality of the
offered service is guaranteed.

We plan to extend this work in the future by customizing
requests to target, that is by including in our model of
quality parameters which are proper of user profile (computer
scientists, biological computer scientists, biologists, etc.). We
also mean to add use of ontology in order to describe the
user requests both to verify their validity and to correctly
describe each service. In fact, GO could also be included in the
quality model to describe the bio-domain. In our case study
GO represents the service description language.
The introduction and quantification of additional certification
parameters will help both the certifying agent and the middle-
agent to keep their information updated and hence to answer
even complex requests by giving a service workflow. Last
but not least, we plan to develop the system in Hermes8, a
mobile agent middleware supporting distributed applications
and mobile computing, in order to use mobility to optimize
the cost of data transfer and evaluate the possibiltiy to improve
the performance of the matchmaker.

ACKNOWLEDGEMENTS

We wish to thank Ing. Lucio Forastieri for the interesting
discussions that have led us to the development of this work
and Ing. Paolo Romano for having given us useful case studies
for validating the proposed model.

5http://www.owl-s.org
6http://www.discoveryLink.ibm.com
7http://www.mygrid.org
8http://hermes.cs.unicam.it

REFERENCES

[1] G. Eysenbach and al., “Towards quality management of medical infor-
mation on the internet: evaluation, labelling, and filtering of informa-
tion,” 1998.

[2] T. C. I. . International organization for standardization, “Iso 8402:
Quality management and quality assurance.” 1994, vocabulary. 2nd ed.
Geneva: International organization for standardization.

[3] K. Sycara, M. Paolucci, M. van Velsen, and J. Giampapa, “The
RETSINA MAS infrastructure,”Autonomous Agents and Multi-Agent
Systems, vol. 7, no. 1–2, pp. 29–48, July–Sept. 2003.

[4] K. Decker, M. Williams, and K. Sycara, “Matchmaking and brokering,”
in ICMAS-96, May 1996.

[5] M. Wooldridge and N. R. Jennings, “Agent theories, architectures and
languages: A survey,” inIntelligent Agents, ECAI-94 Workshop on Agent
Theories, Architectures and Languages. Springer-Verlag, 1994, pp. 1–
39.

[6] N. Jennings and M. Wooldridge, “Application of intelligent agents,” in
Agent Technology: Foundations, Applications, and Markets. Springer-
Verlag, 1998.

[7] K. ycara, M. Paolucci, A. Ankolekar, and N. Srinivasan, “Automated dis-
covery, interaction and composition of semantic web services,”Journal
of Web Semantics, vol. 1, no. 1, pp. 27–46, 2003.

[8] H. Kitano, “Systems biology: A brief overview,”Science, vol. 295, pp.
1662–1664, march 2002.

[9] N. Cannata, F. Corradini, E. Merelli, A. Omicini, and A. Ricci, “An
agent-based conceptual framework for biological systems simulation,”
in Fourth International Workshop on Network Tools and Applications in
Biology, Camerino, 2004.

[10] F. Corradini, L. Mariani, and E. Merelli, “An agent-based approach to
tool integration,”Journal of Software Tools Technology Transfer, 2004,
to appear.

[11] M. Klusch and K. Sycara, “Brokering and matchmaking for coordination
of agent societies: A survey,” inCoordination of Internet Agents:
Models, Technologies, and Applications, A. Omicini, F. Zambonelli,
M. Klusch, and R. Tolksdorf, Eds. Springer-Verlag, Mar. 2001, ch. 8,
pp. 197–224.

[12] G. Wiederhold, “Mediators in the architecture of future information
systems,”IEEE Computer System, vol. 25, no. 3, pp. 38 – 49, March
1992.

[13] R. Culmone, G. Rossi, and E. Merelli, “An ontology similarity algorithm
for bioagent,” in NETTAB Workshop on Agents nd Bioinformatics,
Bologna, 2002.

[14] B. Re, “Un modello di qualità per la scelta di servizi web in am-
bito biologico - il ruolo del modello di coordinazione,” Master’s the-
sis, Laurea in Informatica, Università di Camerino, a.y. 2003-2004,
http://dmi.unicam.it/merelli/tesicl26/re.pdf.

[15] C. Ercoli, “Un modello di qualità per la scelta di servizi web
in ambito biologico - il ruolo del middleware,” Master’s the-
sis, Laurea in Informatica, Università di Camerino, a.y. 2003-2004,
http://dmi.unicam.it/merelli/tesicl26/ercoli.pdf.

[16] M. Wilkinson, D. Gessler, A. Farmer, and L. Stein, “The biomoby
project explores open-source, simple, extensible protocols for enabling
biological database interoperability,” 2003, procedings of the virtual
conference on genomics and bioinormatics. (3):17-27.

baldoni
156

	a7_p0642709.pdf
	Introduction
	The DyLOG language
	A DyLOG implementation

	Visual DyLOG
	The Eclipse project
	The environment
	An example of use

	An OWL ontology for DyLOG
	The DyLOG ontology

	Conclusions and future work
	References

