Design and development of a visual
environment for writing DyLOG

programs

C. Schifanella, L. Lusso, M. Baldoni, C. Baroglio
Dipartimento di Informatica, Univ. degli Studi di Torino
Corso Svizzera 185, 10149 Turin (Italy)

{schi, baldoni, baroglio}@di.unito.it,
lussoluca@tiscali.it

Turin, Italy, 12-01-2004

Outline

Introduction

The DyLOG language

A DyLOG implementation
The visual environment
A DyLOG ontology
Conclusions

Demo

WOAOQ4: Design and development of a visual environment for writing DYLOG programs

Agent Oriented System
Engineering

Needing of tools to support

= design

» implementation

= deploy

Quality of tools influences the choice of
the specification language

WOAOQ4: Design and development of a visual environment for writing DYLOG programs

AOSE: some example
environments

AgentTool

= Java-based graphical development environment

m supports analysis, design and implementation

= used to graphically define high-level system behaviours
Zeus

m by British Telecommunication

= allows to specify and to implement collaborative agents
DCaselP

= allows to integrate different specification and
implementation languages in order to model and
prototype MASs

WOAOQ4: Design and development of a visual environment for writing DYLOG programs

The DyLOG language

It is a logic language for reasoning about actions
and change

It allows the specification of individual,
communicating agents, situated in a multiagent
context

It performs hypothetical reasoning about the
effects of conversations on the agents mental
state

WOAOQ4: Design and development of a visual environment for writing DYLOG programs

DyLOG + CKit

DDagi=(I1, Ckitagi,S,)

Domain description

it is used to describe the agent’s behaviour by means
of simple and complex actions, communicative
actions and initial observations

WOAOQ4: Design and development of a visual environment for writing DYLOG programs

DyLOG + CKit

DDagi=(I1, Ckitad,S,)

simple actions

_ _ sensing actions
a set of simple action laws

a set of sensing axioms

complex actions

a set of procedure axioms to specify
the agent

WOAOQ4: Design and development of a visual environment for writing DYLOG programs

DyLOG + CKit

DDagi=(I1, Ckitagi,S,)

speech acts

_ _ messages from other
a set of simple action laws

agents
a set of sensing axioms

conversation protocols

a set of procedure axioms to specify
the agent

WOAOQ4: Design and development of a visual environment for writing DYLOG programs

tuDyLOG: a DyLOG implementation

Java package
Built upon tuProlog
= light-weight Prolog engine

m it is possible to exploit some common
mechanisms (like unification)

tuDyLOG

1 !

tuProlog

WOAOQ4: Design and development of a visual environment for writing DYLOG programs

tuDyLOG main elements

Each costruct is implemented by a class or
a set of classes

Class DomainDescription
m its instance represents a DyLOG program

= it contains instances of main program
components, such as actions, communicative
acts and initial observations

WOAOQ4: Design and development of a visual environment for writing DYLOG programs

10

tuDyLOG main elements

Class DyLOGStruct e
= is an extention of the urrolog

tuProlog Struct class

= is the connecting point /

between tuDyLOG and
tuProlog

= through DyLOGStruct a DyLOGStruct
DyLOG costruct can be

turned into a corresponding
tuProlog structure | Belief | |DyLOGterm|t-...iooo.

tuDyLOG

WOAOQ4: Design and development of a visual environment for writing DYLOG programs

11

tuDyLOG main elements

Class Action

m abstract class that is extended to represent
costructs such as Simple, Complex and
Sensing Actions (and Ckit elements).

Class DyLOGLaw

m abstract class that is extended to represent
Precondition Law, Simple Action Law, etc

WOAOQ4: Design and development of a visual environment for writing DYLOG programs

12

tuDyLOG: an example

DomainDescription dd = DomainDescription.getInstance();

SimpleAction turn dial l=new SimpleAction("turn dial",1);

BeliefFluent bl=new BeliefFluent (new DyLOGStruct ("ag"),h new
DyLOGStruct ("in front of (I)"));

//Precondition
turn dial 1.getPreconditionLaw () .getAction().setName ("turn dial");
turn dial 1.getPreconditionLaw () .getAction().setTerm(0, new

Var ("I1"));

turn _dial 1l.getPreconditionLaw () .addPrecondition (bl);
//First action law

ActionLaw actionLaw = new ActionLaw (new
DyLOGStruct (turn dial 1.getName (), argomenti));

WOAOQ4: Design and development of a visual environment for writing DYLOG programs 13

Visual DyLOG

Visual environment to write DyLOG programs
Written in Java using Eclipse platform

Based on model-view-controller paradigm, where tuDyLOG
package represents the model

p— : Outline view

- | Ft—
Program view = ==
\ -
LS _
Editor view ; . 2
I = Property view
ol L

Log view .
e

WOAOQ4: Design and development of a visual environment for writing DYLOG programs 14

The Eclipse project

Is a platform designed for building IDEs

Proven, reliable and scalable technology upon
which application can be:

= designed
= developed —’
= Written in Java DT ’
= Plug-in architecture ’
evn |
WOAO04: Design and development of a visual environment for writing DYLOG programs 15

Eclipse Rich Client Platform

= Represents the smallest subset of Vis;alDy.LOG
Eclipse plug-ins that are

necessary to build a generic
platform application
» Used to deploy and distribute
applications as stand-alone tools -
RCP - Platform

(O Extension
Extension point

WOAO04: Design and development of a visual environment for writing DYLOG programs 16

Visual DyLOG

= Aims to make more intuitive the design of DyLOG
agent’s behaviour by using:

= graphical notation
= used shapes recall flow-chart symbols

= similar constructs are represented by same shapes

- Belief ’ TestAction
- DisBelief switch_off(x,Y) | SimpleAction
. Term - ComplexAction
. NegativeTerm .— ? SensingAction

WOAOQ4: Design and development of a visual environment for writing DYLOG programs

17

Visual DyLOG

= An example of an action law representation:

B Edine

Edit an actionLaw of: switch_off/2

\

Condition -
Effect

I

Conditions — |

Palette

Effect — |

FrecondonLaw | ActionLaw !

WOAOQ4: Design and development of a visual environment for writing DYLOG programs

18

Visual DyLOG

Architecture is extensible

It is possible to export/import a DyLOG
program in/from many formats like

= english-like language

= OWL

= other formats can be easily added

WOAOQ4: Design and development of a visual environment for writing DYLOG programs

19

DyLOG ontology

Written in OWL

Allows a better integration of DyLOG agents in a
Semantic Web scenario

Syntactic constraints of the language can be
specified by a proper ontology restriction

An external reasoner can verify the correctness of
the programs

Used as a common interchange format

= Visual DyLOG provides import/export features

WOAOQ4: Design and development of a visual environment for writing DYLOG programs

20

DyLOG ontology main elements

It exploits the main characteristics
of the OWL language
A DyLOG program is represented by
an instance of the
DomainDescription class. It has 3
properties that specify

= behaviour

= communication policies

= initial observations

Each class specifies all the
characteristics of the correponding
DyLOG costruct

C) BeliefFluert
C) DisBelietFiuent
-

C) NeogativeTerm

C) TestAction
—\Q\AdlonTerm
C-{(ClLaw
CJ ActionLaww
CJ ComplexactionLawy
CJ PrecandtionLaw
j_C?\AdiﬂnName
o C) Action
CJ Complesaction
C) SensingAction
C) Simplection
=HE) At
CJ CorversationPolicy
C) Getaction
C) Speechact
Tl ckit
—\Q\Behavlour
j_D?\ DaomsinDescription
L(Cisn

WOAOQ4: Design and development of a visual environment for writing DYLOG programs

21

Conclusions and future work

tuDyLOG allows
= portability

= a better integration with applications and frameworks

that are already available

Visual DyLOG allows to reduce the development

effort

Work in progress
= tuDyLOG intepreter

WOAOQ4: Design and development of a visual environment for writing DYLOG programs

22

Demo: an example

Air Conditioning DIAL Low

- Unit 1 A
E " Off u\

High

Protective Cover

Air Conditioning
Unit 2

e :

WOAOQ4: Design and development of a visual environment for writing DYLOG programs

23

Design and development of a visual
environment for writing DyLOG

programs

C. Schifanella, L. Lusso, M. Baldoni, C. Baroglio
Dipartimento di Informatica, Univ. degli Studi di Torino
Corso Svizzera 185, 10149 Turin (Italy)

{schi, baldoni, baroglio}@di.unito.it,
lussoluca@tiscali.it

Turin, Italy, 12-01-2004

