
Mirko Viroli, Alessandro Ricci
DEIS, Sede di Cesena

Alma Mater Studiorum, Università di Bologna
{mviroli + aricci}@deis.unibo.it

properly filtered by Andrea Omicini

Timed Coordination Artifacts
with ReSpecT

WOA 2004, Torino Mirko Viroli, Alessandro Ricci 2

Outline

• General purpose coordination for MAS

• TuCSoN and the ReSpecT language

• Timed ReSpecT

• Examples of application

• Conclusions

WOA 2004, Torino Mirko Viroli, Alessandro Ricci 3

TuCSoN Infrastructure
Agents:
S/W components
Intelligent systems

TuCSoN infrastructure:
provides coordination
services to agents in a
distributed setting

Tuple Centre:
Programmable tuple
space

Interactions:
production/consumption
of tuples

WOA 2004, Torino Mirko Viroli, Alessandro Ricci 4

Coordination Artifacts
• A notion of coordination abstraction for MAS

– inspired by mediating artifacts of Activity Theory

artifacts constructed and used by humans to coordinate
one another (semaphores, maps, blackboards, signs,...)

– agents exploit the services of coordination artifacts

• Devised for engineering purposes, featuring:
– Usage interface & Operating instructions for the agents

– Inspectability/Adaptability of behaviour

• A coordination artifact is NOT an agent!
– it does not “achieve goals in autonomy”, it is not proactive

– it calls for a different model, design, implementation

• In TuCSoN, coordination artifacts are realised
through ReSpecT tuple centres

WOA 2004, Torino Mirko Viroli, Alessandro Ricci 5

ReSpecT Tuple Centres

• Without a specific programming, they are Linda
tuple spaces

– with 1st order logic terms as tuples

– and logic unification as matching criterion

• They can be programmed with ReSpecT
– Reaction Specification Tuples [Omicini & Denti 2001]

– Defines how to reactively transform the set of tuples as

a new “input event” is received (listening)

a new “output event” is produced (speaking)

• Paradigm
– transformations through atomic triggered reactions

each of which may trigger new ones

WOA 2004, Torino Mirko Viroli, Alessandro Ricci 6

Dining Philosophers

chops(1,2)

chops(2,3) chops(3,4)

chops(4,1)chop(1)

chop(2)

chop(3)

chop(4)

• The problem:
– Each agent needs to access two locks in an atomic way

– Locks are shared with another agent

Is a non-trivial example of coordination policy

causes deadlock in Linda (accessing tuples separately)

• The solution using ReSpecT [SAC98]
– agents put and remove couples of locks

– internally, couples are divided into single locks

WOA 2004, Torino Mirko Viroli, Alessandro Ricci 7

ReSpecT Specification Tuples

reaction(out(c(X1,X2)), (in_r(c(X1,X2)), out_r(c(X1)), out_r(c(X2))))

out(c(1,2)) c(1,2)

updates
c(1,2) with
c(1) and c(2)c(2)

c(1)

WOA 2004, Torino Mirko Viroli, Alessandro Ricci 8

ReSpecT Specification Tuples

reaction(out(c(X1,X2)), (in_r(c(X1,X2)), out_r(c(X1)), out_r(c(X2))))

in(c(1,2))

in(c(1,2))

reaction(in(c(X,Y)), (pre, out_r(req(X,Y))))
reaction(out_r(req(X,Y)), (in_r(c(X)),in_r(c(Y)), out_r(c(X,Y))))

req(1,2)

c(2)

c(1) adds
req(1,2)

WOA 2004, Torino Mirko Viroli, Alessandro Ricci 9

ReSpecT Specification Tuples

reaction(out(c(X1,X2)), (in_r(c(X1,X2)), out_r(c(X1)), out_r(c(X2))))

reaction(in(c(X,Y)), (pre, out_r(req(X,Y))))
reaction(out_r(req(X,Y)), (in_r(c(X)),in_r(c(Y)), out_r(c(X,Y))))

req(1,2)

c(2)

c(1) removes
c(1), c(2)
and inserts
c(1,2)

c(1,2)

in(c(1,2))

WOA 2004, Torino Mirko Viroli, Alessandro Ricci 10

ReSpecT Specification Tuples

reaction(out(c(X1,X2)), (in_r(c(X1,X2)), out_r(c(X1)), out_r(c(X2))))

reaction(in(c(X,Y)), (pre, out_r(req(X,Y))))
reaction(out_r(req(X,Y)), (in_r(c(X)),in_r(c(Y)), out_r(c(X,Y))))

req(1,2) c(1,2)

reaction(in(c(X,Y)), (post, in_r(req(X,Y))))

removes
req(1,2)

in(c(1,2))

 c(1,2)

WOA 2004, Torino Mirko Viroli, Alessandro Ricci 11

The complete code

WOA 2004, Torino Mirko Viroli, Alessandro Ricci 12

ReSpecT Syntax

WOA 2004, Torino Mirko Viroli, Alessandro Ricci 13

The ReSpecT Language
• Semantics

– expresses transformations of tuple sets

– globally triggered reacting to communication events

– made of recursive triggering of atomic internal reactions

Turing-complete formalism [Denti, Natali, Omicini 1998]

• Use
– to make tuple centres automate specific coordination tasks

possibly an assembler for higher-level languages

– ReSpecT tuple centres as VM for coordination media

• Domains
– workflow activities

– protocols enforcement

– data-oriented forms of cooperation

WOA 2004, Torino Mirko Viroli, Alessandro Ricci 14

Timed Coordination

• The notion of time arises in coordination in
the context of open and complex systems

• Need for

– an infrastructure soliciting agent interaction

– an infrastructure avoiding denial of service due
to iper-active agents

– an agent soliciting infrastructure interaction

• In general
– we need to specify and enact time-dependent

coordination laws (timeouts, delays,...)

WOA 2004, Torino Mirko Viroli, Alessandro Ricci 15

Related Approaches
• Technologies

– JavaSpaces:
• tuples with a lease-time

• predicate primitives with a timeout (read, take,..)

• Models
– Timed Linda [de Boer+Gabbrielli+Meo,1996]

• Formal foundation
– Interaction

• Process algebras for timed systems [1995]

– Coordination
• JavaSpaces formal model [Zavattaro et.al 2000]

• Expressiveness of timed coordination languages
[Jacquet et.al’s 2004]

WOA 2004, Torino Mirko Viroli, Alessandro Ricci 16

Extending ReSpecT with Time
Syntax, in prolog-like predicates:

• - for outputs, + for inputs, @ for ground inputs, ?
for I/O

Three new primitives

• currentTime(?Tc)
– Binds variable Tc with the current tuple centre time

– a time-increasing integer value (millisecs.)

• newTrap(-ID, @Te, +Td)
– creates a new trap source, with identifier ID

– which will fire a trap event after Te time units

– with tuple Td as content of the trap event

• kill_trap(@ID)
– deallocate the trap source with identifier ID

WOA 2004, Torino Mirko Viroli, Alessandro Ricci 17

Trap events listening

• When the Te time expires, the trap event is
generated which can be listened by a
reaction specification tuple of the kind...

– reaction(trap(Tuple), Body)

• .. where Tuple is the trap event content
tuple

WOA 2004, Torino Mirko Viroli, Alessandro Ricci 18

Example 1: Timed In

• A basic extension to the Linda coordination
model provides predicate queries (in and rd)
with a timeout

– allow an agent to request information from the
infrastructure to be received within a timeout

• Timed In: in(timed(@Time,?Tuple,-Res))
– ask for removing a tuple matching Tuple

– within Time units

– Res will contain the result of removing (yes/no)

WOA 2004, Torino Mirko Viroli, Alessandro Ricci 19

Specification (1/4)

1. As the in(timed(..)) is listened, if Tuple occurs
• remove the tuple and reify the result

timed(Time,Tuple,yes)

WOA 2004, Torino Mirko Viroli, Alessandro Ricci 20

Specification (2/4)

2. As the in(timed(..)) is listened, if Tuple does not
occur
• generate the trap source (expired_in)

• reify info on the trap (trap_info)

WOA 2004, Torino Mirko Viroli, Alessandro Ricci 21

Specification (3/4)

3. If the trap event is generated
• remove the reified info on the trap source

• reify the result timed(Time,Tuple,no)

WOA 2004, Torino Mirko Viroli, Alessandro Ricci 22

Specification (4/4)

4. If a matching tuple is inserted in the space
• finds a pending trap source that matches

• kill its trap and reify a positive result

WOA 2004, Torino Mirko Viroli, Alessandro Ricci 23

Tuples with Lease

As the tuple is
inserted generates

the trap source

Handle successful
reads of the tuple

Handle unsuccessful
reads of the tuple

Handle removals of
the tuple

Lease expiring

WOA 2004, Torino Mirko Viroli, Alessandro Ricci 24

Timed Dining Philosophers

• Is an extension of the dining philosophers
case

– exemplifies the need for adding time constraints
to an exiting, complex coordination scenario

• A tuple in the tuple centre stores the
maximum amount of time which an agent
can need for using the resource (eat)

– max_eating_time(Time)

– if this expires the locks are automatically
released (chopsticks are re-inserted)

– late releases are to be consumed

WOA 2004, Torino Mirko Viroli, Alessandro Ricci 25

Specification
When chopsticks
are consumed, a
trap generator is

created
As the chopsticks
are released, the
generator is killed

As the trap event is
listened, chopsticks

are re-inserted!

Late re-insertions
of chopsticks are

ignored!

• Rules to be modulary added to the untimed spec.

WOA 2004, Torino Mirko Viroli, Alessandro Ricci 26

Timed Contract Net

• CNP
– A master announces a task to be executed

– workers provide their bids

– one of them is selected which executes the task

• Timed extension to guarantee liveness. We
add timeouts for
– the bidding stage

– the master to communicate the awarded worker

– the awarded worker to confirm its bid

– the awarded worker to execute the task

WOA 2004, Torino Mirko Viroli, Alessandro Ricci 27

Specification
It’s a
reasonable
extension to
the un-
timed
specification

WOA 2004, Torino Mirko Viroli, Alessandro Ricci 28

Conclusion
• From untimed to timed VM for coordination

laws in MAS
– prelimary proposal, with good support to

scalability of coordination law complexity

– already implemented in TuCSoN 1.4

– Visit and try: tucson.sourceforge.net

• Future works
– More practice and experience with time

– Deepening internal priority and synchrony issues

– Full formal model of Timed ReSpecT

– General redesign of the ReSpecT model, with
better integration of time, observation & meta-
level

Mirko Viroli, Alessandro Ricci
DEIS, Sede di Cesena

Alma Mater Studiorum, Università di Bologna
{mviroli + aricci}@deis.unibo.it

properly filtered by Andrea Omicini

Timed Coordination Artifacts
with ReSpecT

